尼龙

合集下载

尼龙注塑工艺(3篇)

尼龙注塑工艺(3篇)

第1篇一、引言尼龙注塑工艺是一种广泛应用于塑料制品生产的工艺方法。

它具有生产效率高、成本低、质量稳定等优点,在汽车、电子、家电、日用品等领域有着广泛的应用。

本文将从尼龙注塑工艺的原理、工艺流程、设备、模具、材料选择、质量控制等方面进行详细介绍。

二、尼龙注塑工艺原理尼龙注塑工艺是利用高温、高压将尼龙熔体注入模具腔内,在模具腔内冷却、固化,从而获得所需形状和尺寸的塑料制品。

尼龙注塑工艺主要包括以下步骤:1. 加热:将尼龙颗粒放入注塑机料斗中,通过加热使其熔化。

2. 注塑:将熔化的尼龙熔体注入模具腔内,填充模具型腔。

3. 冷却:注塑完成后,模具在冷却水或冷却介质中冷却,使熔体固化。

4. 开模:冷却固化后,打开模具取出制品。

5. 后处理:对制品进行去毛刺、抛光、组装等后续处理。

三、尼龙注塑工艺流程1. 模具设计:根据产品形状、尺寸、结构等要求,设计合理的模具结构。

2. 材料选择:根据产品性能、成本等因素,选择合适的尼龙材料。

3. 注塑机选型:根据产品尺寸、重量、生产速度等要求,选择合适的注塑机。

4. 模具加工:按照模具设计图纸,加工出符合要求的模具。

5. 熔融尼龙制备:将尼龙颗粒加热熔化,制备成熔融尼龙。

6. 注塑:将熔融尼龙注入模具腔内,填充模具型腔。

7. 冷却、固化:在模具中冷却、固化,形成所需形状和尺寸的制品。

8. 开模、取出制品:冷却固化后,打开模具取出制品。

9. 后处理:对制品进行去毛刺、抛光、组装等后续处理。

四、尼龙注塑工艺设备1. 注塑机:用于将尼龙熔体注入模具腔内,主要包括加热系统、注射系统、冷却系统等。

2. 模具:用于成型尼龙制品,包括动模、定模、浇注系统、冷却系统等。

3. 辅助设备:包括送料系统、干燥设备、温度控制器、液压系统等。

五、尼龙注塑工艺模具1. 模具材料:常用的模具材料有铝合金、钢、铜等。

2. 模具结构:包括动模、定模、浇注系统、冷却系统等。

3. 模具设计:根据产品形状、尺寸、结构等要求,设计合理的模具结构。

尼龙

尼龙
尼龙纤维是多种人造纤维的原材料。硬的尼龙被用在建筑业中。用尼龙制成的热气球,可以做得很大。
4技术参数
清洗性及防污性
影响这两种性能的是是纤维的截面形状及后道的防污处理。而纤维本身的强度及硬度对清洗及防污性影响很小。
熔点及弹性
尼龙6的熔点为220℃而尼龙66的熔点为260℃。但对地毯的使用温度条件而言,这并不是一个差别。而较低的熔点使得尼龙6与尼龙66相比具有更好的回弹性,抗疲劳性及热稳定性。
尼龙
尼龙
纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。
随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题。
另一类是由己内酰胺缩聚或开环聚合得到的,其长链分子的化学结构式为:
H—[NH(CH2)XCO]—OH
根据其单元结构所含碳原子数目,可得到不同品种的命名。例如锦纶6,说明它是由含6个碳原子的己内酰胺开环聚合而得。
锦纶6、锦纶66及其他脂肪族锦纶都由带有酰胺键(—NHCO—)的线型大分子组成。锦纶分子中有—CO—、—NH—基团,可以在分子间或分子内形成氢键结合,也可以与其他分子相结合,所以锦纶吸湿能力较好,并且能够形成较好的结晶结构。锦纶分子中的—CH2—(亚甲基)之间因只能产生较弱的范德华力,所以—CH2—链段部分的分子链卷曲度较大。各种锦纶因今—CH2—的个数不同,使分子间氢键的结合形式不完全相同,同时分子卷曲的概率也不一样。另外,有些锦纶分子还有方向性。分子的方向性不同,纤维的结构性质也不完全相同。

尼龙

尼龙

尼龙(PA)材料的特性一尼龙简介尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。

此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。

温度一旦达到就出现流动。

PA的品种很多,主要有PA6、PA66、PA610、PA11、PA12、PA1010、PA612、PA46、PA6T、PA9T、MXD-6芳香醯胺等.以PA6、PA66、PA610、PA11、PA12最为常用.尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的结晶性树脂,它容易被著成任一种颜色。

作为工程塑料的尼龙分子量一般为1.5-3万。

它们的密度均稍大于1,密度:1.14-1.15g /cm3。

拉伸强度:> 60.0Mpa。

伸长率:> 30%。

弯曲强度: 90.0Mpa 。

缺口冲击强度:(KJ/m2) > 5。

尼龙的收缩率为1%~2%. 需注意成型后吸湿的尺寸变化。

吸水率 100% 相对吸湿饱和时能吸8%.使用温度可-40~105℃之间。

熔点:215-225℃。

合適壁厚2-3.5mm. PA的机械性能中如抗拉抗压强度随温度和吸湿量而改变,所以水相对是PA的增塑剂,加入玻纤后,其抗拉抗压强度可提高2倍左右,耐温能力也相应提高,PA本身的耐磨能力非常高,所以可在无润滑下不停操作,如想得到特別的润滑效果,可在PA中加入硫化物。

