加热和冷却时的组织转变

合集下载

钢的热处理——加热和冷却的组织变化课件

钢的热处理——加热和冷却的组织变化课件

淬火工艺与应用
总结词
淬火是一种通过快速冷却来提高金属硬度和耐磨性的 热处理工艺。
详细描述
淬火是将加热到奥氏体化温度的金属迅速冷却至室温的 过程。淬火的目的是使金属保持其奥氏体状态,从而提 高其硬度和耐磨性。淬火过程中,金属内部的原子或分 子的运动速度非常快,导致原子之间的平均距离变小, 从而使金属的晶格结构变得更加紧密和稳定。淬火工艺 广泛应用于各种工具钢、结构钢、不锈钢等金属材料。 通过选择不同的淬火介质和冷却方式,可以获得不同硬 度和组织结构的金属材料。
加热到一定温度并保温一段时间,以消除内应力并稳定组织。
不锈钢的热处理案例
总结词
不锈钢是一种具有优良耐腐蚀性能的钢材,其组织稳 定性较高。通过适当的热处理,可以进一步提高不锈 钢的性能。
详细描述
不锈钢在加热时,奥氏体晶粒会逐渐长大并发生相变。 为了获得最佳的耐腐蚀性能和组织稳定性,通常采用固 溶处理,即将钢材加热到奥氏体状态并保温一段时间, 使碳化物充分溶解到奥氏体中,然后快速冷却,使碳化 物来不及析出。此外,为了提高不锈钢的硬度、耐磨性 和韧性,可以采用时效处理,即将钢材加热到一定温度 并保温一段时间,使金属间化合物得以析出并均匀分布。
总结词
退火是热处理的一种基本工艺,主要用于消除金属材 料的内应力、降低硬度并改善切削加工性能。
详细描述
退火是将金属加热到适当温度,保持一段时间,然后缓 慢冷却的过程。其主要目的是改变金属的晶格结构,使 其变得更加均匀和稳定。退火可以细化金属的晶粒,提 高其塑性和韧性,从而改善金属的机械性能。在退火过 程中,金属内部的原子或分子的运动速度会增加,导致 原子之间的平均距离变大,从而使金属的晶格结构变得 更加稳定。退火工艺广泛应用于各种金属材料,如钢铁、 铝合金、铜合金等。

钢的热处理及表面处理技术

钢的热处理及表面处理技术
转变特点 马氏体的组织类型 马氏体性能
• M体转变特点:
• ①无扩散型转变 • ②降温形成:连续冷却完成 • ③瞬时性 • ④转变的不完全性
Fe-1.8CF,e-1冷.8至C,-10冷0℃至-60℃
M形成时体积↑,造成很大 内应力。
• 冷处理:P42
1)无扩散 Fe 和 C 原子都不进展扩散,M是C过饱 和的体心立方的F体,固溶强化显著。
↓ • 总结:A体晶粒越粗大,那么晶界越少,
形核几率越小,那么A体越稳定,C曲线 右移。淬透性越好
• 三、钢的淬透性
• 〔三〕淬透性的测 定
四、钢的回火〔P127〕
1.概念(Conception)
将淬火后的钢加热到Ac1以下某一温度, 保温后冷却下来的一种热处理工艺。
2.目的(purpose) 〔1〕稳定工件组织、性能和尺寸 〔2〕减小或消除剩余应力,防止工件的 变形和开裂 〔3〕降低工件的强度、硬度,提高其塑 性和韧性,以满足不同工件的性能要求
C %↑→ M 硬度↑, 片状M 硬度高,塑韧性差。板条M 强度高,塑韧性较好
二、共析钢过冷奥氏体的连续冷却转变








水淬

M+AR
B

转变终止线
P 退火
T
S 正火
T+ 油淬 M
亚共析钢连续冷却转变 过共析钢连续冷却转变
炉冷→ F + P 空冷→ F(少量) + S 油冷→ T + M+AR 水冷→ M +AR
(三〕淬透性的测定
〔一〕钢的淬透性与淬硬性的概念
• 淬透性:钢在淬火时能够获得M体的能力,它是 钢材本身固有的属性,主要取决于M体的临界冷 却速度

