计量经济学实习报告-自相关模型的检验与处理

合集下载

计量经济学实验报告自相关

计量经济学实验报告自相关

实验报告五一、实验名称:自相关的识别与补救 二、实验地点:教E509三、实验时间:2012年11月9日(星期五)一二节课 四、实验内容:为研究工资与生产力的关系,提供模型如下:12i i i Y X u ββ=++ 其中i Y 为企业部门实际每小时工酬 i X 为每小时产值指数采用美国年度数据(1960—1991)如下表:根据所给的模型与数据,利用计量经济学软件对模型参数进行估计,分析回归结果并完成以下问题:(1) 根据DW 值判断是否存在自相关,并根据上述回归残差,画出残差与时间的关系图进行验证; (2) 画出t e 与1t e -的散点图,判断自相关类型(3) 分别用d 统计量、Cochrane-Orcutt 法与Durbin 两步法估计ρ,并对回归进行修正, 比较修正结果,说明哪一种估计ρ的方法好。

五、实验目的:1. 掌握自相关的识别方法2. 能针对具体问题提出解决自相关问题的措施3. 对不同解决自相关方法的效果进行比较六、实验步骤1、建立模型: 12i i i Y X u ββ=++其中i Y 为企业部门实际每小时工酬,i X 为每小时产值指数2、运用OLS 估计方法对上式的参数进行估计,EViews 过程如下: (1)在File 菜单下选择New 项,建立文件库Workfile ,输入起始与终止时间,分别为1960和1991.(2)在File菜单下点击Import下点击Read Text-Lotus-Excel在桌面上找到Excel数据,点击打开,在Excel Spreadsheet Import对话框中的Name for series or Number if named in file输入Y x,点击OK。

(3)点击Quick菜单下的Estimate Equation,在新对话框中输入Y C x,点击确定。

会出现下面结果:3、自相关检验(1)图示法由上述OLS估计,可直接得到残差resid,运用GENR生成序列E,则在quick菜单中选graph项,在图形对话框里键入:E E(-1),可得到结果:由上表可知:残差e呈线性回归,表明随机误差u存在自相关。

计量经济学实训报告心得

计量经济学实训报告心得

一、前言计量经济学作为一门应用性极强的学科,在经济学、管理学、统计学等领域具有广泛的应用。

为了更好地学习和掌握计量经济学知识,我参加了为期一个月的计量经济学实训。

在此期间,我通过实际操作,对计量经济学有了更深入的理解和认识,现将实训心得总结如下。

二、实训内容1. 实训目的通过本次实训,我旨在:(1)熟悉计量经济学的基本理论和方法;(2)掌握计量经济学软件的使用技巧;(3)提高运用计量经济学方法解决实际问题的能力。

2. 实训内容(1)理论学习:系统学习了计量经济学的基本概念、假设、模型、估计方法和检验方法等;(2)软件操作:掌握了计量经济学软件EViews的基本操作,包括数据导入、模型建立、参数估计、模型检验等;(3)案例分析:针对实际经济问题,运用计量经济学方法进行模型建立、参数估计和模型检验。