二 PA性能的主要优点有:1. 机械强度高,韧性好,有较高的抗拉、抗压强度。

比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。

抗拉强度接近于屈服强度,比ABS 高一倍多。

对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。

2. 耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。

尼龙特点及用途

尼龙特点及用途

尼龙特点及用途以下是 9 条关于尼龙特点及用途的内容:1. 嘿,你知道吗,尼龙那可是超耐磨的嘞!就像你穿的那双超级耐穿的运动鞋底,好多就是用尼龙做的呀。

它能经受住各种摩擦和折腾,可厉害啦!不管是在粗糙的地面上跑来跑去,还是经历各种磕磕碰碰,尼龙都没问题,这不就是一种超级实用的材料嘛!2. 尼龙的强度也很牛啊!想想看,那些坚固的降落伞,很多就是尼龙做的哟。

它能拉住从高空跳下的人,这强度得多惊人呀。

就如同一个可靠的伙伴,在关键时刻绝不会掉链子,太棒啦!3. 哇塞,尼龙的弹性也相当不错呢!好比橡皮筋,能拉能缩。

比如我们常见的一些健身器材上的带子,用的就是尼龙,能随着你的运动拉伸又回弹,多有意思呀!4. 尼龙还很轻巧呢,朋友们!这不就跟一片羽毛一样,几乎没什么重量。

像那些户外背包,就是因为有了尼龙,背着才不会那么累呀,多方便!5. 尼龙可容易染色啦,你能想象出来吗?就好像它是一个爱美的小姑娘,可以被打扮成各种漂亮的颜色。

那些花花绿绿的尼龙制品,不就是最好的证明嘛,多吸引人呀!6. 嘿,尼龙还防水哦!就跟荷叶一样,水滴上去一下子就溜走啦。

像那些防水的袋子、雨衣,好多都是尼龙材质的呢,下雨也不怕啦,是不是超厉害!7. 尼龙的稳定性也很好呀!不管是冷是热,它都能坚守自己的“岗位”。

就如同一位忠诚的卫士,不离不弃,这稳定性真让人放心啊!8. 尼龙的耐腐蚀性也很强呢!面对各种酸碱环境,它都能安然无恙。

这不就像一个坚强的战士,啥恶劣环境都不怕,太牛了吧!9. 总之,尼龙的特点那可真是数都数不过来,用途更是广泛得很呐!从日常生活到工业领域,到处都有它的身影。

它真的是我们生活中不可或缺的好材料呀,难道不是吗!。

尼龙辨别方法

尼龙辨别方法

尼龙辨别方法
嘿,朋友们!今天咱来聊聊尼龙辨别方法,这可真是个有趣又实用的事儿啊!
你看啊,尼龙这种材料在我们生活中可太常见啦!那怎么才能准确地辨别它呢?咱先从外观上来说吧,尼龙通常看起来比较光滑,有一定的光泽度,就像一颗闪亮的星星在那呢!要是你看到一种材料表面粗糙得很,那它大概率就不是尼龙啦!这不是很明显嘛!
再说说手感,尼龙摸起来会有一种独特的质感,有点滑溜溜但又不是那种油腻的感觉,怎么形容呢,就像是丝绸和棉布的结合体!你要是一摸,感觉硬邦邦或者软绵绵没什么弹性,那它肯定不是尼龙呀!这多简单的道理!
然后就是燃烧法啦!这就好像是一场小小的实验呢!点燃尼龙,它燃烧时的火焰颜色和气味都有特点哦!火焰一般是蓝色的,而且燃烧后会有一些特殊的气味,可不是那种刺鼻难闻的,而是有点特别的味道。

你想想,如果燃烧起来完全不是这样的表现,那还能是尼龙吗?
还有啊,尼龙的强度也挺高的呢!你试着拉扯一下,它可不会轻易就被扯断,就像一个顽强的小战士!如果一拉就断,那肯定不是我们要找的尼龙啦!这不是显而易见的嘛!
再从价格方面想想,尼龙一般也有它相对应的价格区间呀,如果价格低得离谱,那你就得多个心眼啦,它真的会是尼龙吗?
咱生活中这么多材料,学会辨别尼龙真的太重要啦!这样我们在选择和使用的时候就能准确无误啦!可别小看这个辨别方法哦,它能让我们避免很多不必要的麻烦呢!所以啊,大家一定要好好记住这些方法,在需要的时候就能派上大用场啦!尼龙辨别,就是这么简单又有趣!。

