实验三控制系统的稳定性分析
控制系统的稳定性分析
自动控制原理
其中系数 b1 , b2 , b3 等;根据
下列公式计算:
b1
a1a 2 a 0a 3 a1
b2
a1a 4 a 0a 5 a1
b3
a1a 6 a 0a 7 a1
同样的方法可以计算c;d;e等各行的系数
自动控制原理
注意:
在展开的阵列中;为简化其后的数值计算;可用一个正整数去除 或乘某一个整行;并不影响稳定性结论; 劳斯判据还说明:方程式5 4中;其正实部特征根数;等于劳斯阵列中第一列的系数改变的次数;
自动控制原理
从乃氏图上看;Gjw不包围1;j0点
G ( jw ) 1
稳定
G ( jw )
G ( jw )
不稳定
自动控制原理
2 若开环系统不稳定;有p个零点在右半平面;q的零点在原点;npq个 零点在左半平面 则
argD K(jw)(n2pq)2
如果闭环是稳定的;则
argDb(jw)n 2
故
a r g 1 G (jw ) n ( n 2 p q ) p q
F是新引进的函数;其分母是系统开环特征多项式;分子是闭环特征多 项式;
对于非单位反馈系统;开环传递函数为
GsG' sHsM DK Kss
自动控制原理
2 乃奎斯特队稳定判据 1 若开环是稳定的;则根据米哈依洛夫定理
argDk
jwn
2
如果闭环系统稳定;有
于是
argDb
jwn
2
arg1G (jw )0o
0
0
a n1 0
0
an2 an
自动控制原理
系统稳定的充要条件是:主行列式
式 1,2, n1 ;均大于零;即
计算机控制实验报告初稿
G(s)=Gc(s)·Gp2(s)
=K(Tis+1)/s·1/s(0.1s+1)
为使用环系统稳定,应满足Ti>0.1,即K1<10
7.PID递推算法如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:
Gs=tf([5],[1,1,0]);
Gz=c2d(Gs,0.1,'zoh');//求解广义对象的脉冲传递函数
Transfer function:
0.02419 z + 0.02339
----------------------
z^2 - 1.905 z + 0.9048
Sampling time: 0.1
G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数
rlocus(G);//绘制系统根轨迹
将图片放大得到
Z平面的临界放大系数由根轨迹与单位圆的交点求得。
放大图片分析:
[k,poles]=rlocfind(G)
Select a point in the graphics window
selected_point =
0.9905 + 0.1385i
k =
193.6417
poles =
0.9902 + 0.1385i
0.9902 - 0.1385i
得到0<K<193
(2)假设不考虑采样开关和零阶保持器的影响,即看作一连续系统,讨论令系统稳定的 的取值范围;
解:
G1=tf([1],[1 1 0]);
自动控制原理实验实验指导书
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
实验三、控制系统的稳定性分析
实验三、控制系统的稳定性分析一、实验目的1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响。
二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验内容系统模拟电路图如图3-1图3-1 系统模拟电路图其开环传递函数为:G(s)=10K/s(0.1s+1)(Ts+1)式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。
四、实验步骤1.连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将将纯积分电容两端连在模拟开关上。
检查无误后接通电源。
2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
3.检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
4.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析], 鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置目的电压U1=1000mV鼠标单击确认等待屏幕的显示区显示实验结果。
