天津市大港区2019-2020学年中考二诊数学试题含解析
天津市部分区2019年中考数学二模试卷(pdf,含解析)
A.25°
B.30°
C.35°
D.40°
11.(3 分)如图,在等边△ABC 中,AB=6,N 为 AB 上一点,且 AN=2,∠BAC 的平分线交 BC 于点 D,M 是 AD
上的动点,连结 BM,MN,则 BM+MN 的最小值是( )
A.8
B.10
C.
D.2
12.(3 分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
.
17.(3 分)如图,正方形 ABCD 的对角线 AC、BD 相交于点 O,∠CAB 的平分线交 BD 于点 E,交 BC 于点 F.若
OE=2,则 CF=
.
18.(3 分)如图,在每个小正方形的边长为 1 的网格中,点 A、点 B 均为格点.
(1)AB 的长等于
;
(2)若点 C 是以 AB 为底边的等腰直角三角形的顶点,点 D 在边 AC 上,且满足 S△ABD= S△ABC.请在如图所
∴CM=
=,
∴CN= . ∵BM+MN=CN, ∴BM+MN 的最小值为 2 . 故选:D.
12.【解答】解:①抛物线开口方向向下,则 a<0. 抛物线对称轴位于 y 轴右侧,则 a、b 异号,即 ab<0. 抛物线与 y 轴交于正半轴,则 c>0 所以 abc<0. 故①错误.
②∵抛物线对称轴为直线 x=﹣ =1,
故选:D. 3.【解答】解:1207000 用科学记数法表示 1.207×106,
故选:A. 4.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意; C、是轴对称图形,不是中心对称图形,不符合题意; D、不是轴对称图形,是中心对称图形,不符合题意. 故选:B. 5.【解答】解:左视图有 2 列,每列小正方形数目分别为 2,1. 故选:A. 6.【解答】解:∵6< <7, ∴4< ﹣2<5, ∴ ﹣2 在 4 和 5 之间, 故选:B.
天津市滨海新区2019-2020学年中考数学二月模拟试卷含解析
天津市滨海新区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°2.对于不等式组1561333(1)51x xx x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤ C .此不等式组有5个整数解 D .此不等式组无解3.下列运算正确的是( ) A .a 12÷a 4=a 3B .a 4•a 2=a 8C .(﹣a 2)3=a 6D .a•(a 3)2=a 74.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( ) A .8或10B .8C .10D .6或125.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( ) A .B .C .D .6.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 7.如图,已知两个全等的直角三角形纸片的直角边分别为a 、b ()a b ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A .3个;B .4个;C .5个;D .6个.8.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目A 的扇形圆心角是120°C .选科目D 的人数占体育社团人数的15D .据此估计全校1000名八年级同学,选择科目B 的有140人 9.下列关于x 的方程一定有实数解的是( ) A .2x mx 10--= B .ax 3= C .x 64x 0-⋅-=D .1x x 1x 1=-- 10.如图,△ABC 是⊙O 的内接三角形,∠BOC =120°,则∠A 等于( )A .50°B .60°C .55°D .65°11.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x +]=5,则x 的取值范围是_____.14.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 15.如图,⊙O 在△ABC 三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
天津市大港区2019-2020学年中考数学考前模拟卷(3)含解析
天津市大港区2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .2.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( ) A .2x%B .1+2x%C .(1+x%)x%D .(2+x%)x%3. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中,,,M N S T 四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )A .MB .NC .SD .T4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7B .2.5×10﹣6C .25×10﹣7D .0.25×10﹣55.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个 B .3个C .2个D .1个6.方程2131x x +=-的解是( ) A .2-B .1-C .2D .47.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是( ) A .直线x=1B .直线x=﹣1C .直线x=2D .直线x=﹣28.若代数式22x x -有意义,则实数x 的取值范围是( )A .x =0B .x =2C .x≠0D .x≠29.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( ) 人数 3 4 2 1 分数 80859095A .85和82.5B .85.5和85C .85和85D .85.5和8010.2(2)-的相反数是( ) A .2B .﹣2C .4D .﹣211.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位 B .将l 1向右平移2个单位 C .将l 1向上平移2个单位D .将l 1向下平移2个单位12.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③14<t <22时,y=110﹣1t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤当△BPQ 与△BEA 相似时,t=14.1.其中正确结论的序号是( )A .①④⑤B .①②④C .①③④D .①③⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.14.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F处,连接CF,则CF 的长度为_____15.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.16.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_____.17.在平面直角坐标系中,点O 为原点,平行于x 轴的直线与抛物线L :y=ax 1相交于A ,B 两点(点B 在第一象限),点C 在AB 的延长线上.(1)已知a=1,点B 的纵坐标为1.如图1,向右平移抛物线L 使该抛物线过点B ,与AB 的延长线交于点C ,AC 的长为__.(1)如图1,若BC=AB ,过O ,B ,C 三点的抛物线L 3,顶点为P ,开口向下,对应函数的二次项系数为a 3,3a a=__.18.如图,在平面直角坐标系中,函数y=kx(k >0)的图象经过点A (1,2)、B 两点,过点A 作x 轴的垂线,垂足为C ,连接AB 、BC .若三角形ABC 的面积为3,则点B 的坐标为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.20.(6分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(823182sin60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩…,并写出它的所有整数解.23.(8分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.24.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.25.(10分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD 的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.26.(12分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.27.(12分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF ;(2)连接GB ,EF ,求证:GB ∥EF ; (3)若AE=1,EB=2,求DG 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】A 、B 、D 不是该几何体的视图,C 是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线. 2.D 【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x ax x a+-=+故选D. 3.C 【解析】分析:在四位同学中,M 同学单词记忆效率最高,但是复习的单词最少,T 同学复习的单词最多,但是他的单词记忆效率最低,N,S 两位同学的单词记忆效率基本相同,但是S 同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,M 同学单词记忆效率最高,但是复习的单词最少,T 同学复习的单词最多,但是他的单词记忆效率最低,N,S 两位同学的单词记忆效率基本相同,但是S 同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S. 故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键. 4.B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 0025=2.5×10﹣6; 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 5.B 【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据122cx x a⋅=<-,不等式的两边都乘以a(a<0)得:c>−2a ,由4a−2b+c=0得22c a b -=-,而0<c<2,得到102c-<-<即可求出2a−b+1>0.详解:根据二次函数y=ax 2+bx+c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=−2代入得:4a−2b+c=0,∴①正确;把x=−1代入得:y=a−b+c>0,如图A 点,∴②错误; ∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a(a<0)得:c>−2a ,∴2a+c>0,∴③正确;④由4a−2b+c=0得22ca b -=-, 而0<c<2,∴102c-<-< ∴−1<2a−b<0 ∴2a−b+1>0, ∴④正确.所以①③④三项正确. 故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型. 6.D 【解析】 【分析】按照解分式方程的步骤进行计算,注意结果要检验. 【详解】 解:2131x x +=- 213(1)x x +=-2133x x +=- 2313x x -=-- 4x -=- 4x =经检验x=4是原方程的解 故选:D 【点睛】本题考查解分式方程,注意结果要检验. 7.D 【解析】 【分析】根据二次函数顶点式的性质解答即可. 【详解】 ∵y=﹣12(x+2)2﹣1是顶点式, ∴对称轴是:x=-2,【点睛】本题考查二次函数顶点式y=a(x-h)2+k 的性质,对称轴为x=h ,顶点坐标为(h ,k )熟练掌握顶点式的性质是解题关键. 8.D 【解析】 【分析】根据分式的分母不等于0即可解题. 【详解】解:∵代数式22x x -有意义,∴x-2≠0,即x≠2, 故选D. 【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键. 9.B 【解析】 【分析】根据众数及平均数的定义,即可得出答案. 【详解】解:这组数据中85出现的次数最多,故众数是85;平均数=110(80×3+85×4+90×2+95×1)=85.5. 故选:B. 【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键. 10.A 【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:2-的相反数是2,即2.故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数. 11.C 【解析】根据“上加下减”的原则求解即可. 【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x . 故选:C . 【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键. 12.D 【解析】 【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可. 