尼龙属于什么材料

尼龙属于什么材料

尼龙属于什么材料
尼龙,又称聚酰胺纤维,是一种合成纤维,属于合成聚合物材料。

它的发明和
应用给人们的生活带来了很大的便利,尼龙材料广泛应用于纺织、塑料、化工、机械等领域。

那么,尼龙到底是什么材料呢?下面让我们来详细了解一下。

首先,尼龙是一种高强度的合成纤维材料,具有优异的耐磨性和耐腐蚀性。


的强度比棉纤维高,耐磨性比丝绸好,所以被广泛应用于纺织品的制造。

尼龙制成的衣物、袜子、绳索等用品,都具有很好的耐磨性和耐用性,能够满足人们对品质的需求。

其次,尼龙材料还具有良好的化学稳定性和耐高温性能。

它不易受到化学物质
的侵蚀,能够在较高的温度下保持稳定的性能。

因此,尼龙被广泛应用于化工领域,制成各种化工管道、阀门、密封件等,以满足工业生产的需求。

另外,尼龙还是一种优秀的塑料材料,具有良好的加工性能和机械性能。

它可
以通过注塑、挤出、吹塑等工艺制成各种形状的制品,如尼龙板、尼龙管、尼龙棒等,广泛应用于机械制造、汽车制造、航空航天等领域。

总的来说,尼龙是一种多功能的合成材料,具有优异的性能和广泛的应用前景。

随着科技的不断进步和人们对品质的不断追求,尼龙材料的应用范围将会越来越广,对人们的生活和工作将会带来更多的便利和效益。

综上所述,尼龙是一种高强度、耐磨、耐化学腐蚀的合成纤维材料,具有广泛
的应用前景。

它在纺织、化工、塑料、机械等领域都有着重要的地位,对人们的生活和工作都有着积极的影响。

相信随着科技的不断发展,尼龙材料的性能和应用将会得到进一步的提升,为人类社会的发展做出更大的贡献。

尼龙面料成分

尼龙面料成分

尼龙面料成分尼龙是一种合成纤维,其主要成分是聚酰胺材料。

它由化学家Wallace Carothers于1935年发明,被证明是第一个成功制造的合成纤维。

尼龙是一种非常常见的面料,具有耐用、强韧、易清洁的特点,因此广泛用于服装、家居纺织品和工业材料等领域。

尼龙的成分主要是聚合酰胺化合物,也就是不同酸和胺的反应产物。

常见的聚合酰胺化合物有聚己内酰胺(PA6)和聚代克来内酰胺(PA66)。

两种化合物具有不同的特性,但在制造尼龙面料时,通常都会与其他添加剂混合,以改善尼龙的性能。

尼龙的主要原料是石油,通过化学反应将石油中的有机化合物转化为聚酰胺。

制造尼龙面料的过程包括聚合、纺丝、牵伸和整理等步骤。

聚合是指将酸和胺混合,经过化学反应生成聚合酰胺。

在聚合的过程中,聚合酰胺链不断延伸,形成长链的分子结构。

这种长链结构使尼龙具有较强的强度和耐久性。

纺丝是将聚合酰胺熔融,通过细孔模具挤出成纤维。

纺丝过程中,聚合酰胺经过高温和高压的处理,形成纤维状的尼龙物料。

牵伸是将纺出的尼龙纤维加热,然后经过拉伸和冷却,使其增强和定型。

这个过程中,纤维不断拉伸,使其分子结构更加紧密,增加纤维的拉伸性能和耐磨性。

整理是指对牵伸的尼龙纤维进行缩短、修整和整理。

在这个过程中,纤维经过切割和整理处理,使其长度一致,并去除不完美部分。

尼龙面料作为一种合成纤维,具有许多优点。

首先,尼龙面料具有较高的强度和耐久性,可以经受长时间的使用和反复清洗。

其次,尼龙面料具有较好的抗皱性能,不易变形。

此外,尼龙面料具有较好的弹性和拉伸性能,适合制作紧身衣物。

此外,尼龙面料还具有较好的耐磨性和耐腐蚀性,可以经受各种环境条件的考验。

尼龙面料的缺点是它容易积聚静电,导致静电感和毛发粘附。

此外,尼龙面料对阳光和热很敏感,容易损坏。

因此,在存储和清洗时需要特别注意。

总之,尼龙是一种常见的合成纤维,其成分主要是聚酰胺材料。

尼龙面料具有耐用、强度高、易清洁的特点,被广泛应用于服装、家居纺织品和工业材料等领域。

尼龙属于什么材料

尼龙属于什么材料

尼龙属于什么材料
尼龙是一种合成聚合物材料,也被称为聚酰胺纤维。

它是由一种含有酰胺基(-CONH)的线性聚合物组成的,通常是通过聚合反应合成的。

尼龙因其优异的物理性能和化学性能而被广泛应用于各种领域,包括纺织品、塑料制品、机械零件等。

首先,尼龙是一种具有优异耐磨性的材料。

由于其分子链的排列结构紧密,并且分子间有较强的相互作用力,因此尼龙具有很高的耐磨性,能够长时间保持良好的物理性能。

这使得尼龙在纺织品领域得到广泛应用,如制作运动服装、行李箱、帐篷等。

其次,尼龙具有较高的拉伸强度和弹性模量。

这意味着尼龙制品能够承受较大的拉伸力而不易变形或破裂,同时具有一定的弹性,能够在受力后迅速恢复原状。

这些特性使得尼龙在制作绳索、织带、背包等产品时能够发挥重要作用。

此外,尼龙还具有良好的耐化学性能。

它能够抵抗酸、碱、有机溶剂等化学物质的侵蚀,因此在化工领域得到广泛应用。

例如,尼龙制成的管道和阀门能够承受各种腐蚀性介质的输送和控制,具有很高的可靠性和安全性。

另外,尼龙还具有较高的绝缘性能和耐热性能。

它能够有效隔离电流,因此在电气设备领域得到广泛应用,如制作绝缘子、电缆护套等。

同时,尼龙的耐热性能也使得它能够在高温环境下工作,如发动机零部件、热水器零部件等。

总的来说,尼龙是一种优异的材料,具有耐磨、高强度、耐化学腐蚀、绝缘、耐热等多种特性,因此在各种领域得到广泛应用。

随着材料科学的不断发展,相信尼龙在未来会有更广阔的应用前景。

尼龙牌号及标准

尼龙牌号及标准

尼龙牌号及标准
尼龙(Nylon)是一种常见的聚酰胺(PA)塑料材料,具有良好的耐磨性、耐腐蚀性和韧性,广泛应用于工业、机械、电子、家具等领域。