5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10K1=5,10,20。
观察不同R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。
再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。
6.在步骤5条件下,使系统工作在不稳定状态,即工作在等幅振荡情况。
改变电路中的电容C由1μf变成0.1μf,重复实验步骤4观察系统稳定性的变化。
7.将实验结果添入下表中:五、实验结果12(1)C=1uf R3=50K K=2(2)R3=100K C=1uf K=10(3)R3=200K C=1uf K=20(4) C=0.1uf R3=50K K=5(5) R3=100K C=0.1uf K=10(6) R3=200K C=0.1uf K=20六、实验总结通过这次实验,我观察了系统的不稳定现象,并了解了系统开环增益和时间常数对稳定性的影响。
控制工程实验报告
图2-4 =1时的阶跃响应曲线
(3)当K 0.625时, 1,系统工作在过阻尼状态,它的单位阶跃响应 曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者 的上升速度比前者缓慢。
四、实验内容与步骤
1、根据图2-2,调节相应的参数,使系统的开环传递函数为: 将调节后的电路图画出,并标出所选各元器件的参数值。
四、实验内容与步骤
1、分别画出比例、惯性、积分、比例微分环节的电子电路; 2、熟悉实验设备并在实验设备上分别联接各种典型环节; 3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性 测试,观察并记录其单位阶跃响应波形。
五、实验报告
1、画出四种典型环节的实验电路图,并标明相应的参数; 2、画出各典型环节的单位阶跃响应波形,并分析参数对响应曲线的影
4、各种长度联接导线。
三、实验原理
图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯
性环节、积分环节和比例环节组成,图中K=R2/R1, T2=R3C2。
T1=R2C1,
图2-1 二阶系统原理框图
图2-2 二阶系统的模拟电路
由图2-2求得二阶系统的闭环传递函
(2-1) 而二阶系统的标准传递函数为:
一、实验目的
1、 熟悉二阶模拟系统的组成;
2、 研究二阶系统分别工作在=1, 0< <1, 和 1三种状态下的单
位阶跃响应;
3、 分析增益K对二阶系统单位阶跃响应的超调量P、峰值时间tp
和调整时间ts。
二、实验仪器设备
1、控制理论电子模拟实验箱一台;
2、超低频慢扫描数字存储示波器一台;
3、数字万用表一只;
对比式(2-1)和式(2-2)得 。调节开环增益K值,不仅能改变系统无阻尼自然振荡频率ωn和的
实验三自动控制系统的稳定性实验
实验三自动控制系统的稳定性实验一、实验目的:1.观察线性系统稳定和不稳定的运动状态。
验证理论上的稳定判据的正确性。
2.研究系统的开环放大系数K对稳定性的影响。
3.了解系统时间常数对稳定性的影响。
二、实验内容:系统稳定性观察,验证理论判据。
1.实验线路R32图3—1 三阶系统的模拟电路图2.按实验参数表3—1分别接实验线路实验参数表3—1参数方案 T1=R13C1=1秒 T2=R22C2=10秒 T3=R32C3方案一 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=1μF方案二 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=100KΩ,C3=0.1μF方案三 R13=1MΩ,C1=1μF R22=1MΩ,C2=10μF R32=1MΩ,C3=1μF在A1输入端接适当宽度的方波信号,将a(即U Z/U D之值)由0→1逐步变化,观察并记录各组参数时系统稳定性变化,测系统临界比例系数(特别记住系统由稳定到出现自持振荡的a值),观察并记录该系数对系统稳定性影响。
将实验结果记录在实验记录表3—3中。
3.按上面的线路,依实验参数表3—3调参数(A1接成积分器)实验参数表3—3参数方案 T1=R11C1=0.1秒 T2=R22C2=1秒 T3=R32C3方案一 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=100KΩ,C3=1μF方案二 R13=∞,C1=1μF R22=1MΩ,C2=1μF R32=50KΩ,C3=1μF重复2的实验过程并做记录实验于录表3—4中。