【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4 故①正确 则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形 此时,满足条件的点有4个,故④错误. ∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似 由已知,PQ=22﹣t∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC ﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.14.18 5【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的, ∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE2=AB2+BE2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=12 5即可得BF=24 5由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC2-BF2=CF2代入数据求得CF=18 5故答案为18 5【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质15.3【解析】【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴»¼''AN A N=∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 16.(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.17.﹣1 3【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,∴,∵B在第一象限,∴A,1),B,1),∴,∵向右平移抛物线L 使该抛物线过点B ,∴AB=BC=12, ∴AC=42;(1)如图1,设抛物线L 3与x 轴的交点为G ,其对称轴与x 轴交于Q ,过B 作BK ⊥x 轴于K , 设OK=t ,则AB=BC=1t ,∴B (t ,at 1),根据抛物线的对称性得:OQ=1t ,OG=1OQ=4t ,∴O (0,0),G (4t ,0),设抛物线L 3的解析式为:y=a 3(x ﹣0)(x ﹣4t ),y=a 3x (x ﹣4t ),∵该抛物线过点B (t ,at 1),∴at 1=a 3t (t ﹣4t ),∵t ≠0,∴a=﹣3a 3,∴3a a=﹣13, 故答案为(1)42;(1)﹣13.点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.18.(4,12). 【解析】【分析】由于函数y=k x(x >0常数k >0)的图象经过点A (1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B 点的横坐标是m ,则AC 边上的高是(m-1),根据三角形的面积公式得到关于m 的方程,从而求出,然后把m 的值代入y=2x ,即可求得B 的纵坐标,最后就求出了点B 的坐标. 【详解】∵函数y=k x(x >0、常数k >0)的图象经过点A (1,1),∴把(1,1)代入解析式得到1=1k , ∴k=1,设B 点的横坐标是m ,则AC 边上的高是(m-1),∵AC=1 ∴根据三角形的面积公式得到12×1•(m-1)=3, ∴m=4,把m=4代入y=2x , ∴B 的纵坐标是12, ∴点B 的坐标是(4,12). 故答案为(4,12). 【点睛】 解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)BC=BD+CE ,(2);(3)【解析】【分析】(1)证明△ADB ≌△EAC ,根据全等三角形的性质得到BD=AC ,EC=AB ,即可得到BC 、BD 、CE 之间的数量关系;(2)过D 作DE ⊥AB ,交BA 的延长线于E ,证明△ABC ≌△DEA ,得到DE=AB=2,AE=BC=4,Rt △BDE 中,BE=6,根据勾股定理即可得到BD 的长;(3)过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,证明△CED ≌△AFD ,根据全等三角形的性质得到CE=AF ,ED=DF ,设AF=x ,DF=y ,根据CB=4,AB=2,列出方程组,求出,x y 的值,根据勾股定理即可求出BD 的长.【详解】解:(1)观察猜想结论: BC=BD+CE ,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC ,∵∠B=∠C=90°,AD=AE ,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.20.11aa+-,2.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+-n 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 22.(1)73-(1)0,1,1. 【解析】【分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键23.(1)1000;(2)54°;(3)见解析;(4)32万人【解析】【分析】根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人)(2)360°×1501000=54°,故答案为:1000人; 54°;(3)1-10%-9%-26%-40%=15% 15%×1000=150(人)(4)80×6601000=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD ≌△CED (AAS ),∴AB=EC ,∴四边形ABCE 是平行四边形,∵∠ABC=90°,∴平行四边形ABCE 是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.25.(1)423-;(1)8233π-. 【解析】【分析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴DE=2223AE AD -= ,∴EC=CD-DE=4-13;(1)∵sin ∠DEA=12AD AE = , ∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =904130482232336023603πππ⨯⨯-⨯⨯-=- .【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE 的长是解题关键.26.证明见解析【解析】【分析】首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.【详解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.27.(1)详见解析;(2)详见解析;(3).【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.。
2019-2020学年天津市大港区中考数学综合测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩2.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查4.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A .B .C .D .5.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .6.“一般的,如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x=1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根7.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1mC .1mD .1m <8.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm10.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .32二、填空题(本题包括8个小题)11.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.12.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.13.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.14.如图,在△ABC 中,AB=BC ,∠ABC=110°,AB 的垂直平分线DE 交AC 于点D ,连接BD,则∠ABD= ___________°.15.分解因式:a 3-12a 2+36a=______.16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )17.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____. 摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率m/n0.580.640.580.590.6050.60118.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.三、解答题(本题包括8个小题)19.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积. 20.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? 21.(6分)解方程(2x+1)2=3(2x+1)22.(8分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.23.(8分)如图,在Rt ⊿ABC 中,90ACB ∠=,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长; ⑵.求CD 的长.24.(10分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA 与地面AB 垂直,斜拉杆CD 与AM 交于点C,横杆DE ∥AB,摄像头EF ⊥DE 于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)25.(10分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)26.(12分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.解:设甲的钱数为x ,乙的钱数为y ,依题意,得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩.故选A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 2.C 【解析】分析:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r ,则有r 2=52+(r-1)2,解方程即可. 详解:设⊙O 的半径为r .在Rt △ADO 中,AD=5,OD=r-1,OA=r , 则有r 2=52+(r-1)2, 解得r=13,∴⊙O 的直径为26寸, 故选C .点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题 3.D 【解析】 【详解】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意; 故选D . 4.C 【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2bx a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数cy x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB=22AE BE=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.6.C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.8.B【解析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 9.C【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.10.A∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.二、填空题(本题包括8个小题)11.1【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.12.(4,2).【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.13.22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∴,故答案为:.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.15.a(a-6)2【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】原式=a(a2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.16.A【解析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.17.0.1【解析】【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右, 则P 白球=0.1. 故答案为0.1. 