三、实训心得1. 理论与实践相结合在实训过程中,我深刻体会到理论联系实际的重要性。

通过理论学习,我掌握了计量经济学的基本知识,但在实际操作中,我遇到了很多困难。

在老师的指导下,我逐渐学会了如何将理论知识应用于实际问题,提高了自己的实际操作能力。

2. 学会了如何使用计量经济学软件在实训过程中,我学习了EViews软件的基本操作,包括数据导入、模型建立、参数估计、模型检验等。

通过实际操作,我掌握了EViews软件的使用技巧,为今后的学习和研究奠定了基础。

3. 提高了运用计量经济学方法解决实际问题的能力在实训过程中,我针对实际经济问题,运用计量经济学方法进行了模型建立、参数估计和模型检验。

通过这个过程,我学会了如何根据实际问题选择合适的模型,如何进行参数估计和模型检验,提高了自己的实际操作能力。

4. 培养了团队协作精神在实训过程中,我与同学们一起完成了案例分析,共同探讨问题,共同解决问题。

在这个过程中,我学会了如何与团队成员沟通、协作,提高了自己的团队协作能力。

5. 认识到自己的不足在实训过程中,我发现自己在理论知识和实际操作方面还存在很多不足。

计量经济学EViews自相关检验及修正实验报告

计量经济学EViews自相关检验及修正实验报告

自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。

(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。

3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。

【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。

2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。

3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。

4.根据估计出的一阶自相关系数,利用广义差分法估计模型。

5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。

6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。

7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。

8.根据估计出的高阶自相关系数,利用广义差分法估计模型。

9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。

10.对在同样数据基础上得到的不同模型进行比较分析。

以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。

自相关性的检验和处理实验报告

自相关性的检验和处理实验报告

ˆ 1
3.7831 13.9366 1 0.72855
由此,我们得到最终的收入-消费模型为
Yt 13.9366 0.9484 X t
二、根据北京市连续 19 年城镇居民家庭人均收入与人均支出的数据进行相关分析 1、建立居民收入-消费函数 以人均实际收入为 X,人均实际支出为 Y,创建工作文件,输入数据,命令如下: Create a 1 19 Data x y 建立居民收入-消费模型,输入命令 ls y c x,回归结果如下:
ˆ 0.72855 ,对原模型进行广义差分,得到差 ˆ 0.72855et 1 ,由回归方程可知 回归方程为 e
分方程: Yt 0.72855Yt 1 1 (1 0.72855) 2 ( X t 0.72855 X t 1 ) t 对 上 式 广 义 差 分 方 程 进 行 回 归 , 在 Eviews 命 令 栏 中 输 入 命 令 : ls Y -0.72855*Y(-1) c X-0.72855*X(-1),回归结果如下: 由回归结果可得回归方程为:
关进行相关检验。 (二)检验收入—消费模型的自相关情况 1、德宾-沃森检验(DW 检验)法 因为 n=36, k=1, 在 5%的显著水平下查表得 DL 1.411 , DU 1.525 , 而 0<0.5234=DW< D L , 因此此模型存在一阶正自相关。 2、偏相关系数检验法 由于 DW 法只能检验一阶自相关性,我们用偏相关系数检验法来检验是否存在高阶自相关性。 在模型回归结果中选择操作:View/Residual Test/Correlogram-Q-statistics ,默认滞后期为 16,得到偏 相关系数结果如下:
由偏相关系数分布图可知,该模型存在明显一阶自相关性,不存在显著高阶自相关性。 3、BG 检验法 在偏相关系数检验之后,我们运用 BG 检验对前面的检验结果进行进一步验证,选择操作 View/Residual Test/Serial Correlation LM Test ,选择滞后期为 5,得到结果如下:

计量经济学自相关实验报告

计量经济学自相关实验报告

山东轻工业学院实验报告成绩课程名称:计量经济学指导教师:刘海鹰实验日期: 2012年4月23日院(系):商学院专业班级金融10- 1 实验地点:机电楼B座5楼学生姓名:学号: 201008021029 同组人无实验项目名称:线性回归模型自相关的检验及修正一、实验目的和要求通过Eviews软件估计线性回归模型并计算残差,检验误差项是否存在自相关及自相关的修正,用广义最小二乘法估计回归参数。

二、实验原理图示法检验、DW检验、LM检验、科克伦-奥克特迭代法、广义差分法、最小二乘法。

三、主要仪器设备、试剂或材料计算机,EViews软件四、实验方法与步骤1、启动Eviews5软件,建立新的workfile. 命令:create a 1978 2000 (以下的所有命令均需单击回车键);2、在命令窗口输入命令:DATA CO I P,开始输入数据。

;3、输入数据后,命令:GENR Y=CO/P和GENR X=I/P ;4、用OLS估计方程。

在命令窗口输入命令:LS Y C X (Eviews输出结果如图一)。

一)图示法检验1、命令:GENR E=RESID LINE E SCAT E SCAT E E(-1) 结果为图二至图四。

2、在图一窗口下,单击resids功能键,得到残差图,如图五。

二)LM检验1、在图一窗口下,点击功能键VIEW,选RESIDUAL TEST/SRRIAL CORRELATION LM TEST…,2、在随后弹出的滞后期对话框中给出最大滞后期1。

点击OK键,即可得到LM自相关检验的结果,如图六。

三)自相关的修正,即广义差分法和科克伦-奥克特迭代法1、命令:LS E E(-1) 得到结果图七;2、命令:GENR GDY=Y-0.70*Y(-1),GENR GDX=X-0.70X(-1),LS GDY C GDX,广义差分方程输出结果如图八。