尼龙牌号众多,不同的牌号具有不同的性能和用途。

以下是一些常见的尼龙牌号及其标准:
1. PA6(聚己内酰胺):具有良好的耐磨性、耐热性和尺寸稳定性,广泛用于制造纺织品、绳索、刷子等。

2. PA66(聚己二内酰胺):具有较高的强度、刚性和耐磨性,常用于制造自行车胶带、车胎、电子零件、工程零件等。

3. PA11(聚十一内酰胺):具有优异的耐油性和耐化学腐蚀性,常用于制造油管、油箱、胶管等。

4. PA12(聚十二内酰胺):具有低密度、高韧性和良好的耐磨性,常用于制造滑雪靴、滑冰鞋等运动器材。

5. PA612(聚十二内酰胺):具有润滑性和低吸湿性,常用于制造电子零件、医疗器械等。

6. PA66 GF30(玻璃纤维增强尼龙):具有高强度、高刚性和耐高温性能,常用于制造汽车零部件、电器外壳等。

7. PA66 ST801(超级韧性尼龙):具有优异的冲击强度和耐热性能,常用于制造电器开关、端子等。

此外,还有一些其他的尼龙牌号,如PA46、PA6T、PA9T等,具有更加优异的性能和特殊用途。

不同牌号的尼龙材料具有不同的化学结构、分子量和性能特点,因此在选择和使用时需要根据实际需求进行选择。

尼龙是什么材料

尼龙是什么材料

尼龙是什么材料
尼龙是一种合成纤维,也是一种热塑性塑料,它在现代工业中有着广泛的应用。

尼龙的全称是聚酰胺纤维,它是由聚酰胺树脂制成的合成纤维,具有优异的耐磨性、耐腐蚀性和耐热性,因此被广泛用于制作绳索、织物、塑料制品等各种用途。

尼龙最初是由美国化学家华莱士·卡罗研发的,他在20世纪30年代末成功地
制备出了第一种尼龙纤维。

尼龙的问世极大地推动了合成纤维的发展,也开创了合成纤维时代的序幕。

尼龙的材料特性使其在各个领域都有着重要的应用。

在纺织品领域,尼龙纤维
具有优异的强度和弹性,因此常用于制作织物、袜子、衣服等。

此外,尼龙纤维还可以与其他纤维混纺,产生各种性能优良的混纺纺织品。

在塑料制品领域,尼龙也有着广泛的应用。

尼龙具有优异的耐磨性和耐腐蚀性,因此常用于制作齿轮、轴承、垫圈等机械零部件,也被用于制作各种工程塑料制品。

此外,尼龙还被广泛用于制作绳索、渔网、登山用具等。

尼龙绳索具有轻便、
耐磨、高强度的特点,因此在户外运动和军事领域有着重要的应用。

尼龙的应用还不仅限于以上几个领域,它还被广泛用于汽车零部件、家居用品、医疗器械等领域。

由于尼龙具有优异的性能和广泛的应用领域,因此被誉为合成纤维中的“通用纤维”。

总的来说,尼龙是一种非常重要的合成纤维材料,它的出现极大地推动了现代
工业的发展,也为人类生活带来了诸多便利。

尼龙的优异性能和广泛应用使其成为当今世界上最重要的合成纤维之一,相信在未来的发展中,尼龙会有着更加广泛的应用。

尼龙的耐温范围

尼龙的耐温范围

尼龙的耐温范围
尼龙是一种常见的合成纤维,具有许多优良的性能,其中之一就是其较广泛的耐温范围。

尼龙的耐温范围通常在-40°C至120°C之间,这使得它在各种环境下都能保持稳定的性能。

在低温下,尼龙仍然能够保持柔软和柔韧的特性,不易变脆或硬化。

这使得尼龙在寒冷地区的使用中具有优势,例如在冰雪运动用具、户外服装和冷冻食品包装等方面得到广泛应用。

尼龙的耐低温性还使得它在制造机器零件和工程塑料制品时能够在寒冷的环境下保持稳定性能,不易受到温度变化的影响。

而在高温下,尼龙也能够保持较好的性能,不易软化或熔化。

尼龙的熔点较高,能够承受一定程度的高温,这使得它在各种机械零件、汽车零部件、电气设备等领域得到广泛应用。

尼龙的高温稳定性还使得它在工业生产中能够承受高温环境下的摩擦和磨损,不易变形或损坏。

在一些特殊的工业领域,尼龙甚至能够承受更高的温度,例如在航空航天领域和化工领域的一些特殊应用中,尼龙可以承受超过200°C甚至300°C的高温。

这得益于尼龙的高温稳定性和耐腐蚀性,使得它在极端环境下仍然能够保持稳定的性能,为各种工业生产提供了可靠的材料选择。

总的来说,尼龙作为一种常见的合成纤维,在其较广泛的耐温范围
内具有优异的性能,能够适应各种环境的需求。

无论是在低温下的柔软柔韧,还是在高温下的稳定性能,尼龙都能够表现出色,为各种领域的应用提供了可靠的材料选择。

随着科技的发展和工业的进步,尼龙作为一种重要的合成材料将继续发挥重要作用,为人类创造出更多更好的产品和应用。

尼龙分析报告

尼龙分析报告

尼龙分析报告1. 引言尼龙(nylon)是一种合成纤维,具有良好的力学性能、耐腐蚀性和耐磨性,被广泛应用于纺织、塑料、橡胶等领域。

本报告将对尼龙的特性、制备工艺、应用范围等进行分析和介绍。

2. 尼龙的特性尼龙具有以下主要特性:2.1 原材料尼龙的主要原料是通过聚合反应制得的聚合物。

常见的尼龙原料有尼龙66和尼龙6,分别由己二酸与己二胺以及己内酰胺制得。

这些原料具有良好的可塑性和强度。

2.2 物理性能尼龙材料具有良好的拉伸强度、弹性模量和抗冲击性能。

其强度和刚度可以通过调整聚合物的组成和处理工艺进行调整。

2.3 耐热性尼龙材料具有较高的耐热性,可以在高温下保持其物理性能。

一般情况下,尼龙可以耐受高达200℃的温度。

2.4 耐腐蚀性尼龙对化学品、油脂、溶剂等有较好的耐腐蚀性。

它可以在酸、碱等环境中长期使用而不受影响。

3. 尼龙的制备工艺尼龙的制备工艺包括以下步骤:3.1 原料处理尼龙的原料经过清洁、烘干等处理,以去除杂质和水分。