【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近. 18.40° 【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°, ∵AD ⊥AB , ∴∠DAB=90°,∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°, 故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.三、解答题(本题包括8个小题) 19.(1)y =-12(x -3)2+5(2)5 【解析】 【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式; (2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解. 【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-, ∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3, ∴B(5,3). 令x =0,211(3)522y x =--+=,则1(0)2C ,,∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.20.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%. 【解析】 【分析】设年平均增长率为x ,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得. 【详解】解:设该地投入异地安置资金的年平均增长率为x. 根据题意得:1280(1+x)2=1280+1600. 解得x 1=0.5=50%,x 2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%. 【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键. 21.x 1=-12,x 2=1 【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可. 试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x 1=﹣12,x 2=1. 点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大. 22.见解析 【解析】 【分析】由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅ABE CBF ,进而得到AE=CF . 【详解】证明:∵菱形ABCD , ∴BA BC =,A C ∠=∠, ∵BE AD ⊥,BF CD ⊥,∴90BEA BFC ∠=∠=, 在ABE △与CBF 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅(), ∴AE=CF . 【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键. 23.(1)25(2)12 【解析】 整体分析:(1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解. 解:(1).∵在Rt ⊿ABC 中,90ACB ∠=,20,15AC BC ==.∴25AB ==,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=, ∴20×15=25CD. ∴12CD =.24.(1)72 (2)6.03米 【解析】 【详解】分析:延长ED ,AM 交于点P ,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC ,再利用PC+AC-EF 即可得解.详解:(1)如图,延长ED ,AM 交于点P , ∵DE ∥AB, MA AB ⊥∴EP MA ⊥, 即∠MPD=90° ∵∠CDE=162°∴ 1629072MCD ∠=-=(2)如图,在Rt △PCD 中, CD=3米,72MCD ∠= ∴PC = cos 3cos7230.310.93CD MCD ⋅∠=⋅≈⨯=米∵AC=5.5米, EF=0.4米, ∴0.93 5.50.4 6.03PC AC EF +-=+-=米 答:摄像头下端点F 到地面AB 的距离为6.03米.点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.25.(1)一个水瓶40元,一个水杯是8元;(2)当10<n <25时,选择乙商场购买更合算.当n >25时,选择甲商场购买更合算. 【解析】 【分析】(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元,根据题意列出方程,求出方程的解即可得到结果; (2)计算出两商场得费用,比较即可得到结果. 【详解】解:(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元, 根据题意得:3x+4(48﹣x )=152, 解得:x =40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n )×80%=160+6.4n 乙商场所需费用为5×40+(n ﹣5×2)×8=120+8n 则∵n >10,且n 为整数,∴160+6.4n ﹣(120+8n )=40﹣1.6n讨论:当10<n <25时,40﹣1.6n >0,160+0.64n >120+8n , ∴选择乙商场购买更合算.当n >25时,40﹣1.6n <0,即 160+0.64n <120+8n , ∴选择甲商场购买更合算. 【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.26.(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x ﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.4-的相反数是( ) A .4B .4-C .14-D .142.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( )A .60°B .65°C .70°D .75°3.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .1254.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .335.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根6.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,97.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关8.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC9.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.10.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C3323π-D.8633π二、填空题(本题包括8个小题)11.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).12.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.13.在实数范围内分解因式:226x-=_________14.函数y=12-xx的自变量x的取值范围是_____.15.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.16.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.17.分解因式:3ax2﹣3ay2=_____.18.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.三、解答题(本题包括8个小题)19.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!20.(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H 与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.21.(6分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?22.(8分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.23.(8分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.24.(10分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.25.(10分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?26.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.2.D【解析】【详解】解:连接OD ∵∠AOD=60°,∴ACD=30°.∵∠CEB 是△ACE 的外角,∴△CEB =∠ACD+∠CAO=30°+45°=75°故选:D3.B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°,∴==18.5故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.5.A【解析】【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,。
天津市大港区2019-2020学年中考第二次模拟数学试题含解析
天津市大港区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+ C .2y x 6=+D .2y x =2.如图1是一座立交桥的示意图(道路宽度忽略不计),A 为人口,F ,G 为出口,其中直行道为AB ,CG ,EF ,且AB =CG =EF ;弯道为以点O 为圆心的一段弧,且»BC ,»CD,»DE 所对的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如图2所示.结合题目信息,下列说法错误的是( )A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m3.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°4.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( ) A .9.5×106B .9.5×107C .9.5×108D .9.5×1095.若一个多边形的内角和为360°,则这个多边形的边数是( ) A .3 B .4C .5D .66.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m nB .(2,2)m n 或(2,2)m n --C .11(,)22m nD .11(,)22m n 或11(,)22m n --7.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .78.13-的绝对值是( ) A .3B .3-C .13D .13-9.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( ) A .0.69×10﹣6B .6.9×10﹣7C .69×10﹣8D .6.9×10710.矩形ABCD 的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D 的坐标为( ) A .(5,5)B .(5,4)C .(6,4)D .(6,5)11.-3的相反数是( ) A .13B .3C .13-D .-312.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在ABC V 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN V 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA =OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)15.分式方程231x x=+的解为x=_____.16.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.17.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则»AB的长是________.18.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?20.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?21.(6分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.22.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数y=x+1图象上的概率.23.(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).24.(10分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古(参考数据:tan55°≈1.4,镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)tan35°≈0.7,sin55°≈0.8)25.