钢在加热和冷却时的组织转变

钢在加热和冷却时的组织转变

钢在加热和冷却时的组织转变嘿,咱聊聊钢在加热和冷却时那神奇的组织转变。

钢啊,这硬家伙,平时看着就挺牛。

可你知道吗?当它被加热的时候,那可就像变魔术一样。

一开始,温度慢慢升高,钢就开始有点小动静了。

就好像一个睡眼惺忪的人,逐渐被唤醒。

那原本排列整齐的原子们,也开始不安分起来。

温度再高点,钢的组织就发生大变化啦。

这时候的钢,就如同一个正在进行大改造的工厂。

各种原子重新排列组合,形成新的结构。

那场面,可壮观了。

想象一下,无数的小原子们,就像一群忙碌的小工人,在高温的催促下,热火朝天地干着活。

要是继续加热,钢可就彻底不一样了。

它变得更加活跃,就像一个疯狂的派对现场。

原子们尽情地舞动,结构也变得越来越复杂。

这时候的钢,有着强大的力量,仿佛能征服一切。

可别光看加热的时候,冷却也很有看头呢。

当钢开始冷却,就像是一场疯狂派对后的安静。

原子们不再那么疯狂,开始慢慢回归秩序。

温度逐渐降低,钢的组织也逐渐稳定下来。

这就像一个人在经历了一场刺激的冒险后,开始平静地思考人生。

冷却过程中,钢的变化可细腻了。

有时候,它会变得更加坚硬,就像一个坚强的战士,不屈不挠。

有时候,它又会变得更加有韧性,像一个灵活的运动员,能应对各种挑战。

不同的加热和冷却方式,会让钢有不同的组织转变。

就好比不同的人生选择,会带来不同的结果。

如果加热得太快,冷却得太急,钢可能就会变得很脆弱。

但如果掌握好节奏,钢就能变得无比强大。

咱再想想,生活中的很多东西不都跟钢的组织转变有点像吗?我们在经历一些事情的时候,也会发生变化。

有时候是好的变化,让我们变得更强大;有时候可能不太好,但我们也能从中学到东西。

钢在加热和冷却时的组织转变,真的很神奇。

它让我们看到了物质的奇妙之处,也让我们思考人生的各种可能性。

总之,钢的组织转变告诉我们,变化是不可避免的,我们要学会适应变化,让自己变得更强大。

热处理后金相组织变化

热处理后金相组织变化

热处理后金相组织变化
热处理是一种通过加热和冷却材料来改变其金相组织的过程。

通过热处理,可以改变材料的晶粒尺寸、晶粒形状和相组成,从而使材料具有不同的力学、物理和化学性质。

常见的热处理方法包括退火、正火、淬火和回火。

在退火过程中,材料会被加热至一定温度,然后缓慢冷却。

这种热处理方式可用于消除应力、提高材料的塑性和延展性,并使晶粒得到再结晶。

正火是将材料加热至一定温度后迅速冷却,以增加材料的硬度和强度。

淬火将材料加热至高温后迅速浸入冷却介质中,通过产生快速冷却速率来形成马氏体组织,从而获得高硬度和脆性。

回火是将淬火材料加热至较低温度,然后再缓慢冷却,以减轻淬火过程中的应力和脆性,提高材料的韧性。

热处理后,金相组织会发生变化。

在退火过程中,晶粒尺寸会增大,晶界和初生相会消失,同时晶粒内部会形成新的晶界。

在正火过程中,材料表面形成强化层,并出现马氏体组织。

淬火过程中,材料会形成马氏体组织,该组织具有高硬度和脆性。

在回火过程中,马氏体会分解为更稳定的相,从而减轻应力和改善材料的韧性。

总之,通过热处理可以改变材料的金相组织,从而使材料具有不同的力学和化学性质。

不同的热处理方法和工艺参数会产生不同的金相组织变化,这对材料的性能和应用有重要影响。

钢在加热和冷却时的组织转变

钢在加热和冷却时的组织转变
