高中数学选修4-4 第一讲 4课件PPT

合集下载

最新人教版高三数学选修4-4电子课本课件【全册】

最新人教版高三数学选修4-4电子课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程

第一讲 坐标系 知识归纳 课件(人教A选修4-4)

第一讲 坐标系 知识归纳 课件(人教A选修4-4)
π +(y-2) =4,圆心为(0,2).将 θ= (ρ∈R)化成直角坐标方 6
2
程为 x- 3y=0,由点到直线的距离公式可知圆心到直线的 |0-2 3| 距离 d= = 3. 2
答案: 3
返回
2.(2012· 上海高考)如图,在极坐标系中, π 过点 M(2,0)的直线 l 与极轴的夹角 α= . 6 若将 l 的极坐标方程写成 ρ=f(θ)的形式, 则 f(θ)=________.
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
返回
在给定的平面上的极坐标系下,有一个二元方程F(ρ,
θ)=0 如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的, 则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程. 由于平面上点的极坐标的表示形式不唯一,因此曲线 的极坐标方程和直角坐标方程也有不同之处,一条曲线上 的点的极坐标有多组表示形式,有些表示形式可能不满足
(2)点 M 的直角坐标为(1, 3),直线 l 过点 M 和原点, ∴直线 l 的直角坐标方程为 y= 3x. 曲线 C 的圆心坐标为(1,1),半径 r= 2,圆心到直线 l 的 3-1 距离为 d= ,∴|AB|= 3+1. 2
返回
点击下图进入
返回
方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为
________.
[解析] 将 ρ=2cos θ 化为 ρ2=2ρcos θ,即有

湘教版高中数学选修4-4课件--1.4极坐标与平面直角坐标的互化(共17张PPT)

湘教版高中数学选修4-4课件--1.4极坐标与平面直角坐标的互化(共17张PPT)

例2. 将点M的直角坐标 化成极坐标.
解:
因为点在第三象限, 所以 因此, 点M的极坐标为
练习: 已知点的直角坐标, 求它们 的极坐标.
例3 已知两点(2,π ),(3,π )
求两点间的距离.3 B 2
解:∠AOB = π
用余弦定理求6
A
AB的长即可.
o
推广:在极坐标下,任意两点P1(1,1
),
其中
2、点 M(ρ,θ) 关于极点的对称点的一个坐标为(-ρ, θ) 或(ρ,π+θ) ;
3、点 M(ρ,θ) 关于极轴的对称点的一个坐标为(ρ, -θ) 或(-ρ,π-θ) ;
4、点 M(ρ,θ) 关于直线
的对称点的一个
坐标为(-ρ,-θ) 或(ρ,π-θ) ;
极坐标系与直角坐标的互化
问题:若点M的直角坐标为
用极坐标如何表示?
在直角坐标系中, 以原点作为极 y M (1,3)
点,x轴的正半轴作为极轴,两种
坐标系中取相同的长度单位.
θ
O
x
设点M的极坐标为(ρ,θ)
点M的极坐标为(2, )
3
极坐标与直角坐标的互化关系式: 设点M的直角坐标是(x,y),极坐标是(ρ,θ)
直角坐标化为极坐标:
思考:极坐标如何化为直角坐标? y M (ρ,θ)
P2
(
2
,
2
x
)
之间的距离可总结如下:
P1P2 12 22 212 cos(1 2 )
练习:
1.把点M
的极坐标 (8, 2 ),
3
(4,11 ),
6
(2, )
化成直角坐标;
2.把点P的直角坐标( 6, 2) (2,2)和(0,15) 化成极坐标.

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

高二数学之人教版高中数学选修4-4课件:第一讲二极坐标

高二数学之人教版高中数学选修4-4课件:第一讲二极坐标
答案:(1)√ (2)× (3)× (4)√
2.已知 M 点的极坐标为-5,π3,下列极坐标不能 表示点 M 的是( )
A.5,-π3 C.5,-23π
B.5,43π D.-5,-53π
解析:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)、(-ρ, 2kπ+π+θ)(k∈Z)表示同一个点,检验应选 A.
A________ B________ C________ D________
E________ F________ G________
(2) 与 极 坐 标 -2,π6 不 表 示 同 一 个 点 的 极 坐 标 是
()
A.2,76π
B.2,-76π
C.-2,-116π
D.-2,136π
解析:(1)根据极坐标定义,若 M 是平面上任一点,ρ 表示 OM 的长度,θ 表示以射线 Ox 为始边,射线 OM 为 终边所成的角,则 M 的极坐标为(ρ,θ).
4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
③点 A 关于直线 θ=π2的对称点的极坐标是_______. 解析:(1)如图所示,△OAB 为等腰直角三角形, 斜边 AB= 于极轴对称点为 B3,116π. ②关于极点对称点 C3,76π. ③关于直线 θ=π2的对称点为 D3,56π.
答案:(1)2 (2)①3,116π ②3,76π ③3,56π