(10分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.26.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP 是⊙O 的切线;若⊙O 的半径为3cm ,求图中阴影部分的面积.27.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元 (1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x 个笔记本需要y 1元,买x 支钢笔需要y 2元;求y 1、y 2关于x 的函数解析式; (3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 2.C 【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确. B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确. C.分析图2可知甲车从G 口出,乙车从F 口出,故错误. D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确. 故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键. 3.D 【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.4.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数5.B【解析】【分析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.6.B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.7.D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.8.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.9.B【解析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.10.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形∴AB∥CD,AB=CD,AD=BC,AD∥BC,∵A(1,4)、B(1,1)、C(5,1),∴AB∥CD∥y轴,AD∥BC∥x轴∴点D坐标为(5,4)故选B.【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.11.B【解析】【分析】根据相反数的定义与方法解答.【详解】--=.解:-3的相反数为()33故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.12.C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.故选C.考点:1.面动旋转问题;2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①③④【解析】【分析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;④当∠ABC=45°时,∠BCN=45°,进而判断④.【详解】①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AM ANAB AC,错误;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∵P为BC中点,可得PC,故④正确.所以正确的选项有:①③④故答案为①③④【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.14.②③④【解析】试题解析:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF ,∠AED=∠AFD=90°,在Rt △AED 和Rt △AFD 中,AD AD DE DF ==⎧⎨⎩, ∴Rt △AED ≌Rt △AFD (HL ),∴AE=AF ,∵AD 平分∠BAC ,∴AD ⊥EF ,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF 是矩形,∵AE=AF ,∴四边形AEDF 是正方形,∴③正确;∵AE=AF ,DE=DF ,∴AE 2+DF 2=AF 2+DE 2,∴④正确;∴②③④正确,15.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x ,解得x=2,检验可知x=2是原分式方程的解.故答案为2.16.211【解析】分析:让英文单词probability 中字母b 的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability 中,一共有11个字母,其中字母b 有2个,∴任取一张,那么取到字母b 的概率为211. 故答案为211. 点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.17.3cm π.【解析】【分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【详解】∵∠ACB=30°,∴∠AOB=60°,∵OA=1cm ,∴»AB 的长=60111803ππ⨯=cm. 故答案为:3cm π. 【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=180n r π. 18.23【解析】【分析】将PA+PB 转化为PA+PC 的值即可求出最小值.【详解】 解:E,F 分别是底边AD,BC 的中点,四边形ABCD 是等腰梯形,∴B 点关于EF 的对称点C 点,∴AC 即为PA+PB 的最小值,Q ∠BCD=60o , 对角线AC 平分∠BCD,∴∠ABC=60o , ZBCA=30o ,∴∠BAC=90o ,Q AD=2,∴PA+PB 的最小值=·tan 6023o AB =.故答案为: 23【点睛】求PA+PB 的最小值, PA +PB 不能直接求, 可考虑转化PA +P C的值,从而找出其最小值求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)70,0.2;(2)补图见解析;(3)80≤x <90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.20.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%⨯=,50∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21. (1)见解析【解析】【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC 为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD ,得证;(1)由三角形中位线定理和勾股定理求得AB 边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】(1)证明:∵CE ∥DB ,BE ∥DC ,∴四边形DBEC 为平行四边形.又∵Rt △ABC 中,∠ABC=90°,点D 是AC 的中点,∴CD=BD=12AC , ∴平行四边形DBEC 是菱形;(1)∵点D ,F 分别是AC ,AB 的中点,AD=3,DF=1,∴DF 是△ABC 的中位线,AC=1AD=6,S △BCD =12S △ABC ∴BC=1DF=1.又∵∠ABC=90°,∴= .∵平行四边形DBEC 是菱形,∴S 四边形DBEC =1S △BCD =S △ABC =12AB•BC=12××.点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形=S△ABC是解(1)的关键.DBEC22.(1)见解析;(1).【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,∴P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.23.(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】【分析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题24.B 、C 两地的距离大约是6千米.【解析】【分析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD V 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米),BCD QV 中,CBD 903555∠=-=o o o ,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.25.(1)见解析(2)相切【解析】【分析】(1)首先利用角平分线的作法得出CO ,进而以点O 为圆心,OB 为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB=OD ,即d=r ,∴⊙O 与直线AC 相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r 是解题关键.26.(1)证明见解析;(22933()22cm p . 【解析】【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=33cm.∴图中阴影部分的面积221603933333()236022 ODP DOBS S S cmpp创=-=创-=-V扇形27.(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.。
天津市大港区2019-2020学年中考数学第二次押题试卷含解析
天津市大港区2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各式中正确的是( ) A .=±3 B .=﹣3 C .=3 D .2.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2.其中说法正确的有( )A .②③④B .①②③C .①④D .①②④3.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°4.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k<5B .k<5,且k≠1C .k≤5,且k≠1D .k>56.下面运算结果为6a 的是( ) A .33a a +B .82a a ÷C .23•a aD .()32a -7.﹣18的倒数是( )A.18 B.﹣18 C.-118D.1188.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab 9.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A.B.C.D.10.-3的相反数是()A.13B.3 C.13D.-311.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.212.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个凸多边形的内角和与外角和相等,它是______边形.14.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN 的最小值是_____.15.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.16.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.17.若﹣4x a y+x2y b=﹣3x2y,则a+b=_____.18.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.20.(6分)如图,已知△ABC中,AB=AC=5,cosA=35.求底边BC的长.21.(6分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.22.(8分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.23.(8分)如图,抛物线y=ax 2+ax ﹣12a (a <0)与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,点M 是第二象限内抛物线上一点,BM 交y 轴于N . (1)求点A 、B 的坐标;(2)若BN=MN ,且S △MBC =274,求a 的值; (3)若∠BMC=2∠ABM ,求MNNB的值.24.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生; (2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.25.(10分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?26.(12分)( 1﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x yx y x xy y--÷+++,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:我们定义频率=频数抽样人数,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是1850=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】原式利用平方根、立方根定义计算即可求出值.