五、 实验数据记录、处理及结果分析图一用普通最小二乘法求估计的回归方程结果如下ˆ111.440.7118t tY X =+(6.5) (42.1) R 2 =0.9883 s.e=32.8 DW=0.60 T=23回归方程拟合得效果比较好,但是DW 值比较低。

自相关 实验报告

自相关  实验报告

**大学经济学院实验报告估计线性回归模型并计算残差。

用普通最小二乘法估计输出结果如下:20,73.0,086.0.,9988.0)02.122()79.6(18.045.1ˆ2====-+-=T DW e s R X Y tt所以,回归方程拟合得效果比较好,但是DW 值比较低。

(2)残差图见图2。

(3)自相关的检验(检验误差项t u 是否存在自相关)①DW 检验:已知DW=0.73,若给定05.0=α,查表得,得DW 检验临界值41.1,20.1==U L d d ,因为DW=0.73<1.20,认为误差项t u 存在严重的一阶正自相关。

②回归检验法:建立残差t u 与21,--t t e e 的回归模型,如表2和表3。

从表2可以看出,1-t e 的回归参数通过了显著性检验,而表3中,21,--t t e e 中只有1-t e 的回归参数通过显著性检验,故判断误差项具有一阶回归形式的自相关。

表2 残差回归相关结果(1)表3 残差回归结果(2)③LM(BG)检验:辅助回归估计输出结果如下表(1)。

表(1)由LM 检验结果可知,LM (1)=7.998,伴随概率p=0.0047<0.05.LM(2)=8.459,伴随概率p=0.0146,所以在α=0.05显著性水平显著,存在一阶,二阶自相关。

同时,由表一,可得LM(BG)自相关检验辅助回归式估计结果是:00.840.020,74.1,40.0)4.0()4.0()4.3(0004.00609.06388.0221=⨯====-+-+=-TR LM DW R v X e e tt t t因为84.3)1(205.0=χ,LM=8.00>3.84,所以LM 检验结果也说明随机误差项存在一阶正自相关。

(4)用差分法和广义差分法建立模型,消除自相关。

用广义最小二乘法估计回归参数。

估计自相关系数ρˆ,635.0273.0121ˆ=-=-=DW ρ 对原变量做广义差分变换。

实验六自相关模型的检验和处理

实验六自相关模型的检验和处理
0.166912
8.811131
0.0000
AR(2)
-0.613537
0.174363
-3.518737
0.0019
R-squared
0.998601
????Mean dependent var
7.869818
Adjusted R-squared
0.998410
????S.D. dependent var
实 验 报 告
课程名称:计量经济学
实验项目:实验六 自相关模型的
检验和处理
实验类型:综合性□ 设计性□ 验证性
专业班别:
姓 名:
学 号:
实验课室:厚德楼A404
指导教师:
实验日期:2015年6月11日
广东商学院华商学院教务处 制
一、实验项目训练方案
小组合作:是□否
小组成员:无
实验目的:
掌握自相关模型的检验和处理方法
【模型3】消费品零售额SLC对收入法GDPS的回归模型
【模型4】财政收入的对数log(cs)对时间T的回归模型
【模型5】收入法GDPS的对数log(GDPS)对时间T的回归模型
数据见“附表:广东省宏观经济数据(部分)-第六章”
(一)自相关的检验
1.图形法检验
使用图形检验法分别检验上述【模型1-4】是否存在自相关问题。分别作这四个模型的残差散点图(即残差后一项对前一项的散点图: 对 )和残差趋势图(即残差 对时间 的线图),并判断模型是否存在自相关以及是正的自相关还是负的自相关。
????Akaike info criterion
11.14684
Sum squared resid
77603.71
????Schwarz criterion

计量经济学实验报告(多元线性回归 自相关 )

计量经济学实验报告(多元线性回归 自相关 )