三、实验准备及要求:1.对实验内容(一)的实验线路,分别用代数稳定判据和频率分析法判据,判定其稳定性,实验结果验证。
2.对实验内容(二)的给定开环传递函数,选择设计各项参数,拟定实验步骤。
设计各项实验内容的记录表格。
四、实验报告要求:1.画出各项实验的模拟实验电路图。
基于MATLAB的控制系统稳定性分析报告
四川师范大学本科毕业设计基于MATLAB的控制系统稳定性分析学生姓名宋宇院系名称工学院专业名称电气工程及其自动化班级 2010 级 1 班学号**********指导教师杨楠完成时间2014年 5月 12日基于MATLAB的控制系统稳定性分析电气工程及其自动化本科生宋宇指导老师杨楠摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。
一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。
如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。
因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。
为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。
关键词:系统稳定性 MATLAB MATLAB稳定性分析ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability.Keywords: system stability MATLAB MATLAB stability analysis目录摘要 (I)ABSTRACT .......................................................... I I 目录1.绪论 (1)1.1自动控制理论发展概述 (1)1.1.1经典控制理论的发展及其基本内容 (1)1.1.2现代控制理论的发展及其基本内容 (1)1.1.3智能控制理论的发展及其主要内容 (2)1.2本文的章节安排 (2)2控制系统的理论基础 (3)2.1控制系统的基本形式 (3)2.1.1闭环控制系统 (3)2.1.2开环控制系统 (4)2.1.3小结 (4)2.2控制系统的分类 (4)2.3控制系统的稳定性 (5)3 MATLAB基础介绍 (6)3.1MALTAB概述 (6)3.2MATLAB的特点 (6)4稳定性分析的方法介绍 (7)4.1时域分析法 (7)4.1.1时域分析法的概念 (7)4.1.2控制系统的性能指标 (7)4.1.3典型的输入信号 (7)4.1.4系统时域分析函数-Step函数 (8)4.1.5控制系统的时域分析-impulse函数 (10)5根轨迹分析法 (12)5.1根轨迹分析法的概念 (12)5.1.1一般控制系统 (12)5.2绘制控制系统的根轨迹图的一般规则 (12)5.3pzmap函数 (13)5.4rlocus函数 (14)6频域法分析 (16)6.2奈氏图(Nyquist) (16)6.3波德图(Bode) (18)7总结 (22)参考文献 (23)致谢 (24)基于MATLAB的控制系统稳定性分析1.绪论这章讲述了自动控制理论与控制技术概述,主要介绍了几种自动控制理论的发展概况以及基本的内容。
自动机实验报告(3篇)
第1篇一、实验目的1. 理解自动机的概念和分类。
2. 掌握有限自动机(FA)和正规文法(CFG)的基本原理。
3. 学习自动机的应用,如词法分析、语法分析等。
4. 通过实验加深对自动机理论的理解。
二、实验内容1. 有限自动机(FA)- 实验一:设计并实现一个识别特定字符串的有限自动机实验步骤:(1)根据题目要求,确定输入字母表和输出字母表。
(2)设计有限自动机的状态转移图。
(3)编写代码实现有限自动机的状态转移功能。
(4)测试有限自动机对特定字符串的识别能力。
- 实验二:分析并验证有限自动机的正确性实验步骤:(1)根据实验一的结果,分析有限自动机的状态转移图。
(2)验证有限自动机是否满足题目要求。
(3)如果有限自动机不满足要求,修改状态转移图,重新进行实验。
2. 正规文法(CFG)- 实验一:设计并实现一个正规文法实验步骤:(1)根据题目要求,确定正规文法中的非终结符、终结符和产生式。
(2)编写代码实现正规文法的生成功能。
(3)测试正规文法生成的句子是否满足题目要求。
- 实验二:将正规文法转换为有限自动机实验步骤:(1)根据实验一的结果,分析正规文法。
(2)将正规文法转换为有限自动机。
(3)测试有限自动机对句子进行词法分析的能力。
三、实验结果与分析1. 实验一:有限自动机- 在实验一中,我们成功设计并实现了识别特定字符串的有限自动机。