【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.D【解析】【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(52,y2)到对称轴的距离即可判断④. 【详解】∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=12, ∴a=-b, ∴b>0,∴abc<0,故①正确; ∵a=-b, ∴a+b=0,故②正确; 把x=2代入抛物线的解析式得, 4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确; 故选D.. 【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 3.A 【解析】 【分析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC 的度数. 【详解】 ∵AB=AC ,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°, ∵DC//AB ,∴∠ACD=∠A=50°, 又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°, 故选A. 【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键. 4.B【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B. 5.B 【解析】试题解析:∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∴100k -≠⎧⎨∆>⎩,即()2104410k k -≠⎧⎨-->⎩,解得:k <5且k≠1.故选B .6.B 【解析】 【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断. 【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B . 【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方. 7.C 【解析】 【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数. 【详解】 ∵-181()18⨯-=1, ∴﹣18的倒数是118-, 故选C. 【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.9.D【解析】【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A.【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.10.B【解析】【分析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33--=. 故选:B. 【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键. 11.D 【解析】 【分析】 解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x-≤﹣1, m ﹣1x≤﹣6, ﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x-≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集 12.C 【解析】在△ABC 中,∠ACB=90°,∠A=24°, ∴∠B=90°-∠A=66°. 由折叠的性质可得:∠BCD=12∠ACB=45°, ∴∠BDC=180°-∠BCD-∠B=69°. 故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.四 【解析】 【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.14.1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解答:解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案为1.点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.15.1【解析】【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.【详解】如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=1,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=1,故答案为:1.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.16.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.1【解析】【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.18.70°.【解析】【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数. 【详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴1702DEF AED∠=∠=︒,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2).【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率==.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.25【解析】【分析】过点B作BD⊥AC,在△ABD中由cosA=35可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos ADAAB =,∵3cos5A=,AB=5,∴AD=AB·cosA=5×35=3,∴BD=4,∵AC=5,∴DC=2,∴BC=【点睛】本题考查了锐角的三角函数和勾股定理的运用.21.(1) y=(x-12)2-2;(2)△POE的面积为115或13;(3)点Q的坐标为(-54,32)或(,2)或,2).【解析】【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-32,2)代入y=a(x-12)2-2,解得a=1,∴抛物线的表达式为y=(x-12)2-2,(2)由y=(x-12)2-2知A(12,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得122322k bk b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得21 kb=-⎧⎨=-⎩,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-74),M(-12,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴OP OE 143FA FE 34===, ∴OP=43FA =43221750224⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭, 设点P(t ,-2t -1),则()225t 2t 1+--=, 解得t 1=-215,t 2=-23, 由对称性知,当t 1=-215时,也满足∠OPM =∠MAF ,∴t 1=-215,t 2=-23都满足条件,∵△POE 的面积=12OE·|t|,∴△POE 的面积为115或13;(3)如图,若点Q 在AB 上运动,过N′作直线RS ∥y 轴,交QR 于点R ,交NE 的延长线于点S ,设Q(a ,-2a -1),则NE =-a ,QN =-2a. 由翻折知QN′=QN =-2a ,N′E =NE =-a , 由∠QN′E =∠N =90°易知△QRN′∽△N′SE ,∴QR N S '=RN ES'=QN EN '',即QR 1==2a 12a ES a ---=-=2,∴QR =2,ES =2a 12-- ,由NE +ES =NS =QR 可得-a +2a 12--=2,解得a =-54,∴Q(-54,32),如图,若点Q 在BC 上运动,且Q 在y 轴左侧,过N′作直线RS ∥y 轴,交BC 于点R ,交NE 的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=5,SE=5-a.在Rt△SEN′中,(5-a)2+12=a2,解得a=355,∴Q(-355,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5-a.在Rt△SEN′中,5-a)2+12=a2,解得a 35,∴35,2).综上,点Q 的坐标为(-54,32)或(-5,2)或(5,2). 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.22.8- 【解析】 【分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案. 【详解】原式=9﹣2+1﹣8- 【点睛】本题考查了实数运算,正确化简各数是解题的关键. 23.(1)A (﹣4,0),B (3,0);(2)14-;(3)56.【解析】 【分析】(1)设y=0,可求x 的值,即求A ,B 的坐标;(2)作MD ⊥x 轴,由CO ∥MD 可得OD=3,把x=-3代入解析式可得M 点坐标,可得ON 的长度,根据S △BMC =274,可求a 的值; (3)过M 点作ME ∥AB ,设NO=m ,MNNB=k ,可以用m ,k 表示CO ,EO ,MD ,ME ,可求M 点坐标,代入可得k ,m ,a 的关系式,由CO=2km+m=-12a ,可得方程组,解得k ,即可求结果. 【详解】(1)设y=0,则0=ax 2+ax ﹣12a (a <0), ∴x 1=﹣4,x 2=3,∴A (﹣4,0),B (3,0) (2)如图1,作MD ⊥x 轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴MBMN=OBOD且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴12 ON OBMD BD==,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=274,∴12(﹣12a+3a)×6=274,a=﹣14,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,MNNB=k(k>0),∵ME∥AB,∴ENON=MN MENB OB==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即1221 ma k-=+,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×ma=(k+1)(9k﹣12),∴1221k-+=9k-12,∴k=56,∴5=6 MNNB.【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.24.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.25.(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解析】【分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W 取最大值,且W 最大=﹣140×14+22400=20440, 此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.26. (1)-7;(2)y x y -+ ,13-. 【解析】【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩, 解得:x=2,y=1, 当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.27.(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】【分析】(1)根据百分比=所占人数总人数计算即可; (2)求出a 组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1; (2)补全图形如下:(3)所有被调查学生课外阅读的平均本数=105618+714+8850⨯+⨯⨯⨯=6.4(本) (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×14850+=264(名). 【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.。
天津市大港区2019-2020学年中考第二次适应性考试数学试题含解析