计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。

它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。

本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。

2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。

例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。

多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。

例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。

接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。

在实际的研究中,我们需要对多元线性回归模型进行评价。

其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。

$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。

3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。

但实际上,各个误差项之间可能会互相影响,产生自相关性。

例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。

我们可以通过自相关函数来研究误差项之间的相关性。

自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。

其中,$l$ 称为阶数。

自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。

计量经济学实习报告

计量经济学实习报告

一、实习背景随着我国经济的快速发展,计量经济学作为一门应用数学与经济学相结合的学科,在经济学研究、政策制定和企业管理等领域发挥着越来越重要的作用。

为了更好地了解和掌握计量经济学的基本理论和方法,我于大三暑假期间在一家知名咨询公司进行了为期一个月的计量经济学实习。

二、实习概况实习期间,我主要参与了以下几个方面的学习和工作:1. 学习计量经济学基本理论和方法在实习初期,我通过阅读教材、参加公司内部培训等方式,对计量经济学的基本理论和方法进行了深入学习。

包括线性回归模型、多元线性回归模型、时间序列分析、面板数据分析等。

2. 参与实际项目在实习过程中,我参与了多个实际项目,包括企业投资决策分析、市场预测、政策评估等。

在项目中,我运用所学的计量经济学知识,对数据进行分析和处理,为企业提供决策支持。

3. 撰写实习报告为了总结实习经验,我撰写了一份计量经济学实习报告,对实习过程中的收获和不足进行了总结。

三、实习收获1. 理论与实践相结合通过实习,我深刻体会到计量经济学理论知识在实际应用中的重要性。

在项目中,我将所学知识运用到实际工作中,提高了自己的实际操作能力。

2. 数据分析能力提升实习过程中,我学会了如何运用统计软件(如SPSS、Stata等)进行数据分析,提高了自己的数据处理能力。

3. 团队协作与沟通能力在项目中,我与团队成员共同协作,共同解决问题。

这使我学会了如何与不同背景的人沟通,提高了自己的团队协作能力。

4. 严谨的学术态度在实习过程中,我深刻体会到严谨的学术态度对于科学研究的重要性。

在撰写实习报告时,我严格按照学术论文的规范进行撰写,培养了严谨的学术态度。

四、实习不足1. 理论知识储备不足虽然实习期间我学习了一些计量经济学理论,但与实际应用相比,我的理论知识储备仍显不足。

在今后的学习中,我需要加强理论知识的学习。

2. 实际操作经验有限在实习过程中,虽然我参与了多个项目,但实际操作经验相对有限。

在今后的工作中,我需要积累更多的实践经验。

计量经济学实习报告

计量经济学实习报告

随着我国经济的快速发展,数据分析在各个领域都得到了广泛的应用。

为了更好地掌握计量经济学的方法和技能,提高自己的数据分析能力,我在实习期间选择了计量经济学作为实习方向。

本次实习旨在通过实际操作,熟练掌握计量经济学软件Eviews,并运用其进行数据分析。

二、实习目的1. 熟练应用计量经济学软件Eviews,掌握其基本操作。

2. 运用计量经济学方法对实际数据进行建模和分析。

3. 培养自己的实证研究能力,提高数据分析水平。

三、实习内容1. Eviews软件学习在实习初期,我首先学习了Eviews软件的基本操作,包括数据导入、数据管理、图形绘制、模型估计、结果输出等。

通过实际操作,我掌握了Eviews软件的使用技巧,为后续的实证研究打下了基础。

2. 数据收集与处理在实习过程中,我收集了某地区近五年的GDP、固定资产投资、消费支出等数据。

为了满足计量经济学建模的需要,我对数据进行了一系列处理,包括去除异常值、进行数据转换等。