3.2 聚合反应将己二酸和己二胺或己内酰胺反应生成尼龙聚合物。

在高温和压力下,原材料中的官能团发生缩聚反应,形成聚合物链。

3.3 精细加工将聚合物经过熔融或化溶剂法加工成均匀的尼龙液体。

通过挤出、模压或纺丝等方法,将尼龙液体形成连续丝或块状。

3.4 成型处理将连续丝或块状尼龙进行拉伸、定型、冷却等处理,使其具备所需的物理性能和外观。

4. 尼龙的应用范围尼龙材料广泛应用于以下领域:4.1 纺织业尼龙纤维具有良好的韧性和耐磨性,被广泛用于制作各种织物、缝纫线、刷子等纺织品。

4.2 塑料制品尼龙具有优良的成型性能和物理性能,被广泛应用于制作注塑件、挤出膜、塑料管等。

4.3 橡胶制品尼龙可以增强橡胶材料的强度和耐磨性,提高橡胶制品的寿命。

常见的应用包括尼龙帘线、尼龙胎、尼龙垫片等。

4.4 其他领域尼龙还可以用于制作刷子、绳索、齿轮等各种工业零部件和机械件,以及高性能的功能材料等。

5. 结论尼龙作为一种优秀的合成纤维材料,具有良好的力学性能、耐腐蚀性和耐磨性,被广泛应用于纺织、塑料、橡胶等领域。

尼龙是什么材料

尼龙是什么材料

尼龙是什么材料尼龙是一种合成塑料,它具有优异的耐磨性、耐腐蚀性和抗拉伸性能,因此在工业生产和日常生活中得到了广泛的应用。

尼龙最早由美国的化学家华莱士·卡罗研发,并于1935年投入商业生产。

尼龙的名称源自于“New York”和“London”的缩写,这也是它被称为尼龙的由来。

尼龙是一种聚酰胺类塑料,其分子结构中包含酰胺基(-CONH-),这种结构使得尼龙具有较高的结晶性和耐热性。

尼龙的主要原料是石油,经过聚合反应制成聚合物颗粒,再通过挤出、注塑、吹塑等工艺加工成各种形状的制品,如尼龙绳、尼龙布、尼龙管等。

尼龙具有良好的物理性能,比如硬度高、弹性大、耐磨性强等,因此常被用于制作各种工业零部件,如轴承、齿轮、密封件等。

此外,尼龙还具有较好的化学稳定性,能够抵抗酸、碱、油脂等化学腐蚀,因此在化工行业中也有着广泛的应用。

在日常生活中,尼龙制品也随处可见。

比如尼龙袜、尼龙包、尼龙绳等,这些制品通常具有轻便、耐用、易清洁等特点,受到了消费者的青睐。

此外,尼龙还常被用于户外用品的制作,如登山绳、帐篷布、雨衣等,其耐磨、耐撕裂的特性使得这些产品在野外环境中能够发挥出优异的性能。

尼龙的应用领域还在不断扩大,随着科技的进步,新型的尼龙材料不断涌现,如耐高温尼龙、增强尼龙等,为各行各业带来了更多可能。

尽管尼龙具有许多优点,但也存在一些缺点,比如耐光性差、易老化等,因此在使用过程中需要注意保养和维护。

总的来说,尼龙作为一种优秀的合成塑料材料,具有广泛的应用前景,其在工业生产和日常生活中发挥着重要的作用。

随着技术的不断发展,相信尼龙材料将会在更多领域展现出其优越的性能和潜力。

尼龙材料的特性

尼龙材料的特性

尼龙材料的特性尼龙(PA)是一种高性能工程塑料,具有许多独特的特性和优势。

以下是关于尼龙材料特性的详细介绍:1.耐磨性:尼龙材料具有出色的耐磨性能。

它能够抵抗摩擦和磨损,对于需要耐久性的应用尤为适用。

尼龙制成的零件通常能够更长时间地保持其外观和功能。

2.强度和刚性:尼龙材料具有高强度和刚性,使其成为一种重要的结构材料。

它能够承受高压和重载,并保持结构的完整性。

尼龙在许多应用中取代金属材料,因为它的重量更轻,但具有相似的强度。

3.耐冲击性:尼龙材料具有出色的耐冲击性,能够吸收冲击和震动的能量。

这使其成为一种理想的选择,用于需要抵御外部冲击和振动的应用中。

4.耐化学腐蚀性:尼龙材料具有良好的耐化学腐蚀性能。

它能够抵抗许多化学物质的侵蚀,包括酸、碱和溶剂。

这使得尼龙在许多化学工业和制药行业的应用中非常受欢迎。

5.耐高温性:尼龙材料具有良好的耐高温性能,可以在较高温度下长时间使用而不会失去其特性。

这使它成为一种适用于高温环境的工程塑料选择。

6.尺寸稳定性:尼龙材料具有高度的尺寸稳定性,能够抵抗热胀冷缩的影响。

这使得尼龙成为一种可靠的选择,用于需要保持尺寸稳定的应用中,例如精密机械零件。

7.电气绝缘性:尼龙材料具有良好的电气绝缘性能,可以防止电流通过材料。

它广泛应用于电气和电子行业,用作绝缘材料和电气零件。

8.可加工性:尼龙材料易于加工和成型,可以通过注塑成型、挤出成型和压制等方式制造出各种形状和尺寸的产品。

这使得尼龙成为一种广泛使用且具有多样化应用的材料。

总结来说,尼龙(PA)材料具有耐磨性、强度和刚性、耐冲击性、耐化学腐蚀性、耐高温性、尺寸稳定性、电气绝缘性和可加工性等独特特性。

这些特性使尼龙成为一种广泛应用于工业和商业领域的理想材料。

无论是在汽车、电子、航空航天、机械制造还是化工行业,尼龙材料都能发挥重要的作用。

尼龙等级分类

尼龙等级分类

尼龙等级分类1. 前言尼龙(Nylon),又称聚酰胺纤维,是一种具有优良性能的合成纤维。

它具有高韧性、强度高、耐磨损、耐腐蚀等特点,广泛应用于纺织、汽车、航空、电子等领域。

然而,尼龙存在多个等级分类,不同等级的尼龙在性能上有所区别。

本文将对尼龙的等级分类进行全面、详细、完整且深入地探讨。

2. 尼龙等级分类2.1 标准分类根据国际标准GB/T 7722-1996《化学纤维纺丝丝号与纤度的计算与表示》以及GB/T 7723-2005《化学纤维丝号、支细度计数仪》的规定,尼龙纤维根据直径大小进行等级分类。