A-P终止线
A-P转变 终了线
图2.4 共析碳钢连续冷却转变曲线
马氏体临界 冷却速度
钢的热处理
1.2 钢在冷却时的组织转变
2. 过冷奥氏体的连续冷却转变
过共析碳钢的连续冷却转变C曲线与共析碳钢相比,除了多出一 条先共析渗碳体的析出线以外,其他基本相似
亚共析碳钢的连续冷却转变C曲线与共析碳钢却大不相同,它除 了多出一条先共析铁素体析出线以外,还出现了贝氏体转变区
机械制造基础
机械制造基础
钢的热处理
❖ 钢在加热和冷却时的组织转变
1.1 钢在加热时的组织转变 1.2 钢在冷却时的组织转变
钢的热处理
图2.1 钢加热和冷却时各临界点的实际位置
钢的热处理
1.1 钢在加热时的组织转变
钢加热到Accm点以上时会发生珠光体向奥氏体转变 热处理的主要目标就是为了得到奥氏体 严格控制奥氏体的晶粒度是热处理生产中一个重要的问题
钢的热处理
1.1 钢在加热时的组织转变
控制奥氏体晶粒大小的方法:
加热温度 保温时间 加热速度
钢的热处理
1.2 钢在冷却时的组织转变
冷却过程是热处理的关键工序,其冷却转变温度决定了冷却后 的组织和性能
实际生产中采用的冷却方法有:
连续冷却(如炉冷、空冷、水冷等)图b 等温冷却(如等温淬火)图a
图2.2 两种冷却方式示意图
钢的热处理 1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变
图2.3 共析碳钢过冷奥氏体等温转变曲线C曲线
钢的热处理
1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变珠体转变 贝氏体转变 马氏体转变
钢的热处理
1.2 钢在冷却时的组织转变

钢在加热冷却时的组织转变PPT课件

钢在加热冷却时的组织转变PPT课件

A1线以下,转变开始线的左边
为过冷奥氏体区,转变终了线
的右边是转变产物区,转变开
始线和终了线之间为过冷奥氏
体和转变产物共存区。
.
7
2.3.2 钢在冷却时的组织转变
转变开始线与纵坐标轴之间的 时间为孕育期。在C曲线拐弯的 “鼻尖处”(约550℃),孕育 期最短,过冷奥氏体最不稳定。 水平线MS为马氏体转变开始线 (约230℃),水平线Mf为马 氏体转变终了线(约-50℃)。 A′:残余奥氏体,即淬火冷却 到室温后残留的奥氏体。
.
2
2.3.1 钢在加热时的组织转变
1、奥氏体的形成
以共析钢为例,当加热到AC1以上时,发生珠光体向 奥氏体的转变(即奥氏体化)过程可分为三个阶段:
1)奥氏体晶核的形成和长大
2)剩余渗碳体的溶解
3)奥氏体均匀化 当加热到AC1线稍上时钢中的珠光体向奥氏体转变, 只有分别加热到AC3或ACCm温度以上,保温足够时间, 才能获得成分均匀的单相奥氏体。
2)采用快速加热和短时间保温 3)加入一定量合金元素(除锰、磷外)
.
4
2.3.2 钢在冷却时的组织转变
钢经加热奥氏体化后,可以采用不同方式冷却,获得 所需要的组织和性能。
成分相同的钢,奥氏体化后,采用不同方式冷却,将 获得不同的力学性能,见下表。
.
5
2.3.2 钢在冷却时的组织转变
实际生产中,必须过冷到A1温度以下才开始转变。 在相变温度A1以下还没有发生转变而处于不稳定状态的 奥氏体称过冷奥氏体。
状)高碳马氏体,性能硬而脆;3、当Wc在0.20%~l.0%时,
形成片状和板条状马氏体的混合组织。
强度、硬度随碳含量增加而增大,当碳含量超过0.6%,强