通过测试,我们发现有限自动机能够正确识别给定的字符串。
- 在实验二中,我们分析了有限自动机的状态转移图,并验证了其正确性。
我们发现有限自动机满足题目要求,能够正确识别给定的字符串。
2. 实验二:正规文法- 在实验一中,我们成功设计并实现了正规文法。
通过测试,我们发现正规文法能够生成满足题目要求的句子。
- 在实验二中,我们将正规文法转换为有限自动机,并测试了其对句子进行词法分析的能力。
我们发现有限自动机能够正确对句子进行词法分析。
四、实验总结通过本次实验,我们掌握了有限自动机和正规文法的基本原理,并学会了如何将它们应用于实际问题。
自动控制原理实验报告--控制系统的稳定性和稳态误差
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
第三章实验 典型系统的时域响应和稳定性分析
典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
4. 学习用电路系统研究一般控制系统的仿真实验方法二、 实验设备PC 机一台,Matlab ,Multisim (或PSpice)。
三、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图2-1图2-1(2) 对应的模拟电路图图2-2(3) 理论分析系统开环传递函数为:)1S T (S T K )1S T (S T K )S (G 101101+=+=;开环增益01T K K =。
(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图2-2),s 1T 0=, s T 2.01=,R 200K 1= R 200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ。
2.典型的三阶系统稳定性分析 (1) 结构框图图2-3(2) 模拟电路图图2-4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。
(4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 (-5K/3)+20 0S 0 20K 0为了保证系统稳定,第一列各值应为正数,所以有 ⎪⎩⎪⎨⎧>>+-0K 20020K 35得: 0 < K < 12 ⇒ R > 41.7KΩ 系统稳定K = 12 ⇒ R = 41.7KΩ 系统临界稳定 K > 12 ⇒ R < 41.7KΩ 系统不稳定四、 实验步骤1. 实验中阶跃信号幅值为1V 左右。
自动控制原理实验报告
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
三阶系统的瞬态响应及稳定性分析
实验四 三阶系统的瞬态响应及稳定性分析一、实验目的(1)熟悉三阶系统的模拟电路图。
(2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。
(3)研究时间常数T 对三阶系统稳定性的影响。
二、实验所需挂件及附件图8-16 三阶系统原理框图图8-17 三阶系统模拟电路图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为:T 1T 2T 3S³+T 3(T 1+T 2)S²+T 3S+K=0其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。
若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。
这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。
除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下:令系统的剪切频率为ωc ,则在该频率时的开环频率特性的相位为:ϕ(ωc )= - 90︒ - tg -1T 1ωc – tg -1T 2ωc相位裕量γ=180︒+ϕ(ωc )=90︒- tg -1T 1ωc- tg -1T 2ωcK)S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 23Κ由上式可见,时间常数T 1和T 2的增大都会使γ减小。