天津市大港区2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy2.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或53.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差4.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.5.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106B.1.23×107C.0.123×107D.12.3×1056.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.B.C.D.7.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A .92432B .98132C .82432D .881328.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A .28×109B .2.8×108C .2.8×109D .2.8×10109.-2的绝对值是() A .2B .-2C .±2D .1210.若m ,n 是一元二次方程x 2﹣2x ﹣1=0的两个不同实数根,则代数式m 2﹣m+n 的值是( ) A .﹣1B .3C .﹣3D .111.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m ) 8.28.08.27.57.8A .8.2,8.2B .8.0,8.2C .8.2,7.8D .8.2,8.012.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:a 6÷a 3=_________.14.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.15.Rt △ABC 中,AD 为斜边BC 上的高,若, 则ABBC= . 16.因式分解:a 2﹣a =_____. 17.如图,点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.18.函数y=13x-+1x-的自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?20.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P 从点A 运动到点B 时,点O 也随之运动,求点O 经过的路径长;(3)在点P 从点A 到点B 的运动过程中,△APE 的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.21.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率. 22.(8分)如图,一次函数4y x =-+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象交于A (1,a )、B 两点.求反比例函数的表达式及点B 的坐标;在x 轴上找一点P ,使PA+PB的值最小,求满足条件的点P 的坐标及△PAB 的面积.23.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?24.(10分)解方程:252112x x x+--=1.25.(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(12分)如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.若∠AOD=52°,求∠DEB 的度数;若OC=3,OA=5,求AB 的长.27.(12分)计算:2﹣1|﹣2sin45°3821()2- 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】A .根据同底数幂乘法法则判断;B .根据积的乘方法则判断即可;C .根据平方差公式计算并判断;D .根据同底数幂除法法则判断. 【详解】A.-2x -2y 3⋅2x 3y=-4xy 4,故本选项错误;B. (−2a 2)3=−8a 6,故本项错误;C. (2a+1)(2a−1)=4a 2−1,故本项错误;D.35x 3y 2÷5x 2y=7xy ,故本选项正确. 故答案选D. 【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式. 2.A【解析】 【分析】连接B′D ,过点B′作B′M ⊥AD 于M .设DM=B′M=x ,则AM=7-x ,根据等腰直角三角形的性质和折叠的性质得到:(7-x )2=25-x 2,通过解方程求得x 的值,易得点B′到BC 的距离. 【详解】解:如图,连接B′D ,过点B′作B′M ⊥AD 于M , ∵点B 的对应点B′落在∠ADC 的角平分线上, ∴设DM=B′M=x ,则AM=7﹣x , 又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:222''AM AB B M =-, 即22(7)25x x -=-, 解得x=3或x=4,则点B′到BC 的距离为2或1. 故选A .【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 3.D 【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3; ∴平均数不发生变化. B. ∵原众数是:3;添加一个数据3后的众数是:3; ∴众数不发生变化; C. ∵原中位数是:3;添加一个数据3后的中位数是:3; ∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-;∴方差发生了变化. 故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 4.C 【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可. 【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等. 故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法. 5.A 【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯ 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 6.B 【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.7.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=32E1D1=32×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=32E1D1=32×2,∴正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=32×2,则正六边形A11B11C11D11E11F11的边长=310×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它8.D 【解析】 【分析】根据科学计数法的定义来表示数字,选出正确答案. 【详解】解:把一个数表示成a (1≤a<10,n 为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D. 【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力. 9.A 【解析】 【分析】根据绝对值的性质进行解答即可 【详解】解:﹣1的绝对值是:1. 故选:A . 【点睛】此题考查绝对值,难度不大 10.B 【解析】 【分析】把m 代入一元二次方程2210x x --=,可得2210m m --=,再利用两根之和2m n +=,将式子变形后,整理代入,即可求值. 【详解】解:∵若m ,n 是一元二次方程2210x x --=的两个不同实数根, ∴22102m m m n ,--=+=, ∴21m m m -=+∴213m m n m n -+=++= 故选B . 【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.12.B【解析】【分析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x…,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a1【解析】【分析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a6﹣1=a1.故答案是a1【点睛】同底数幂的除法运算性质14.35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.15.1 2【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.16.a(a﹣1)【解析】【分析】直接提取公因式a,进而分解因式得出答案【详解】a2﹣a=a(a﹣1).故答案为a (a ﹣1).【点睛】此题考查公因式,难度不大17.-4【解析】:由反比例函数解析式可知:系数k x y =⋅,∵S △AOB =2即122k x y =⋅=,∴224k xy ==⨯=; 又由双曲线在二、四象限k <0,∴k=-418.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B ,C ;(2)2;(3)该校身高在165≤x <175之间的学生约有462人.【解析】【分析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.【详解】解:(1)∵直方图中,B 组的人数为12,最多,∴男生的身高的众数在B 组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C 组,∴男生的身高的中位数在C 组,故答案为B ,C ;(2)女生身高在E 组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有:40×5%=2(人),故答案为2;(3)600×10840+480×(25%+15%)=270+192=462(人). 答:该校身高在165≤x <175之间的学生约有462人.【点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.20.(1);(2)①证明见解析;②;(3). 【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC ,得出△APE ∽△BCP ,得出对应边成比例即可求出AE 的长;(2)①A 、P 、O 、E 四点共圆,即可得出结论;②连接OA 、AC ,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O 在AC 上,当P 运动到点B 时,O 为AC 的中点,即可得出答案;(3)设△APE 的外接圆的圆心为M ,作MN ⊥AB 于N ,由三角形中位线定理得出MN=AE ,设AP=x ,则BP=4﹣x ,由相似三角形的对应边成比例求出AE 的表达式,由二次函数的最大值求出AE 的最大值为1,得出MN 的最大值=即可.试题解析:(1)∵四边形ABCD 、四边形PEFG 是正方形, ∴∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC ,∴△APE ∽△BCP ,∴,即,解得:AE=,故答案为:;(2)①∵PF ⊥EG ,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A 、P 、O 、E 四点共圆,∴点O 一定在△APE 的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.21.(1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(1)3yx=,()3,1B;(2)P5,02⎛⎫⎪⎝⎭,32PABS∆=.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=kx,得:3=k,∴反比例函数的表达式y=3x,联立两个函数关系式成方程组得:4 {3y xyx=-+=,解得:13xyì=ïí=ïî,或31xy=⎧⎨=⎩,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,- 1).设直线AD的解析式为y=mx+n,把A,D两点代入得:3{31m nm n+=+=-,解得:2{5mn=-=,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=52,∴点P的坐标为(52,0).S△PAB=S△ABD-S△PBD=12BD•(x B-x A)-12BD•(x B-x P)=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.23.(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.24.12x =- 【解析】【分析】先把分式方程化为整式方程,解整式方程求得x 的值,检验即可得分式方程的解.【详解】 原方程变形为2532121x x x -=--, 方程两边同乘以(2x ﹣1),得2x ﹣5=1(2x ﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 25.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.26.(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到»»AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴»»AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.27.﹣1【解析】【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=1)﹣+2﹣4=﹣1+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
天津市大港区2019-2020学年中考数学模拟试题(2)含解析