以下是尼龙标准分类的详细介绍:1.尼龙6 (Nylon 6)–直径范围:大于等于1.18mm–特点:具有优良的强度和耐久性,适用于制作绳子、网线等。

2.尼龙66 (Nylon 66)–直径范围:大于等于1.18mm–特点:具有良好的强度和耐久性,适用于制作汽车零部件、工业制品等。

3.尼龙610 (Nylon 610)–直径范围:大于等于1.18mm–特点:具有较高的强度和耐久性,适用于制作高强度绳索、工业制品等。

这些标准分类是根据尼龙纤维的直径范围进行区分的,不同等级的尼龙在直径大小上有所差异。

2.2 性能分类除了标准分类之外,尼龙还可以根据其性能特点进行分类。

以下是尼龙性能分类的详细介绍:1.尼龙6 (Nylon 6)–特点:具有较高的强度和韧性,优良的抗冲击性能,适用于制作运动器材、户外用品等。

2.尼龙66 (Nylon 66)–特点:具有优异的耐磨损性,耐高温性和抗疲劳性,适用于制作汽车零部件、轴承等。

3.尼龙610 (Nylon 610)–特点:具有较高的抗拉强度和刚性,耐高温性好,适用于制作电子产品、工业零部件等。

尼龙的性能分类是基于其特点和用途进行的,不同等级的尼龙在性能方面有所差异。

3. 尼龙的应用领域尼龙作为一种合成纤维,具有广泛的应用领域。

以下是尼龙在不同领域的应用:3.1 纺织领域尼龙纤维在纺织领域有着重要的应用,例如制作服装、袜子、绳索等。

尼龙介绍

尼龙介绍
.
O C ( CH2 )4 O C NH (CH2)6 NH n H
+ (2n-1) H O
2
3
聚酰胺 1,6-己二酸的合成(主要由两种合成方法)
⑴由KA油(或环己醇)硝酸氧化制己二酸。KA油 指环己醇和环己酮的混合物 ⑵用丁二烯制备己二酸 ①1,3-丁二烯加氢羰基甲氧基化制备己二酸(BASF法) ② 1,3-丁二烯氧化羰基化制备己二酸 ③ 1,3-丁二烯加氢羰基甲氧基化制备己二酸(孟山都法) 4 1,6-己二胺的合成 己二胺主要以己二腈加氢制备
聚酰胺
⑵尼龙11(PA11) 学名聚十一内酰胺 英文名 Polyundecanoylamide 结构式为:
NH (CH2 )10 CO n
它是以氨基十一酸为原料制备的长碳链柔软尼龙。
聚酰胺
PA11为白色半透明体,其最大特点是耐润滑油、汽油、柴油
和氟利昂,在低温下弯曲强度、抗震性能优异,并具有良好冲击性 能。
聚酰胺
PA1010是一种半透明白色或微黄色坚韧固体,具有 一般尼龙的共性。相对密度在1.03~1.05之间,对霉
菌的作用非常稳定,无毒,对光的作用也很稳定。
PA1010的最大特点是具有高的延展性,不可逆拉伸能
力高;同时具有优良冲击性能和低温冲击性能,-60℃
下不脆;但高于100℃时,长期与氧接触会逐渐变黄, 导致机械强度降低,特别是熔融状态下,极易热氧化降 解。
通式为:
N H
( CH2 )n-1 C
O
p
如ε-己内酰胺开环聚合得到的聚合物,称为PA6, ω-氨基十一酸合成的聚合物为PA11。 ⑵ 由二元胺和二元酸缩聚得到的聚合物,称为尼龙mn, 简写为PAmn,m为重复单元二元胺的碳原子数,n为重 复单元中二元酸的碳原子数,通式为:

尼龙的注塑工艺(3篇)

尼龙的注塑工艺(3篇)