四、思考题(1)为使系统能稳定地工作,开环增益应适当取小还是取大?(2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么?(3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡?(4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零?(5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数?五、实验方法图8-16所示的三阶系统开环传递函数为:(1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。
北理工自控原理实验三 三阶系统的稳定性和瞬态响应
由表格看出,惯性时间常数T1和T2的增大,均会导致系统临界稳定时的K值减小。在超调量相同( 相同)的衰减振荡中,T1和T2的增大,将导致增益K减小。
五,思考题
1,改变被测系统的电路参数,从而改变闭环系统的极点,观察对比前后响应曲线,分析各级点对系统过渡过程的影响?
4、了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。
二,实验结果数据
一型三阶系统的模拟电路图如下:
I型三阶系统的开环传递函数为
G(s)=
闭环传递函数(单位反馈)为
积分时间常数Ti=R1*C1=1S,惯性时间常数T1=R3*C2=0.1S,
K1=R3/C2=1,T2=R4*C3=0.5S,K=R4/R=500KΩ/R
自动Байду номын сангаас制理论实验
——三阶系统的稳定性和瞬态响应
姓名
学号:
班级:
实验日期:
一、实验目的
1、了解和掌握典型三阶系统模拟电路的构成方法及I型三阶系统的传递函数表达式。
2、了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
3、观察和分析I型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
(3)当可变电阻分别为R=30 kΩ,此时系统不稳定,发散振荡。
输出波形如下:
三,数据分析
用matlab画出G(S)= 的根轨迹
根轨迹与虚轴交点是s=4.45j和-4.45j,此时的根轨迹增益K=11.9813
(1)当0<K<12时,由于K=R4/R,随着R的增大,K值减小,则根轨迹越来越远离虚轴。此时由于 ,当远离虚轴时,易知 增大,即 。由于Ts= , 增大,故Ts减小。即随着R的增大,调节时间变小。
稳定性实验报告
稳定性实验报告稳定性实验报告一、引言稳定性是指一个系统或物体在受到外界扰动后,能够保持平衡或回到平衡状态的能力。
在各个领域,稳定性都是一个重要的指标,无论是工程设计、自然科学还是社会科学,都需要对稳定性进行研究和实验。
本实验旨在通过对不同系统的稳定性实验,探讨稳定性的相关概念和影响因素,以及实验方法和结果分析。
二、实验目的1. 了解稳定性的概念和定义;2. 掌握稳定性实验的基本方法;3. 分析不同因素对系统稳定性的影响。
三、实验材料和方法1. 实验材料:小球、托盘、不同形状的物体、弹簧等;2. 实验方法:a. 实验一:在平稳的桌面上放置一个小球,观察其是否能够保持平衡;b. 实验二:在托盘上放置不同形状的物体,倾斜托盘,观察物体是否会滑落;c. 实验三:将弹簧固定在支架上,将小球悬挂在弹簧上方,观察小球的振动情况。
四、实验结果与分析1. 实验一的结果表明,小球在平稳的桌面上能够保持平衡,具有稳定性。
这是因为小球受到重力和支撑力的平衡作用,保持了稳定的状态。
2. 实验二的结果显示,不同形状的物体在倾斜托盘上的稳定性存在差异。
球状物体相对稳定,而尖锐物体则容易滑落。
这是因为球状物体具有较低的重心,较大的接触面积,而尖锐物体则相反,容易受到外力的影响而失去平衡。
3. 实验三的结果表明,小球在弹簧的作用下发生振动。
振动的稳定性取决于弹簧的刚度和小球的质量。
当弹簧刚度较大或小球质量较小时,振动较为稳定;反之,振动会更加剧烈或不稳定。
五、实验讨论1. 实验结果验证了稳定性的概念和定义,即系统或物体在受到外界扰动后能够保持平衡或回到平衡状态的能力。
2. 实验中发现,稳定性受到多个因素的影响,如重心位置、接触面积、刚度和质量等。
这些因素的变化会导致系统的稳定性发生变化。
3. 在实际应用中,稳定性的研究对于工程设计、自然灾害预测和社会政策制定等都具有重要意义。
通过对稳定性的研究,可以提高系统的可靠性和安全性,减少事故和损失的发生。
离散控制系统的稳定性分析
离散控制系统的稳定性分析离散控制系统是一种由离散时间事件驱动的系统,它在控制工程中起着重要的作用。
稳定性分析是离散控制系统设计中的关键步骤,它可以帮助我们确定系统是否能够保持在稳定状态,并达到预期的控制效果。