天津市大港区2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A .B .C .D .2.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A .B .C .D .3.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=4.若关于x 的一元二次方程(m-1)x 2+x+m 2-5m+3=0有一个根为1,则m 的值为 A .1B .3C .0D .1或35.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点,增加下列条件,不一定能得出BE ∥DF 的是( )A .AE =CFB .BE =DFC .∠EBF =∠FDED .∠BED =∠BFD6.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A.105°B.110°C.115°D.120°7.若实数a,b 满足|a|>|b|,则与实数a,b 对应的点在数轴上的位置可以是()A.B.C.D.8.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷9.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-410.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×10711.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)12.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=()A.100°B.50°C.70°D.130°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:212x x--=.14.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.15.关于x的一元二次方程2有两个不相等的实数根,则k的取值范围是▲ .kx x+1=016.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.17.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.18.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?20.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan =;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).21.(6分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:43(2)123x xx x+≤+⎧⎪-⎨<⎪⎩.22.(8分)已知C为线段AB上一点,关于x的两个方程()112x m+=与()23x m m+=的解分别为线段AC BC,的长,当2m=时,求线段AB的长;若C为线段AB的三等分点,求m的值.23.(8分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果2a PQ a<<,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在11,02P⎛⎫-⎪⎝⎭,2132P⎛⎝⎭,(32P中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线3y x=上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线31y x=+与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.24.(10分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =-1100x +150,成本为20元/件,月利润为W 内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x (件)时,每月还需缴纳1100x 2元的附加费,月利润为W 外(元). (1)若只在国内销售,当x =1000(件)时,y = (元/件); (2)分别求出W 内、W 外与x 间的函数关系式(不必写x 的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值. 25.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,Aa .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.26.(12分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.27.(12分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE 的点A 处测得公路对面的点C 与AE 的夹角∠CAE=30°,沿着AE 方向前进15米到点B 处测得∠CBE=45°,求公路的宽度.(结果精确到0.13)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.2.A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱.故选A.考点:由三视图判断几何体.3.C【解析】 【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项. 【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误, 故选C . 【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大. 4.B 【解析】 【分析】直接把x=1代入已知方程即可得到关于m 的方程,解方程即可求出m 的值. 【详解】∵x=1是方程(m ﹣1)x 2+x+m 2﹣5m+3=0的一个根, ∴(m ﹣1)+1+m 2﹣5m+3=0, ∴m 2﹣4m+3=0, ∴m=1或m=3,但当m=1时方程的二次项系数为0, ∴m=3. 故答案选B. 【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算. 5.B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD//BC ,AD=BC ,然后由AE=CF ,∠EBF=∠FDE ,∠BED=∠BFD 均可判定四边形BFDE 是平行四边形,则可证得BE//DF ,利用排除法即可求得答案. 【详解】Q 四边形ABCD 是平行四边形,∴AD//BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.6.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.【详解】如图,对图形进行点标注.∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键. 7.D【解析】【分析】根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.8.D【解析】【分析】根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.9.D【解析】【详解】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1. 当x=1时,m+4=1﹣1,m=﹣4, 故选D . 10.A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6 700 000=6.7×106, 故选:A 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.D 【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=23,∴AD=AB AC BC ⋅=2324⨯=3,∴BD=2AB BC =2234()=1.∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD=1,∴BD 1=1,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键. 12.A【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角求出∠A ,根据圆周角定理计算即可.【详解】Q 四边形ABCE 内接于⊙O ,50A DCE ∴∠=∠=︒,由圆周角定理可得,2100BOE A ∠=∠=︒,故选:A .【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()34x x +-;【解析】【分析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x+3).故答案为(x ﹣4)(x+3).14.90°.【解析】【分析】根据三角形内角和得到∠A+∠B+∠C =180°,而∠C =30°,则可计算出∠A+∠B+=150°,由于∠A ﹣∠B =30°,把两式相加消去∠B 即可求得∠A 的度数.【详解】解:∵∠A+∠B+∠C =180°,∠C =30°,∴∠A+∠B+=150°,∵∠A ﹣∠B =30°,∴2∠A =180°,∴∠A =90°.故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.15.k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.16.1【解析】【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17.1.【解析】【详解】设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x-的图象上,∴当y=b,x=-4b,即A点坐标为(-4b,b),又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ), ∴AB=2b -(-4b )=6b, ∴S △ABC =12•AB•OP=12•6b•b=1. 18.7 2°或144°【解析】【详解】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144° 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60-x )分,分别求出甲乙两种生产多少件产品. 【详解】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有90015=60(件),乙有:2586090020⨯⨯-=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.20.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b <﹣且b≠﹣2或b >.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.21.(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可.【详解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)()432x1x23x x⎧+≤+⎪⎨-<⎪⎩①②∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式组的解集为﹣1≤x<1.【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.22.(1)4AB =;(2)47=m 或1. 【解析】【分析】 (1)把m=2代入两个方程,解方程即可求出AC 、BC 的长,由C 为线段AB 上一点即可得AB 的长;(2)分别解两个方程可得m BC 2=,AC 2m 1=-,根据C 为线段AB 的三等分点分别讨论C 为线段AB 靠近点A 的三等分点和C 为线段AB 靠近点B 的三等分点两种情况,列关于m 的方程即可求出m 的值.【详解】(1)当m 2=时,有()1x 122+=,()2x 223+=, 由方程()1x 122+=,解得x 3=,即AC 3=. 由方程()2x 223+=,解得x 1=,即BC 1=. 因为C 为线段AB 上一点,所以AB AC BC 4=+=.(2)解方程()1x 1m 2+=,得x 2m 1=-, 即AC 2m 1=-. 解方程()2x m m 3+=,得m x 2=, 即m BC 2=. ①当C 为线段AB 靠近点A 的三等分点时,则BC 2AC =,即()m 22m 12=-,解得4m 7=. ②当C 为线段AB 靠近点B 的三等分点时, 则AC 2BC =,即m 2m 12?2-=,解得m 1=. 综上可得,4m 7=或1. 【点睛】本题考查一元一次方程的几何应用,注意讨论C 点的位置,避免漏解是解题关键.23.(1)正方形ABCD 的“关联点”为P 2,P 3;(2)122m ≤≤或122m -≤≤-;(3)33n ≤≤. 【解析】【分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF’⊥x 轴,GG’⊥x 轴,∵OF =1,2OG =∴12OF '=,2OG '=. ∴1222m ≤≤.根据对称性,可以得出2122m-≤≤-.∴1222m≤≤或2122m-≤≤-.(3)∵3,0M⎛⎫-⎪⎪⎝⎭、N(0,1),∴3OM=,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD 的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴233 QM=∵33 OM=,∴3 OQ=∴13Q⎫⎪⎪⎝⎭.②M落在大⊙Q上,如图4中,∵2QM =33OM = ∴32OQ =. ∴232Q ⎫⎪⎪⎭. 332n ≤≤【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.24.(1)140;(2)W 内=-1100x 2+130x,W 外=-1100x 2+ (150-a)x;(3)a =1. 