钢的热处理及组织转变

钢的热处理及组织转变

二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,

钢的加热冷却组织转变

钢的加热冷却组织转变

(F和Fe3C),转变为另一种晶格形式的单相(A)的过程,在这样的相变过程中,必然伴随 着Fe、C原子的扩散和相应的晶格重构。研究证明,α-γ晶格重构过程实际上是固态下重结
晶的过程,因此,同样遵循结晶的基本规律,是一个形核、长大和均匀化的过程。
珠光体向奥氏体的转变可分为以下3个步骤,共析钢中奥氏体形成过程示意图如图6-3
亚共析钢室温下的平衡组织是铁素体和珠光体,因此亚共析钢的奥氏体转变由两个阶段 组成。① 是珠光体向奥氏体的转变(加热到略高Ac1 );② 是铁素体向奥氏体的转变(加热 到Ac1~Ac3之间)。珠光体向奥氏体的转变与共析钢相同。当珠光体向奥氏体转变结束时,在 铁素体晶界上开始形成新的奥氏体晶核,这些新的晶核依靠吸收由先形成的奥氏体中越过晶 界扩散过来的碳原子而不断向铁素体晶粒内部长大。当温度略高于Ac3时,铁素体全部转变成 奥氏体,之后碳原子的扩散还要维持一段时间才能使所有奥氏体的成分达到均匀一致。 2.2.2 过共析钢的奥氏体转变
指在规定加热条件下(把钢加热到930±10℃、保温3~8h)所测得的奥氏体晶粒度。本 质晶粒度的实质是表示钢加热时奥氏体晶粒长大的倾向。不同牌号的钢奥氏体晶粒长大的倾 向是不同的,在一定的温度下把随着温度的升高奥氏体晶粒迅速长大的钢称为本质粗晶粒钢, 而奥氏体的晶粒随温度的升高不易长大的钢称为本质细晶粒钢,钢的本质晶粒度示意图如图 6-8所示。一般需要进行热处理的零件大多采用的是本质细晶粒钢,因为本质细晶粒钢热处理 后易获得细小的实际晶粒度。
过冷或过热现象,在相图上实际的相变温度和平衡临界点就会产生偏移的现象,而且加热或
冷却速度越快,偏移量越大。为了便于区别,通常把实际加热时的各临界点用Ac1、Ac3、Accm 表示,冷却时的各临界点用Ar1、Ar3、Arcm表示。钢的各实际临界点的含义如下:

热处理基础知识

热处理基础知识

3. 淬火
(1)定义: 把零件加温到临界温度 以上30 ~ 50℃,保温一段时间,然 后快速冷却 ( 水冷 )。
(2)目的: 为了获得马氏体组织, 提高钢的硬度和耐磨性。
(3)工艺参数:
(4)常用的淬火冷却介质
名称
最大冷却速度时 平均冷却速度/(℃•s-1)
所在温 冷却速度 650~550 300~200
固体渗碳法示意图
泥封

渗碳箱
试棒
零件 渗碳剂
气体渗碳法示意图
5) 渗碳后的热处理工艺
温 度 930℃
渗碳
850℃




方案1
方案2
时间
(4)渗氮
1)定义:向钢的表面渗入氮原子的过程。
2)目的:获得具有表硬里韧及抗蚀性能 的零件。
3)用钢: 中碳合金钢。 4)方法:气体渗氮。
渗碳与渗氮的工艺特点
1.3 钢的热处理
( Heat Treatment of Steel )
概述 钢在加热时的组织转变 钢在冷却时的组织转变 钢的普通热处理工艺 钢的表面热处理工艺 机械制造过程中的热处理
1.3.1 热处理及其作用
1. 热处理的定义: 将钢在固态下进行不 同的加热、保温和冷却,以改变其内部 组织,从而获得所需性能的一种工艺。

保温
度热

临界温度
冷 却
时间
2.热处理的目的: 通过改变钢的内部组织 来改善钢的性能,如强度、硬度、塑性、 韧性、耐磨性、耐蚀性、加工性能等。
3.热处理的分类
普通 热处理
退火;正火; 淬火;回火;
感应加 热淬火热处理ຫໍສະໝຸດ 表面淬火表面 热处理