本文将讨论离散控制系统的稳定性分析方法和应用。
1. 离散控制系统概述离散控制系统是一种以时序离散的方式进行操作和控制的系统。
它由输入、输出和状态三个主要部分组成。
其中,输入是指系统接收来自外部的信号或信息,输出是指系统作为响应产生的结果,状态是指系统在运行过程中的内在特征。
2. 稳定性的概念和分类稳定性是指系统在输入变化或干扰下是否能够保持有限范围内的响应。
离散控制系统的稳定性可以分为绝对稳定性和相对稳定性两种情况。
绝对稳定性:系统在任何情况下都能保持有限范围内的响应,不会出现不受控制或不可预测的振荡或失控现象。
相对稳定性:系统在特定条件下能够保持有限范围内的响应,但可能受到输入变化或干扰的影响而出现逐渐增大的响应。
3. 稳定性分析方法离散控制系统的稳定性分析可以使用多种方法,以下是几种常用的方法:3.1 传递函数法传递函数是离散控制系统中描述输入输出关系的数学模型。
通过将系统表示为传递函数的形式,可以使用极点、零点、阶跃响应等特征来分析系统的稳定性。
例如,当系统的所有极点都位于单位圆内时,系统是稳定的。
3.2 极坐标法极坐标法是一种绘制离散控制系统零极点的图形方法。
通过绘制零极点在单位圆上的位置,可以直观地判断系统的稳定性。
如果所有极点都位于单位圆内,系统是稳定的。
3.3 稳定性判据法稳定性判据法是一种通过计算系统的稳定性判据来判断系统的稳定性的方法。
常用的稳定性判据包括李雅普诺夫稳定性判据、M行列稳定性判据等。
这些判据可以通过计算系统的特征值或特征向量来得到。
4. 稳定性分析的应用稳定性分析在离散控制系统设计和调试过程中有着广泛的应用。
它可以帮助工程师确定系统参数,设计合适的控制策略,并提供有效的故障诊断方法。
实验三控制系统的稳定性分析
实验三控制系统的稳定性分析控制系统的稳定性是指系统在受到外部扰动或内部变化时,是否能保持原有的稳态或稳定的性能。
稳定性是控制系统设计和分析的重要指标之一,它直接影响系统的性能和可靠性。
本实验将介绍控制系统稳定性的分析方法和稳定性判据。
一.控制系统的稳定性分析方法1.传递函数法:传递函数是表示控制系统输入与输出之间关系的数学表达式,通过分析和求解传递函数的特征根,可以判断系统的稳定性。
在传递函数中,特征根的实部和虚部分别代表了系统的衰减和振荡性能,根据特征根的位置可以得到稳定、不稳定和临界稳定等几种情况。
2.极点分布法:极点分布是指控制系统的特征根在复平面上的位置分布。
通过绘制极点图可以直观地判断系统的稳定性。
一般来说,稳定系统的极点都位于左半复平面,而不稳定系统的极点则位于右半复平面。
3. Nyquist稳定性判据:Nyquist稳定性判据是通过绘制Nyquist曲线来判断系统的稳定性。
Nyquist曲线是将控制系统的特征根的位置映射到复平面上形成的闭合曲线,通过分析Nyquist曲线的形状和位置可以判断系统的稳定性。
4. Routh-Hurwitz稳定性判据:Routh-Hurwitz稳定性判据是基于特征多项式的系数和正负性进行判断的方法。
通过构造一个特征方程的判别矩阵,可以判断系统的稳定性。
如果判别矩阵的所有元素都大于0,则系统是稳定的。
二.控制系统的稳定性判据1.传递函数法:通过求解传递函数的特征根,判断特征根的实部和虚部是否满足系统稳定的条件。
特征根的实部必须小于0,而虚部可以等于0。
2.极点分布法:绘制控制系统的极点图,判断极点是否位于左半复平面。
如果所有极点都在左半平面,则系统是稳定的。
3. Nyquist稳定性判据:绘制Nyquist曲线,通过分析曲线的形状和位置来判断系统的稳定性。
如果曲线不经过原点或环绕原点的次数为0,则系统是稳定的。
4. Routh-Hurwitz稳定性判据:构造特征方程的判别矩阵,通过判别矩阵的元素是否都大于0来判断系统的稳定性。
控制系统仿真实验报告
控制系统仿真实验报告控制系统仿真实验报告引言控制系统是现代科学技术中的重要组成部分,广泛应用于工业生产、交通运输、航空航天等领域。
为了验证和优化控制系统的设计方案,仿真实验成为一种重要的手段。
本篇文章将对控制系统仿真实验进行详细的报告和分析。
一、实验目的本次控制系统仿真实验旨在通过模拟真实的控制系统运行环境,验证控制系统的性能和稳定性。
具体目标包括:1. 验证控制系统的闭环性能,包括稳定性、响应速度和误差补偿能力。
2. 评估不同控制策略在系统性能上的差异,比较PID控制、模糊控制等算法的效果。
3. 优化控制系统的设计方案,提高系统的控制精度和鲁棒性。
二、实验装置和方法本次实验采用MATLAB/Simulink软件进行仿真。
通过搭建控制系统的数学模型,并设置不同的控制参数和输入信号,模拟真实的控制环境。
