实习三极射赤平投影原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极射赤平投影原理

概述

1、目的要求

学习赤平投影原理,了解赤平投影在构造地质学中的应用。

2、主要内容

●赤平投影的原理

●面、线的投影

●β图解和π图解

●等密度图

●面和线的旋转

●赤平投影在构造地质学中的应用

3、本章要点

●赤平投影的原理(投影方法结合具体作业掌握)

●赤平投影应用(节理、褶皱和断层分析)

4、要求掌握的要点和基本概念

●面、线的投影方法

●不同类型褶皱岩层极点图的特点(如紧闭,宽缓、等斜褶皱等;水平直立、平卧、倾竖褶皱等)

●等密度图及古应力场分析

二、说明

极射赤平投影(Stereographic projection)简称赤平投影,主要用来表示线、面的方位,相互间的角距关系及其运动轨迹,把物体三维空间的几何要素(线、面)反映在投影平面上进行研究处理。它是一种简便、直观的计算方法,又是一种形象、综合的定量图解,广泛应用于地质科学中。运用赤平投影方法,能够解决地质构造的几何形态和应力分析等方面的许多实际问题,因此,它是研究地质构造的不可缺少的一种手段。

赤平投影本身不涉及面的大小、线的长短和它们之间的距离,但配合正投影图解,互相补充,则有利于解决包括角距关系在内的上述计量问题。

1、面和线的赤平投影

1-1投影原理

一切通过球心的面和线,延伸后均会与球面相交,并在球面上形成大圆和点。以球的北极为发射点,与球面上的大圆和点相连,将大圆和点投影到赤道平面上,这种投影称为极射赤平投影。本教材采用下半球投影,即只投影下半球的大圆弧和点。

图2为一球体,AC为垂直轴线,BD是水平的东西轴线,FP是水平的南北轴线,BFDP 为过球心的水平面,即赤平面。

图2 平面的投影图3 直线的投影

平面的投影方法(图2):

设一平面走向南北、向东倾斜、倾角40°,若此平面过球心,则其与下半球面相交为大圆弧PGF,以A点为发射点,PGF弧在赤平面上的投影为PHF弧。PHF弧向东凸出,代表平面向东倾斜、走向南北,DH之长短代表平面的倾角。

直线的投影方法(图3):

设一直线向东倾伏、倾伏角40°,此线交下半球面于G点。以A为发射点,球面上的G点在赤平面上的投影为H。HD的长短代表直线的倾伏角、D的方位角即直线的倾伏向。同理,一条直线向南西倾伏、倾伏角20°,此线交下半球面于J点,其赤平投影为K。

为了准确、迅速地作图或量度方向,可采用投影网。常用的有吴尔福网(简称吴氏网,也称等角距网)(图4A)和旋密特网(等面积网)(图4B),以及据其改换形式而成的极等角度网(图4C)和极等面积网(赖特网)(图4D)。吴尔福网与施密特网基本特点相同,下面以吴尔福网为例介绍投影网。

1-2吴尔福投影网(图4A)

1-2-1结构要素

基圆即赤平面与球面的交线,是网的边缘大圆。由正北顺时针为0°-360°,每小格2°,表示方位角,如走向、倾向、倾伏向等。

两个直径分别为南北走向和东西走向直立平面的投影。自圆心→基圆为90°→0°,每小格2°,表示倾角、倾伏角。

经线大圆是通过球心的一系列走向南北、向东或向西倾斜的平面的投影,自南北直径向基圆代表倾角由陡到缓的倾斜平面。

纬线小圆是一系列不通过球心的东西走向的直立平面的投影。它们将南北向直径、经线大圆和基圆等分,每小格2°。

1-2-2 操作

将透明纸(或透明胶片等)蒙在吴氏网上,描绘基圆及“+”字中心,固定网心,使透明纸能旋转。然后在透明纸上标上N、E、S、W。

平面的投影标绘产状SE120°∠30°的平面(图5)。

将透明纸上的指北标记N与投影网正北重合,以北为0°,在基圆上顺时针数至120°得一

点D,为平面的倾向(图6A)。

图4 投影网

A-吴尔福网B-施密特网C-极等角度网D-极等面积网(赖特网)

转动透明纸将D点移至东西直径上(转至南北直径也可),自D点向圆心数30°得C点,标绘C所在的经线大圆弧(图6B中之ACB),AB为平面的走向。

转动透明纸,使指北标记与投影网正北重合,ACB图5 产状120°∠30°平面的透视图大圆弧即为SE120°∠30°平面的投影(图6C)。

直线的投影标绘产状为NW330°∠40°的直线。

使透明纸上正北标记N与投影网正北重合,以N为0°,在基圆上顺时针数至330°得一点A,为直线的倾伏向(图7A)。

图6 平面的投影步骤

(说明见正文)

P-透明纸M-吴氏网

把A点转至东西直径上(转至南北直径也可),由A点向圆心数40°得A´点(图7B)。

把透明纸的指北标记转至与投影网正北重合,A´即为产状NW330°∠40°的直线的投影(图7C)。

法线的赤平投影是指平面法线的产状标绘。法线的投影是极点,平面的投影是圆弧,二者互相垂直,夹角相差90°。往往用法线的投影代表与其相对应的平面的投影,这样较为简单。

例求产状为E90°∠40°的平面法线的投影(图8)

图7 直线的投影步骤

P-透明纸M-吴氏网

标绘出产状90°∠40°的平面投影大圆弧,自该平面倾斜线投影D´点在东西向直径上数90°,显然已越过圆心进入相反倾向,得P´ 点,该点即为产状90°∠40°平面的法线投影-极点。也可自圆心向反倾向数40°,即得法线投影。

已知真倾角求视倾角某岩层产状为NW330°∠40°,求在NW335°方向剖面上该岩层的视倾角(图9)。

图8 法线的投影

A-透视图B-赤平图

据岩层面产状作其投影弧EHF。

在基圆上数至NW335°得D´ 点。

作D´ 点与圆心O的连线,交EHF于H´ 点。H´ 为岩层面与NW335°方向剖面的交线在下半球的投影。

D´ H´ 间的角距即为NW335°方向上的视倾角。

求两平面交线的产状(图10)

据已知的两平面产状,在吴氏网上分别求出其投影大圆弧EHF和JHK。两大圆弧的交点H即为两平面交线与下半球面交点的投影。

图9 已知真倾角,求视倾角图10 求两平面交线的产状

作H与圆心O的连线,交基圆于G点,G点的方位角即两平面交线的倾伏向,GH间的角距为交线的倾伏角。

求两相交直线所决定的平面的产状

已知两相交直线的产状分别为SE120°∠36°和S180°∠20°,求其所决定的平面的产状(图11)。

相关文档
最新文档