08讲 钢在加热、冷却时组织的转变

08讲 钢在加热、冷却时组织的转变

《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。

重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。

热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。

2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。

3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。

钢的热处理过程包括加热、保温和冷却三个阶段。

其主要工艺参数是加热温度、保温时间和冷却速度。

1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。

但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。

即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。

通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。

如图6-1所示。

图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。

1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。

由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。

下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。

1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。

钢在加热及冷却时的组织转变

钢在加热及冷却时的组织转变

2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。

物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。

因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。

原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。

二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。

热处理冷却方式分为等温冷却和连续冷却。

等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。

根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。

~550℃ ,获片状珠光体型(F+P)组织。

[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。

其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。

空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。

金属学原理与热处理 第七章

金属学原理与热处理  第七章
学习要求: 一、钢的热处理原理
1. 掌握等温转变曲线和连续冷却转变曲线 2.掌握碳钢在加热和冷却时的组织转变过程
和转变产物的性能 3.掌握合金的时效和调幅分解过程 二、热处理工艺 掌握退火、正火、淬火和回火工艺的目的、
温度和冷却方式,正确制定工艺
第七章钢在加热和冷却时的转变
§7.1 概述 §7.2 钢在加热时的转变 §7.3 钢的过冷奥氏体转变曲线
入γ的终了温度 Arcm---冷却时γ开始析出二次渗
碳体的开始温度
推荐钢号
40Cr 45﹟钢 GCr6 GCr15 65Mn 60Si2Mn
T8A T10A 9SiCr CrWMn 5CrMnMo
典型零件用钢的化学成分及临界温度
C 0.37~0.45 0.42~0.50 1.05~1.15 0.95~1.05 0.57~0.65 0.62~0.70 0.75~0.84 0.95~1.04 0.85~0.95 0.90~1.05 0.50~0.60
改变钢的临界点,从而改变过热度 本身扩散系数低,均匀化过程显著减缓。
奥氏体形成速度的因素
加热温度 原始组织 化学成分
扩散速度,相变驱动力 形核位置,碳扩散距离
碳,合金元素
§7.2 钢在加热时的转变
奥氏体晶粒度:奥氏体晶粒的大小。
1-4级:粗晶 5-8级:细晶
§7.2 钢在加热时的转变
起始晶粒度 实际晶粒度
概述
概述
热处理作用(P177):
1. 改变钢的内部组织、结构,以改善其性能,延长零件 使用寿命;
2. 消除铸造、锻压、焊接等热加工工艺造成的各种缺陷, 细化晶粒,消除偏析,降低内应力,使钢的组织和性能 更加均匀。
3. 预备热处理可以可以为后序加工及最终热处理作好 组织准备。

钢在加热及冷却时和组织转变ppt课件.ppt

钢在加热及冷却时和组织转变ppt课件.ppt
(1)550~350℃: B上; 40~45HRC;脆性大,几乎无价值。
过饱和碳α-Fe条状 羽毛状
B上 =过饱和碳 α-Fe条状 + Fe3C细条状
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体形貌
在光镜下呈羽毛状. 在电镜下为不连续棒状的渗碳体分布于自奥
230~ - 50℃; 低温转 变区; 非扩散型转变; 马氏体 ( M ) 转变区。
10
102
103
104
时间(s)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1)、珠光体型转变—高温转变(A1~550 ℃

残余Fe3C溶解
4)奥氏体成分均匀化
延长保温时间,让碳原子 充分扩散,才能使奥氏体 的含碳量处处均匀。
A 均匀化
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
一、钢在加热时的组织转变 共析钢奥氏体化过程
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
电镜下
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
上贝氏体强度与塑性都较低,无实用价值。 下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良
好的综合力学性能,是生产上常用的强化组织之一。

(整理)加热金属冷却时的转变

(整理)加热金属冷却时的转变

加热金属冷却时的转变第一节珠光体相变一、珠光体及其形成机理1.研究珠光体型相变的意义钢经奥氏体化后,过冷至Ar1以下某一温度范围内等温,或以较慢的冷速连续冷却,均可得到珠光体组织,它是由铁素体和渗碳体组成的机械混合物,是一种稳定的组织,其中,铁素体为体心立方,硬度低而塑性高;渗碳体为复杂斜方,质硬而脆,两者合理的匹配,可得到良好的综合力学性能,是钢中的重要相变。