【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式;(3)对w 内函数的函数关系式求得最大值,再求出w 外的最大值并令二者相等求得a 值. 试题解析:(1)x=1000,y=-1100×1000+150=140; (2)W 内=(y -1)x =(-1100x +150-1)x =-1100x 2+130x . W 外=(150-a)x -1100x 2=-1100x 2+(150-a)x; (3)W 内=-1100x 2+130x=-1100(x -6500)2+2, 由W 外=-1100x 2+(150-a)x 得:W 外最大值为:(750-5a)2, 所以:(750-5a)2=2.解得a =280或a =1.经检验,a =280不合题意,舍去,∴a =1.考点:二次函数的应用.25.(1)3a=,k=2;(2)b=2或1.【解析】【分析】(1)依据直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由3x-x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,即b=2.【详解】(1)∵直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,∴3a=,∴()33A,,∴33=,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由3x-x=2,可得:x=1,x=﹣2(舍去),即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,x=﹣1(舍去),即b=2;综上所述:b=2或1.【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.26.576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.27.公路的宽为20.5米.【解析】【分析】作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=CDAD,可得x15+x=3,解之即可.【详解】解:如图,过点C作CD⊥AE于点D,设公路的宽CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD=CDAD3x15+x3解得:153+15≈20.5(米),答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.。
天津市大港区2019-2020学年中考数学考前模拟卷(1)含解析
天津市大港区2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚2.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 3.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分5.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( )A .y =(x+2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+56.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 27.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=08.已知抛物线y=x 2+bx+c 的对称轴为x=2,若关于x 的一元二次方程﹣x 2﹣bx ﹣c=0在﹣1<x <3的范围内有两个相等的实数根,则c 的取值范围是( )A .c=4B .﹣5<c≤4C .﹣5<c <3或c=4D .﹣5<c≤3或c=49.下列说法错误的是( )A .必然事件的概率为1B .数据1、2、2、3的平均数是2C .数据5、2、﹣3、0的极差是8D .如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖10.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小11.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形12.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–1998 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆柱底面周长为6cm ,圆柱高为2cm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm .14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.15.如图,直线a 、b 相交于点O ,若∠1=30°,则∠2=___16.点(-1,a )、(-2,b )是抛物线2y x 2x 3=+-上的两个点,那么a 和b 的大小关系是a_______b (填“>”或“<”或“=”).17.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.18.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)20.(6分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?21.(6分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .22.(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)23.(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.24.(10分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.26.(12分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)27.(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用2.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.3.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.4.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A【解析】【分析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 6.D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.7.C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac -f ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.8.D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x 2﹣4x+c ,令x=﹣1时,y=c+5,x=3时,y=c ﹣3,关于x 的一元二次方程﹣x 2﹣bx ﹣c=0在﹣1<x <3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c ﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.9.D【解析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件10.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.11.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.12.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC =13cm ,∴这圈金属丝的周长最小为2AC =213cm .故答案为213.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.14.106.710⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.30°【解析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.16.<【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市大港区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟2.下列运算正确的是()A.2a+3a=5a2B.(a3)3=a9C.a2•a4=a8D.a6÷a3=a23.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A.31 B.35 C.40 D.504.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣35.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109B.2.98×109C.2.98×1010D.0.298×10106.函数2(0)y xx=->的图像位于()A.第一象限B.第二象限C.第三象限D.第四象限7.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF8.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B 在围成的正方体中的距离是()A.0 B.1 C.2D.39.下列二次根式中,与a是同类二次根式的是()A.2a B.2a C.4a D.4a10.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1011.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.412.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于()A.10 B.9 C.8 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)132,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.14.半径是6cm的圆内接正三角形的边长是_____cm.15.分解因式:x2-9=_ ▲ .16.若二次函数y=-x2-4x+k的最大值是9,则k=______.17.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.18.因式分解:a2﹣a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°+12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中a=2.20.(6分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.21.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?22.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.23.(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.25.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.(12分)解方程:3122 x x=-+27.(12分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC 绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键. 2.B【解析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.3.C【解析】【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.4.C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为5.B【解析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【分析】根据反比例函数中kyx=,当0k<,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数2(0)y xx=->的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.7.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8.C【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选C.考点:1.勾股定理;2.展开图折叠成几何体.9.C【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A=|a|B不是同类二次根式;C=是同类二次根式;D不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10.C【解析】【分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.11.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.12.A【解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,。