第1篇一、尼龙注塑工艺原理尼龙注塑工艺是指将尼龙树脂粉末或颗粒通过加热熔化,然后注入模具中,冷却固化后得到所需的塑料制品。

注塑工艺的基本原理如下:1. 熔化:将尼龙原料放入注塑机的料筒中,通过加热使原料熔化。

2. 注射:将熔化的尼龙原料通过注塑机的螺杆或柱塞推动,注入模具的型腔中。

3. 冷却固化:在模具型腔中,熔化的尼龙原料迅速冷却固化,形成所需的塑料制品。

4. 开模取件:当尼龙制品在模具中完全固化后,打开模具取出制品。

二、尼龙注塑工艺设备尼龙注塑工艺设备主要包括以下几部分:1. 注塑机:注塑机是尼龙注塑工艺的核心设备,负责将尼龙原料熔化、注射和冷却固化。

常见的注塑机有螺杆式注塑机和柱塞式注塑机。

2. 模具:模具是注塑工艺的关键部件,决定了制品的形状和尺寸。

尼龙注塑模具通常采用钢制或铝合金材料制造。

3. 辅助设备:包括加热设备、冷却设备、输送设备、取件设备等,用于辅助注塑工艺的进行。

三、尼龙注塑工艺流程1. 模具设计:根据制品的要求,设计合理的模具结构,确保制品的尺寸精度和外观质量。

2. 原料准备:将尼龙原料进行干燥处理,确保原料中的水分含量符合要求。

3. 设备调试:对注塑机进行调试,确保设备运行正常。

4. 注塑工艺参数设置:根据尼龙原料的特性和制品的要求,设置合适的注塑工艺参数,如注射压力、注射速度、冷却时间等。

5. 注塑生产:将干燥后的尼龙原料放入注塑机料筒,启动注塑机进行熔化、注射和冷却固化。

6. 取件:当制品在模具中完全固化后,打开模具取出制品。

7. 后处理:对制品进行检验、修整等后处理,确保制品的质量。

四、尼龙注塑工艺注意事项1. 原料干燥:尼龙原料中的水分含量对注塑工艺和制品质量有很大影响,因此必须对原料进行干燥处理。

2. 模具温度:模具温度对尼龙制品的冷却速度和质量有很大影响,应根据尼龙原料的特性和制品的要求设置合适的模具温度。

3. 注射压力和速度:注射压力和速度对制品的填充度和外观质量有很大影响,应根据尼龙原料的特性和制品的要求设置合适的参数。

尼龙是什么材料优缺点

尼龙是什么材料优缺点

尼龙是什么材料优缺点
尼龙是一种合成纤维,它具有许多优点,也存在一些缺点。

尼龙是一种聚酰胺
类的合成纤维,其具有良好的耐磨性、耐腐蚀性和耐热性,因此被广泛应用于纺织品、塑料制品、机械零部件等领域。

下面我们将详细探讨尼龙材料的优缺点。

首先,尼龙材料具有优异的耐磨性。

尼龙纤维的耐磨性是其最显著的特点之一,因此尼龙制成的纺织品和制品具有较长的使用寿命。

其次,尼龙材料具有良好的耐腐蚀性。

尼龙不易受化学品侵蚀,因此在一些特殊环境下具有较好的稳定性。

此外,尼龙材料还具有较高的抗张强度和弹性模量,使其在工程塑料领域有着广泛的应用。

然而,尼龙材料也存在一些缺点。

首先,尼龙纤维的吸湿性较强,会受潮而导
致尺寸变化,影响其使用效果。

其次,尼龙材料的耐热性较差,在高温环境下容易软化甚至熔化。

此外,尼龙材料的价格较高,生产成本也较高,因此在一些应用领域受到了一定的限制。

总的来说,尼龙作为一种合成纤维材料,具有许多优点,如耐磨性、耐腐蚀性
和抗张强度等,但也存在一些缺点,如吸湿性强、耐热性差和价格较高。

在实际应用中,需要根据具体的使用环境和要求来选择是否使用尼龙材料,以充分发挥其优点并避免其缺点的影响。

希望本文能够帮助大家更好地了解尼龙材料的优缺点,为相关领域的应用提供参考。

尼龙材料分类与介绍

尼龙材料分类与介绍

尼龙材料分类与介绍
尼龙(nylon)材料是一种通用的合成高分子材料,具有高强度、高韧性、良好的耐磨性和化学稳定性等特点。

根据材料不同的组成和结构,尼龙可以分为不同的类型和品种。

常见的尼龙材料包括:尼龙6(PA6)、尼龙66(PA66)、尼龙11(PA11)、尼龙12(PA12)等。

其中,尼龙6和尼龙66是最常见的两种类型,也是最广泛应用的材料之一。

尼龙6是一种由己内酰胺制成的材料,具有良好的延展性和柔韧性。

它适合制作高强度、高回弹性、耐磨损的零件,如垫圈、齿轮、马鞍等。

尼龙66是一种由腈基己内酰胺制成的材料,具有更好的强度和刚性,同时还具有优异的耐磨损性和热稳定性。

它适合制作要求更高强度和刚性的零件,如轴承、齿轮、销等。

尼龙11是一种由11-氨基植酸制成的材料,具有出色的耐温性和化学耐腐蚀性。

它适合制作柔韧性要求高的零件,如管道、软管、密封制品等。

尼龙12是一种由12-氨基植酸制成的材料,具有优异的耐热性和耐溶剂性。

它适合制作复杂几何形状和高性能要求的零件,如弹性元件、电气元件等。

总之,不同类型的尼龙材料各具特点,应用范围也不尽相同,需要根据具体的使用条件和要求来选择合适的材料。

尼龙是什么材料

尼龙是什么材料

尼龙是什么材料
尼龙是一种合成材料,它具有优异的耐磨性、耐腐蚀性和机械性能,因此被广
泛应用于各种领域。

尼龙最早由美国化学家华莱士·卡罗研发,于1935年首次商
业化生产。

尼龙的英文名称为Nylon,它是一种人造合成聚合物,属于塑料的一种。

尼龙是一种热塑性塑料,具有较高的强度和耐磨性。

它的主要原料是聚酰胺,
通过聚合反应制得。

尼龙的特点之一是具有较高的耐磨性,因此在制造绳索、织物、钓鱼线等领域有广泛的应用。

同时,尼龙还具有良好的耐腐蚀性,能够抵御化学品和腐蚀性物质的侵蚀,因此在化工、医疗器械等领域也有着重要的应用价值。

尼龙的机械性能也非常出色,它既具有较高的拉伸强度,又具有较好的弹性模量,因此在制造机械零部件、工程塑料制品等方面有着广泛的应用。

此外,尼龙还具有良好的绝缘性能和自润滑性能,因此在电气设备、轴承等领域也有着重要的用途。

尼龙的耐磨性和耐腐蚀性使其成为一种理想的工程塑料,在汽车制造、航空航天、建筑材料等领域都有着广泛的应用。

例如,在汽车制造中,尼龙被用于制造汽车零部件,如发动机罩、车门把手等,以提高产品的耐用性和安全性。

在航空航天领域,尼龙被应用于制造飞机零部件,如螺旋桨、机翼等,以满足飞行器对轻量化和高强度的需求。

总的来说,尼龙是一种优秀的合成材料,具有优异的耐磨性、耐腐蚀性和机械
性能,被广泛应用于各种领域。

随着科技的不断进步,尼龙的应用领域还将不断扩大,为人类社会的发展进步做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尼龙的合成奠定了合成纤维工业的基础,尼龙的出现使纺织品的面貌焕然一新。用这种纤维织成的尼龙丝袜既透明又比丝袜耐穿,1939年10目24日杜邦公在总部所在地公开销售尼龙丝长袜时引起轰动,被视为珍奇之物争相抢购,人们曾用“象蛛丝一样细,象钢丝一样强,象绢丝一样美”的词句来赞誉这种纤维,到1940年5月尼龙纤维织品的销售遍及美国各地。
20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。
在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。