①由于珠光体具有上述特征,故可作为机加工的中间热处理,消除因前一道工序造成的加工硬化,便于下道工序的切削加工;同时,也可用正火作为最终热处理,获得一定形态的珠光体,使结构件具有良好的综合力学性能;用得更为广泛的则是作为淬火的预先热处理,为淬火作好组织上的准备。

②对于要求高硬度、高强度的构件,则希望获得马氏体,为避免因工艺不当使组织中出现珠光体相,则必须研究珠光体的形成动力学。

2.珠光体的类型片状:片层方向大致相同的珠光体称为珠光体团(或领域),在一个奥氏体晶粒内可以形成3~5个珠光体团。

片状珠光体:片状珠光体(P) 150~450nm 光镜可分辨其F、Fe3C的层状分布索氏体(S) 80~150nm 高倍屈氏体(T) 30~80nm 光镜下不能分辨形成温度 P 650~Ar1S 600~650 (共析碳钢)T 550~600球状珠光体珠光体中的渗碳体呈球状分布,其渗碳体的大小形态及分布,对最终热处理后的性能具有直接的影响,是球化退火验收的重要指标。

3.珠光体的片层间距S(一片F与一片Fe3C的层数之和)实验结果表明,S与ΔT成反比,且nmTS31002.8⨯∆=,这一关系可定性解释如下:珠光体型相变为扩散型相变,是受碳、铁原子的扩散控制的。

当珠光体的形成温度下下降时,ΔT增加,扩散变得较为困难,从而层片间距必然减小(以缩短原子的扩散距离),所以S与ΔT成反比关系。

在一定的过冷度下,若S过大,为了达到相变对成分的要求,原子所需扩散的距离就要增大,这使转变发生困难;若S过小,则由于相界面面积增大,而使表面能增大,这时ΔGV不变,σS增加,必然使相变驱动力过小,而使相变不易进行。

钢在加热和冷却时的转变

钢在加热和冷却时的转变

第七章钢在加热和冷却时的转变§7.1 钢的热处理概述一、钢的热处理1.热处理的定义钢的热处理是指在固态下,将钢加热到一定的温度、保温一定的时间,然后按照一定的方式冷却到室温的一种热加工工艺。