具体步骤如下:1. 建立控制系统的数学模型,包括被控对象、传感器、执行器等部分。
2. 设计不同的控制策略,如PID控制器、模糊控制器等,并设置相应的参数。
3. 设置输入信号,模拟系统的工作条件和外部干扰。
4. 运行仿真实验,记录系统的输出响应、误差曲线和稳定性指标。
5. 分析实验结果,对比不同控制策略的性能差异,优化控制系统的设计方案。
三、实验结果与分析通过多次仿真实验,我们得到了一系列实验结果,并进行了详细的分析。
以下是其中的一些重要发现:1. PID控制器在大部分情况下表现出良好的控制性能,能够实现较快的响应速度和较小的稳态误差。
然而,在某些复杂系统中,PID控制器可能存在过调和震荡的问题。
2. 模糊控制器在处理非线性系统时表现出较好的鲁棒性,能够适应不同工况下的控制要求。
但是,模糊控制器的设计和参数调整相对复杂,需要较多的经验和专业知识。
3. 对于一些特殊的控制系统,如高阶系统和时变系统,需要采用更为复杂的控制策略,如自适应控制、鲁棒控制等。
这些策略能够提高系统的鲁棒性和适应性,但也增加了控制系统的设计和调试难度。
南邮自动控制原理实验报告
>> step(G,6)
自然频率=16.9538rad/sec
阻尼比=0.73578
实验二
2.1
(1)考察闭环系统根轨迹的一般形成规律。
(2)观察和理解引进零极点对闭环根轨迹的影响。
(3)观察、理解根轨迹与系统时域响应之间的联系。
(4)初步掌握利用产生根轨迹的基本指令和方法。
2.2
根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。
指令:rlocfind(G)
分离点:-2.0095 + 1.0186iK=0.0017
与虚轴的交点:-0.0000 + 3.6025iK=65.8411
(3)利用MATLAB的rlocfind指令,求出系统临界稳定增益,并用指令验证系统的稳定性。
系统临界稳定增益:65.8411
由于系统无右半平面的开环极点,且奈奎斯特曲线不包围(-1,j0)点,系统稳定。
1
-----------
s^2 + s + 1
>> step(G,18)
阻尼比=2:
>> G=tf([1],[1,2,1])
Transfer function:
1
-------------
s^2 + 2 s + 1
>> step(G,18)
结论:
当阻尼比取0时,其振荡频率为1,即为无阻尼振荡;当阻尼比大于0小于1时,二阶系统为欠阻尼二阶系统,其单位阶跃响应为衰减振荡;当阻尼比大于1时,二阶系统为过阻尼二阶系统,其单位阶跃响应为是非振荡的。
实验三 控制系统的稳定性分析
实验三控制系统的稳定性分析一、预习要求1、分析实验系统电路,掌握其工作原理。
2、复习相关内容,掌握控制系统稳定的充要条件及稳定判据。
3、按照所给的线路图,分别计算C=1μf和C=0.1μf时,系统产生等幅振荡、增幅振荡、减幅振荡的条件,以及控制系统临界稳定时的电阻值R2。
注:实验指导书上没有本实验,请同学们做实验的时候带好这份实验指导。
二、实验目的1、观察控制系统的不稳定现象,了解和掌握控制系统稳定的条件及临界稳定点的判断方法。
2、研究系统开环增益和时间常数对控制系统稳定性的影响。
三、实验设备1、D1CE-AT2型自动控制系统实验箱2、计算机一台3、RS232串口线一条四、实验内容系统模拟电路图如图3・1所示。
其开环传递函数为:5(0.15+1)(75+1)式中K=R2∕R1,R1=50KΩ,R2=0〜680KQ;T=RC,R=250KΩ,C=1μf或C=0.1μf两种情况。
1.按系统模拟电路图连接电路(依次使用运放单元U3,U6,U4,U5,U8和U23构建),电路的输入为阶跃信号。
启动计算机运行D1CE计算机控制实现软件,打开实验箱电源。
2.分别取R2的值为IOOKd200KΩ,250KΩ,500KΩ,此时相应的K=2,4,5,IOo 观察不同R2值时示波器窗口内的输出波形(既UO的波形),找到系统输出产生增幅振荡时相应的R2及K值;再把电阻R2由大至小变化,即R2=500KΩ,250KΩ,200KΩ,100KΩ,观察不同R2值时显示区内的输出波形,找出系统输出产生等幅振荡变化的R2及K值,并观察Uo的输出波形。
3.在步骤2条件下,使系统工作在不稳定状态,即工作在等幅振荡情况。
改变电路中的电容C由1μf变成0.1μf,分别取R2的值为500KΩ,680KΩ,750KΩ,950KQ(此时相应的K=IO,13.6,15,19)。
观察不同R2值时示波器窗口内的输出波形(既UO的波形),找到系统输出产生增幅振荡时相应的R2及K值;再把电阻R2由大至小变化,WR2=950KΩ,750KΩ,680KΩ,500KΩ,观察系统稳定性的变化。