3. 计量经济学建模与分析基于收集到的数据,我运用Eviews软件建立了以下计量经济学模型:(1)回归模型:分析了GDP与固定资产投资、消费支出之间的关系。

(2)协整分析:检验了GDP、固定资产投资、消费支出之间的长期稳定关系。

(3)误差修正模型:分析了短期波动对长期稳定关系的影响。

通过对模型的估计和分析,我发现固定资产投资和消费支出对GDP有显著的促进作用,且三者之间存在长期稳定的协整关系。

此外,误差修正模型也表明,短期内固定资产投资和消费支出的波动会对GDP产生一定的影响。

通过本次实习,我深刻体会到计量经济学在数据分析中的重要性。

以下是我对本次实习的总结:1. 计量经济学方法在数据分析中具有重要作用,可以帮助我们更好地理解变量之间的关系。

2. 熟练掌握Eviews软件是进行计量经济学分析的基础。

3. 实证研究能力是进行计量经济学分析的关键,需要我们在实际操作中不断积累经验。

4. 数据处理和分析是计量经济学研究的核心环节,需要我们具备严谨的数据处理能力和敏锐的分析思维。

计量经济实习报告

计量经济实习报告

一、实习背景与目的随着我国经济的快速发展,计量经济学在各个领域都得到了广泛应用。

为了更好地了解计量经济学在实际工作中的应用,提高自己的实践能力,我选择了计量经济学作为实习课题。

本次实习旨在通过实际操作,掌握计量经济学的基本原理和方法,提高自己在经济分析、预测和决策方面的能力。

二、实习单位与内容实习单位:某知名咨询公司实习内容:1. 收集和整理相关经济数据,包括宏观经济数据、行业数据和公司数据等。

2. 运用计量经济学方法,对收集到的数据进行实证分析,揭示变量之间的关系。

3. 根据分析结果,为咨询公司提供有针对性的建议和策略。

4. 参与撰写实习报告,总结实习过程中的收获和体会。

三、实习过程1. 数据收集与整理在实习过程中,我首先学习了如何收集和整理经济数据。

通过查阅相关文献、访问官方网站和数据库,我收集到了大量的宏观经济数据、行业数据和公司数据。

在整理数据时,我注意了数据的准确性和完整性,为后续分析奠定了基础。

2. 计量经济学方法学习与应用在掌握了基本的数据收集和整理方法后,我开始学习计量经济学的基本原理和方法。

通过学习,我了解了最小二乘法、协方差分析、时间序列分析等常用方法。

在实习过程中,我运用这些方法对收集到的数据进行实证分析。

3. 实证分析以某行业为例,我选取了行业收入、行业成本、行业投资等变量,运用计量经济学方法分析了行业的发展趋势。

通过对数据的回归分析,我发现行业收入与行业成本、行业投资之间存在显著的正相关关系。

这一结果为咨询公司提供了有针对性的建议,即加大行业投资,降低行业成本,以提高行业收入。

4. 撰写实习报告在实习过程中,我认真记录了实习过程中的收获和体会。

在撰写实习报告时,我总结了以下内容:(1)计量经济学的基本原理和方法。

(2)实习过程中遇到的困难和解决方法。

(3)实习成果及对咨询公司的贡献。

四、实习收获与体会1. 提高了计量经济学理论水平通过实习,我对计量经济学的基本原理和方法有了更深入的了解,为今后在相关领域的研究和工作奠定了基础。

计量经济学实验五 自相关模型的检验和处理

计量经济学实验五 自相关模型的检验和处理

目录一、图形法检验 (1)二、D-W检验 (5)三、SLC对GDPS回归自相关的处理 (7)四、log(GDPS)对T回归自相关的处理 (9)实验五自相关模型的检验和处理实验目的:掌握自相关模型的检验和处理方法。

实验要求:熟悉图形法检验和掌握D-W检验,理解广义差分变换和掌握迭代法。

实验原理:图形法检验和D-W检验,广义差分变换、迭代法和广义最小二乘法(GLS)。

实验步骤:一、图形法检验在实验二的一元线性回归模型的估计中,根据广东数据把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPS作为解释变量进行了三个一元线性回归,现在对它们进行图形法检验。

图形法检验,即可根据残差项et的趋势图判定,亦可根据et 与e1 t的散点图判定。

在进行完回归后,内存中就产生一个序列RESID,它就是残差项组成的序列,可使用。

1.CS对GDPS回归的残差趋势图和残差散点图(图4-3)从图上看CS对GDPS回归的残差有一定的自相关。

2.CZ对CS回归的残差趋势图和残差散点图(图4-4)从图上看CZ对CS回归的残差应该没有自相关。

3.SLC对对GDPS回归的残差趋势图和残差散点图(图4-5)从图上看SLC对GDPS回归的残差有很强的自相关。

图4-3图4-4图4-5在实验四的一元非线性模型的估计中,log(CS)对T回归的残差趋势图和残差散点图为图4-6。

从图上看log(CS)对T回归的残差也有较强的自相关。

图形法检验的有点是很直观,但缺点是不易看出,所以检验自相关主要还是用下面的解析的方法。

图4-6二、D-W检验对所有做过的回归方程进行自相关的D-W检验。

在实验二的一元线性回归模型的估计中,根据广东数据把CS作为应变量,GDPS 作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPS作为解释变量进行了三个一元线性回归,现在对它们进行D-W 检验。