具体的热处理工艺过程可用热处理工艺曲线表示(图7.1)。

从该曲线可以看出:热处理过程由加热、保温、冷却三阶段组成,影响热处理的因素是温度和时间。

2.热处理的原理钢能进行热处理,是由于钢在固态下具有相变。

通过固态相变,可以改变钢的组织结构,从而改变钢的性能。

钢中固态相变的规律称为热处理原理,它是制定热处理的加热温度、保温时间和冷却方式等工艺参数的理论基础。

热处理原理包括钢的加热转变、冷却转变和回火转变,在冷却转变中又可分为:珠光体转变、贝氏体转变和马氏体转变。

3.热处理的作用1)热处理通过改变钢的组织结构,不仅可以改善钢的工艺性能,而且可以提高其使用性能,从而充分发挥钢材的潜力。

2)热处理还可以部分消除钢中的某些缺陷,细化晶粒,降低内应力,使组织和性能更加均匀。

4.热处理的分类1)根据加热、冷却方式的不同,热处理可分为:普通热处理,表面热处理和特殊热处理。

普通热处理又包括退火、正火、淬火和回火,俗称四把火。

表面热处理又包括:表面淬火和化学热处理。

特殊热处理又包括形变热处理和真空热处理。

2)根据生产流程,热处理可分为:预备热处理和最终热处理。

前者是指为满足工件在加工过程中的工艺性能要求进行的热处理,主要有退火和正火。

而后者是指工件加工成型后,为满足其使用性能要求进行的热处理,主要有淬火和回火。

5. 热处理的重要性热处理在冶金行业和机械制造行业中占有重要的地位。

常用的冷、热加工工艺只能在一定程度上改变工件的性能,而要大幅度提高工件的工艺性能和使用性能,必须进行热处理。

例如,热轧后的合金钢钢材要进行热处理,汽车中70%——80%的零件也要进行热处理。

如果把预备热处理也包括进去,几乎所有的工件和零件都要进行热处理。

钢在热处理时的组织转变

钢在热处理时的组织转变
⑴珠光体型转变。过冷奥氏体在 A1 到鼻部的温度范围内等温冷却时,将发生珠 光体型转变,转变产物为铁素体薄层和渗碳体薄层交替重叠的层状组织,即珠光体组 织。随转变温度的降低即过冷度的增大,珠光体晶粒将细化,即片层间距变小,硬度 提高。珠光体组织通常分为如下三种:在 A1 到 650℃之间形成较粗大的珠光体,仍为 珠光体,用符号 P 表示;在 650℃到 600℃之间形成细珠光体,称为索氏体,用符号 S 表示;在 600℃到 550℃之间形成极细珠光体,称为托氏体,用符号 T 表示。其结 构如图 2-31 所示。
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图 2-29 共析钢过冷奥氏体等温转变图的建立
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图2-30为共析钢过冷奥氏体等温转变图。两条C曲线中,左边的一条 为过冷奥氏体转变开始线,右边一条为转变终了线,其右侧为转变产 物区,两条C曲线之间为过冷奥氏体部分转变区。从图看出:A1以上 是奥氏体稳定区域;在A1以下,转变开始线以左,由于过冷现象, 奥氏体仍能存在一段时间,这段时间称为孕育期。孕育期的长短标志 着过冷奥氏体的稳定性的大小。曲线的拐弯处(550℃左右)俗称 “鼻尖”,孕育期最短,过冷奥氏体稳定性最小。鼻尖将曲线分为上 下两部分,上部称为高温转变区,下部称为中温转变区。
图 2-32 上贝氏体
图 2-33 下贝氏体
钢在热处理时的组织转变
1.2钢是碳在⑶在冷马γ却氏-F体e时中型的所转组形变成。织在的转过M变饱s 以和下固温溶度体范,围用内符冷号却M,表转示变。产硬物度主取要决为于马碳氏的体过。马饱氏和体程
度,即随碳的质量分数增加,强度明显增高。 3)亚共析钢和过共析钢的等温转变图 亚共析钢和过共析钢的过冷奥氏体在转变为珠光体之前,要分别析出先析铁素体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-5
第五章:钢的热处理
钢在冷却时的组织转变
钢经加热奥氏体化后,可以采用不同方式冷却,获得 所需要的组织和性能。
成分相同的钢,奥氏体化后,采用不同方式冷却,将 获得不同的力学性能,见下表。
1-6
第五章:钢的热处理
钢在冷却时的组织转变
实际生产中,必须过冷到A1温度以下才开始转变。 在相变温度A1以下还没有发生转变而处于不稳定状态的 奥氏体称过冷奥氏体。
1-8
第五章:钢的热处理
钢在冷却时的组织转变
A转换成M,只是结构的改变而没有
成分的变化。