人教版高中数学选修4-4课件:模块复习课 第一课 (共39张PPT)

人教版高中数学选修4-4课件:模块复习课 第一课 (共39张PPT)

空间直角坐标(x,y,z) 柱坐标
(ρ,θ,z)
球坐标 (r,φ,θ)
转 换 公式
【易错警示】 1.关于伸缩变 换 公式的注意事项 (1)伸缩变 换 不改变点所在的象限,坐标轴 上的点经 过 伸缩变 换 仍在坐标轴 上. (2)求曲线经 过 伸缩变 换 后的曲线方程,要分清变换 前后的点的坐标,常常运用代入法求解.
【变 式训练 】1.圆 x2+y2=4经 过 伸缩变 换 图 形的方程为________.
后的
【解析】由
代入x2+y2=4得
故圆经过已知伸缩变换后的方程为 答案:
2.在伸缩变 换
的作用下某曲线C的方程变为 y=
cos2x,试 求曲线C的方程.
【解析】由
得 y=cos x,
即y=cosx,故曲线C的方程为y=cosx.
【解析】y=tanx的纵坐标不变,横坐标缩短为原来的 , 得到y=tan2x.再将其纵坐标伸长为原来的3倍,横坐标 不变,得到曲线y=3tan2x. 设变换为 则μy=3tan2λx, 即y= tan2λx.
与y=tanx比较,则有μ=3,λ伸缩变 换 公式及其应用
【解析】选D.点
的直角坐标为(-1, ),且
(k∈Z)四点的
直角坐标分别为Q(-1, ),R(-1, ),M(-1, ),
N(-1, ),所以与P重合的点有4个.
2.在极坐标系中,求由三条曲线θ=0,θ= ,ρcosθ+ ρsinθ=1围 成的图形的面积.
【解析】曲线ρcosθ+ ρsinθ=1的直角坐标方程 为x+ y-1=0.它与x轴的交点为B(1,0). 曲线θ= 的直角坐标方程为 x-y=0. 它们的交点坐标为 所以由三条曲线θ=0,θ= ,ρcosθ+ ρsinθ= 1围成的图形如图所示.

高二数学PPT之人教版数学选修4-4-1

高二数学PPT之人教版数学选修4-4-1
• 思维导引:已知直角坐标系中点M旳直角坐 标公解析式,:设,联点 M代想的入空柱坐求间标为解直(ρ,.角θ,坐z),标则有系22==与ρρcsi柱ons θ,θ坐, 标系旳转化
2=z,
解得 ρ=2 2,θ=π4,z=2.
因此,点 M 的柱坐标为2
2,π4,2.
【变式 1】 已知点 P 的柱坐标为8,π6,4,求它的直角坐标.
•考点三 空间坐标系中两点间旳距离
空间坐标系中两点间距离的解法 在球坐标系与柱坐标系中没有研究两点间的距离,应先把它们化成直角坐标,再 运用空间两点间的距离公式 d= x2-x12+y2-y12+z1-z22求解.
【例题 3】 已知点 M 的柱坐标为
2,π4,3,点
N
的球坐标为
2,π4,π2,求线
得到 x=2sin 34πcos 34π=-1,y=2sin 34πsin 34π=1,z=2cos 34π=- 2. 因此点 M 的直角坐标为(-1,1,- 2).
【变式 2】 设点 M 的直角坐标为 42, 46,- 22,求它的球坐标. 解析:由变换公式得
r= x2+y2+z2= 126+166+24=1, 由 rcos φ=z=- 22得 cos φ=- 22,φ=34π. 又 tan θ=yx= 3(x>0,y>0),得 θ=π3. 则 M 的球坐标为1,34π,π3.
φcos θ φsin θ
z=rcos φ
r2=x2+y2+z2 与tan θ=xyx≠0
cos
φ=zr
,可实现点的球坐标与点的
直角坐标的互化.特别注意在由直角坐标求球坐标的时候,θ,φ 应根据点所在的象限 准确取值,才能无误.
【例题 2】 已知点 M 的球坐标为2,34π,34π,求它的直角坐标. 思维导引:已知点 M 的球坐标,求它的直角坐标联想到公式