* 熔点及弹性:尼龙6的熔点为220C而尼龙66的熔点为260C。但对地毯的使用温度条件而言,这并不是一个差别。而较低的熔点使得尼龙6与尼龙66相比具有更好的回弹性,抗疲劳性及热稳定性。
* 色牢度:色牢度并不是尼龙的一个特性,是尼龙中的染料而不是尼龙本身在光照下褪色。
* 耐磨性及抗尘性:美国Clemson大学曾在Tampa国际机场分别用巴斯夫 Zeftron500尼龙6地毯和杜邦Antron XL尼龙66地毯进行了一个 长达两年半的实验。地毯处于人流量极高的状态下,结果表明:巴斯夫Zeftron500尼龙在颜色保持性及绒头耐磨性方面要稍好于杜邦 Antron XL。两种纱线的抗尘性能没有差别。
尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。
尼龙,是聚酰胺纤维(锦纶)是一种说法.
尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。
20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。
①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。
③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温能,增强其对耐环境应变的能力。
⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。
⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。
随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。
卡罗瑟斯,美国有机化学家。1896年4月27日出生于美国爱荷华州威尔明顿。1937年4月29日卒于美国费城。1924年获伊利诺伊大学博士学位后,先后在该大学和哈佛大学担任有机化学的教学和研究工作。1928年应聘在美国杜邦公司设于威尔明顿的实验室中进行有机化学研究。他主持了一系列用聚合方法获得高分子量物质的研究。1935年以己二酸与己二胺为原料制得聚合物,由于这两个组分中均含有6个碳原子,当时称为聚合物66。他又将这一聚合物熔融后经注射针压出,在张力下拉伸称为纤维。这种纤维即聚酰胺66纤维,1939年实现工业化后定名为耐纶(Nylon),是最早实现工业化的合成纤维品种。
锦纶纤维表面平整,不加油剂的纤维摩擦系数很高,锦纶油剂贮存日久易失效,纺织加工时还需要重新添加油剂。
锦纶纤维的吸湿比涤纶高,锦纶6与锦纶66在标准条件下的回潮率为4.5%,在合纤中仅次于维纶。染色性能好,可用酸性染料, 分散性染料及其他染料染色。
尼龙的历史:
人们对尼龙并不陌生,在日常生活中尼龙制品比比皆是,但是知道它历史的人就很少了。尼龙是世界上首先研制出的一种合成纤维。
聚酰胺(尼龙)
聚癸二酸癸二胺(尼龙1010)
聚十一酰胺(尼龙11)
聚十二酰胺(尼龙12)
聚己内酰胺(尼龙6)
聚癸二酰乙二胺(尼龙610)
聚十二烷二酰乙二胺(尼龙612)
聚己二酸己二胺(尼龙66)
聚辛酰胺(尼龙8)
聚9-氨基壬酸(尼龙9)
尼龙6与尼龙66
⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。
⑧降低尼龙的成本,提高产品竞争力。
总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。
改性PA产品的最新发展
前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA投放市场。
聚酰胺纤维是大分子链上具有C9-NH基伪一类纤维的总称。常用的为脂肪族聚酯胺夕主要品种有聚酰胺6和'聚酰胺66,我国商品名 称为锦纶6和锦纶66。.?锦纶纤维以长丝为主,少量的短纤维主要用于和棉,毛或其它化纤混纺。锦纶长丝大量用于变形加工制造弹 力丝,作为机织或针织原料。锦纶纤维一般采用熔体法纺丝。 锦纶6和锦纶66纤维的强度为4~5.3cN/dtex,高强涤纶可达 7.9cN/dtex以上,伸长率18%~45%,在10%伸长时的弹性回复率在90%以上。据测定,锦纶纤维的耐磨为棉纤维的20倍、羊毛的 20倍、粘胶的50倍。耐疲劳性能居各种纤维之首。在民用上大量用于加工袜子和其他混纺制品,提高织物的耐磨牢度,但锦纶纤维模 量低,抗摺皱性能不及涤纶,限制了锦纶在衣着领域的应用。锦纶帘子线的寿命比粘胶大3倍,冲击吸收能大,因此轮胎能在坏的路面 上行驶,但由于锦纶帘子线伸长大,汽车停止时,轮胎变形产生平点,起动初期汽车跳动厉害。因此只能用于货车的轮胎,不宜作客车 的轮胎帘子线之用。
尼龙
聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。
尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙 1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。
* 结构:尼龙6为聚己内酰胺,而尼龙66为聚己二酸己二胺。尼龙66比尼龙6要硬12%,而理论上说,硬度越高,纤维的脆性越大,从而越容易断裂。但在地毯使用中这点微小的差别是无法分别的。
* 清洗性及防污性:影响这两种性能的是是纤维的截面形状及后道的防污处理。而纤维本身的强度及硬度对清洗及防污性影响很小。
②尼龙合金化将成为改性工程塑料发展的主流。尼龙合金化是实现尼龙高性能的重要途径,也是制造尼龙专用料、提高尼龙性能的主要手段。通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。从而,适用车种不同要求的用途。
③纳米尼龙的制造技术与应用将得到迅速发展。纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与背通尼龙相当。因而,具有很大的竞争力。
改性尼龙发展的趋势
尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。
①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。
尼龙的改性
由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构:、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性。
二十世纪初,企业界搞基础科学研究还被认为是一种不可思议的事情。1926年美国最大的工业公司-杜邦公司的出于对基础科学的兴趣,建议该公司开展有关发现新的科学事实的基础研究。1927年该公司决定每年支付25万美元作为研究费用,并开始聘请化学研究人员,到1928年杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯(Wallace H. Carothers,1896~1937)博士受聘担任该所有机化学部的负责人。
相关文档
最新文档