转变开始线与纵坐标轴之间的 时间为孕育期。在C曲线拐弯的 “鼻尖处”(约550℃),孕育 期最短,过冷奥氏体最不稳定。 水平线MS为马氏体转变开始线 (约230℃),水平线Mf为马 氏体转变终了线(约-50℃)。 A′:残余奥氏体,即淬火冷却 到室温后残留的奥氏体。
1-4
第五章:钢的热处理
钢在加热时的组织转变
2、奥氏体晶粒长大及其控制措施
钢加热时珠光体向奥氏体转变刚刚结束时,奥氏体晶 粒是比较细小的。如果继续加热或保温,奥氏体晶粒会变 粗大,影响热处理后钢的强度、塑性、韧性较低。因此, 加热时获得细小晶粒的奥氏体对提高热处理效果和钢的性 能有重要的意义。
控制奥氏体晶粒长大措施: 1)合理选择加热温度和保温时间 2)采用快速加热和短时间保温 3)加入一定量合金元素(除锰、磷外)
1-3
第五章:钢的热处理
钢在加热时的组织转变
1、奥氏体的形成 以共析钢为例,当加热到AC1以上时,发生珠光体向 奥氏体的转变(即奥氏体化)过程可分为三个阶段:
1)奥氏体晶核的形成和长大 2)剩余渗碳体的溶解 3)奥氏体均匀化 当加热到AC1线稍上时钢中的珠光体向奥氏体转变, 只有分别加热到AC3或ACCm温度以上,保温足够时间, 才能获得成分均匀的单相奥氏体。
1-11
第五章:钢的热处理
钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 以共析钢为例,介绍连续转变曲线及转变产物。 1)等温转变曲线在连续冷却转变中的应用
共折钢连续冷却时,根据冷 却速度曲线V1、V2、V3、V4 与C曲线相交的位置,可估计 连续冷却转变的产物。
马氏体临界冷却速度Vk: 与冷却曲线相切,称临界冷却 速度,是获得全部马氏体转变 的最小冷却速度。
1-14
M:C溶于α-Fe中的过饱和固溶体,其力学性能取决于含碳量。(转变温 度太低,A中的碳原子不能扩散,仍保留在α-Fe中)
1-9
第五章:钢的热处理
钢在冷却时的组织转变
2)过冷奥氏体等温转变产物的组织与性能 (1)珠光体型转变(A1~550℃) F+Fe3C机械混合物
(2)贝氏体转变(550℃~MS)过饱和F+细小Fe3C机械混合物
过冷奥氏体有等温 转变和连续冷却转变 两种冷却转变方式 (见右图)。
1-7
第五章:钢的热处理
钢在冷却时的组织转变
1、过冷奥氏体的等温转变 以共析钢为例,介绍等温转变曲线及转变产物。
1)过冷奥氏体等温转变曲线(C曲线) 左边曲线为过冷奥氏体转变
开始线,右边曲线为过冷奥氏 体等温转变终了线。
A1线以上是奥氏体稳定区; A1线以下,转变开始线的左边 为过冷奥氏体区,转变终了线 的右边是转变产物区,转变开 始线和终了线之间为过冷奥氏 体和转变产物共存区。
1-12
第五章:钢的热处理
钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 过冷奥氏体连续冷却转变产物的组织与性能见下表:
1-13
第五章:钢的热处理
钢在冷却时的组织转变
2)马氏体转变(MS~Mf) 马氏体的组织形态有板条状和片状两种类型,主要取决于 奥氏体中碳含量。1、当Wc<0.20%时,形成板条状低碳马 氏体,有较好的强韧性;2、当Wc>1.0%时,形成片状(针 状)高碳马氏体,性能硬而脆;3、当Wc在0.20%~l.0%时, 形成片状和板条状马氏体的混合组织。 强度、硬度随碳含量增加而增大,当碳含量超过0.6%,强 度和硬度增加不明显。马氏体转变不能进行到底。 残余奥氏体的存在,会降低淬火钢的硬度和耐磨性,并且 在工件长期使用过程中残余奥氏体会逐步转变为马氏体,使 工件变形而引起尺寸的不稳定。 减少残余奥氏体的措施:冷处理。即把淬火后的工件继续冷 却到室温以下-80~-50和冷却
时组织转变
1-1
第五章:钢的热处理 本课题重点与难点


奥氏体的形成及其晶粒大小

的控制措施,C曲线及其应用。



钢在加热时和冷却时组织转变。


1-2
第五章:钢的热处理
钢在加热时的组织转变
A1、A3、Acm各相变 点是固态下铁碳合金的 组织转变线,是在极其 缓慢加热和冷却条 件 下得到的。 在实际生产中,固态相 变时都有不同程度的过 热度或过冷度(见右 图)。为便于区别,将 加热时各相变点用ACl、 AC3、ACcm表示,冷 却时各相变点用Arl、 Ar3、Arcm表示。
1-10
第五章:钢的热处理
钢在冷却时的组织转变
3)亚共析钢和过共析钢的等温转变 由于亚共析钢和过共析钢的碳含量低于或高于共析 成分,当过冷奥氏体在C曲线“鼻尖”上部区域等温 时,亚共析钢先析出铁素体,然后进行珠光体转变, 得到铁素体和珠光体组织;同理,过共析钢先析出渗 碳体,然后进行珠光体转变,得到渗碳体和珠光体组 织。
相关文档
最新文档