高中数学人教A版选修4-4课件:1本讲整合

高中数学人教A版选修4-4课件:1本讲整合

综合应用
真题放送
1(2016· 上海高考,理16)下列极坐标方程中,对应的曲线为右图的是 ( )
A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
解析:依次取 θ=0, , π,
2 π 3π 2
,
结合题图可知只有ρ=6-5sin θ满足,选D. 答案:D
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 说出由曲线y=tan x得到曲线y=3tan 2x的变换规律,并求出 满足其图形变换的伸缩变换. ������' = ������������(������ > 0), 提示:主要考查变换公式 ������' = ������������(������ > 0).
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 求点������ 4,
π 3
到直线������cos ������-
π 3
= 2 上的点的距离的最小值.
提示:可以先化为直角坐标再求解.
解 :点 M 的直角坐标为 (2,2 3), ∵ρcos ������1 2 π 3
= 2,
π π 3 1 2 3 3
知识建构 1 2 3 4 5 6 7
综合应用
真题放送
2(2015· 广东高考,理 14)已知直线 l 的极坐标方程为 2ρsi n ������2, 点������的极坐标为������ 2 2,
7π 4
π 4
= .
, 则点������到直线������的距离为
解析:2ρsin ������π 4
������
与 y=tan x 比较 ,则有 μ=3,λ= . 所以所求的伸缩变换为

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

3.已知A,B两点的极坐标A(2, ),B(4, 5 ),求A, B两点间
3
6
距离和AOB的面积。
4.已知两点的极坐标A(3, ),B(3, ),求A, B两点间
2
6
距离和AB与极轴正方向的夹角.
课时小结
1.点的极坐标的理解,极坐标的不唯一性; 2.点的极坐标与直角坐标的互化; 3.极坐标系下,两点间距离公式及应用。
(1)当极径 0,以OX为始边作角,在角的终边上截取| OM | ; (2)当极径 0,以OX为始边作角,在角的终边的反向延长线上 截取 | OM || |; (3)极点的极坐标为(0,),其中为任意角。
M
O
X

° O
x
(, )
3.极坐标系下点与它的极坐标的对应情况
P
[1]给定(,),就可以在极坐标平
M (ρ,θ)
面内确定唯一的一点M;
O
X
[2]给定平面上一点M,但却有无数个极坐标与之对应。
(,),(, 2k ), (, 2k )(k Z)表示同一点
如果限定ρ>0,0≤θ<2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
(ρ,θ)
(ρ,θ +2kπ)
(-ρ,θ +π) (-ρ,θ +(2k+1)π)
[3]对称性:
点(,)关于极轴的对称点为(,2 ); 点(, )关于极点对称点为(, ); 点(, )关于过极点且垂直于极轴的直线的对称点为(, ).

新课探究
1.点的极坐标与直角坐标的互化:
(

R);
(2)点M的直角坐标(x, y)为极坐标(, )的关系式:

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

三、极坐标的正式应用和扩展
◆1736年出版的《流数术和无穷级数》一书中,牛顿 第一个将极坐标系应用于表示平面上的任何一点。牛 顿在书中验证了极坐标和其他九种坐标系的转换关系。 ◆在1691年出版的《博学通报》一书中伯努利正式使 用定点和从定点引出的一条射线,定点称为极点,射 线称为极轴。平面内任何一点的坐标都通过该点与定 点的距离和与极轴的夹角来表示。伯努利通过极坐标 系对曲线的曲率半径进行了研究。
(2)点P(ρ,θ)与点(ρ,2kπ+θ)(k∈Z)
所表示的是同一个点,即角θ与2kπ+θ的终边是 相同的。 综上所述,在极坐标系中,点与其点的极 坐标之间不是一一对应而是一对多的对应
(ρ,θ),(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)均 表示同一个点
3.极坐标和直角坐标的互化
y
(1)互化背景:把直角坐标系 的原点作为极点,x轴的正半轴 作为极轴,并在两种坐标系中取 相同的长度单位,如图所示:
极坐标系和参数方程虽为选修内容,高中学生也 应该重视对本专题的学习,既可以体会其中的数 学思想,也能提高对数学的认识,而且可以与已 学知识融会贯通
极坐标系
定义:平面内的一条有规 定有单位长度的射线0x,0 为极点,0x为极轴,选定 一个长度单位和角的正方 向(通常取逆时针方向), 这就构成了极坐标系。
关于教材编排
参数方程是选修4-4专题的一个重要内容。这一专 题包含、涉及了很多高中内容。利用高二学生已掌 握的直线、圆和圆锥曲线曲线方程为基础,鼓励学 生利用参数的思想对它们进行探究解析,以及能学 习掌握如何优化参数的选择推出已知曲线方程的参 数形式,能等价互化参数方程与普通方程;借助实 际生活例子或相应习题体会参数方程的优势,理解 学习参数方程的缘由。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档