在实验二的一元线性回归模型的检验和结果报告中,已经把这个三个一元线性回归的结果报名出来了,这三个报告为CS = 12.50960 + 0.080296 * GDPS(15.58605)(0.001891)(0.802615)(42.45297)R2= 0.985779 SE = 7732.823 DW = 0.942712 F = 1802.255 CZ = -22.68073 + 1.278874 * CS(11.61500)(0.017267)(-1.952710)(74.06285)R2= 0.995282 SE = 45.71859 DW = 1.554922 F = 5485.306 SLC = 148.6962 + 0.370241 * GDPS(48.01944)(0.005827)(3.096584)(63.53578)R2= 0.993600 SE = 190.7780 DW = 0.293156 F = 4036.795 从这三个报告可以一目了然地看出,第一个方程的D-W值偏近0,存在自相关;第二个方程的D-W值接近2,不存在自相关;第三个方程的D-W值接近0,存在很强的自相关。

计量经济学实训实验报告

计量经济学实训实验报告

一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。

本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。

二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。

三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。

2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。

包括去除缺失值、异常值等。

(2)建立模型根据实验目的,选择合适的计量经济学模型。

本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。

(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。

(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。

(5)模型预测根据估计得到的模型,对地区生产总值进行预测。

3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。

(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。

(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。

预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。

四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。

计量经济学自相关性检验实验报告

计量经济学自相关性检验实验报告

计量经济学自相关性检验实验报告计量经济学自相关性检验实验报告实验内容:自相关性检验商品进口主要由GDP决定。

为了考察GDP对商品进口的影响,可使用如下模型:;其中,X表示GDP,Y表示商品进口。

下表列出了中国1981--2000商品进口和国内生产总值的统计数据。

资料来源:《中国统计年鉴》一、估计回归方程OLS法的估计结果如下:Y=-8352.304+50.28935X (-2.838588)(17.36553)R2=0.943673,R2=0.940544,SE=7263.295,D.W.=0.870122。

二、进行序列相关性检验(1)图示检验法通过残差与残差滞后一期的散点图可以判断,随机干扰项存在不存在序列相关性。

(2)回归检验法一阶回归检验et=0.583346et-1+εt二阶回归检验et=1.444793et-1-1.172908et-2+εt可见:该模型存在二阶序列相关。

(3)杜宾-瓦森(D.W)检验法由OLS法的估计结果知:D.W.=0.870122。

本例中,在5%的显著性水平下,解释变量个数为2,样本容量为20,查表得dl=1.284,du=1.567,而D.W.=0.870122,小于下限dl=1.284,所以存在自相关性。

(4)拉格朗日乘数(LM)检验法由上表可知:含二阶滞后残差项的辅助回归为:et=668.0079-1.592283X+1.502666et-1-1.145731et-2(0.357417)(-0.822879) (5.825633) (-4.289558)R2=0.679813于是,LM=18×0.679813=12.236634,该值大于显著性水平为5%,自由度为2的χ序列相关性。

2的临界值Χ20.05,由此判断原模型存在2阶三、序列相关的补救(1)广义差分法估计模型由D.W.=0.870122,得到一阶自相关系数的估计值ρ=1-DW/2=0.564939则DY=Y-0.564939*Y(-1), DX=X-0.564939*X(-1);以DY为因变量,DX为解释变量,用OLS法做回归模型,这样就生成了经过广义差分后的模型。

自相关实验报告

自相关实验报告

《计量经济学》上机实验报告一题目:自相关实验日期和时间:2013-12-5班级:学号:姓名:实验室:实验环境:Windows XP ; EViews 3.1实验目的:掌握自相关性的检验与处理方法实验内容:下表给出了美国1960到1995年36年个人可支配收入X和个人实际消费支出Y的数据。

年份个人实际可支配收入个人实际年份个人实际可支配收入个人实际X 消费支出X 消费支出Y Y1960 157 143 1978 326 295 1961 162 146 1979 335 302 1962 169 153 1980 337 301 1963 176 160 1981 345 305 1964 188 169 1982 348 308 1965 200 180 1983 358 324 1966 211 190 1984 384 341 1967 220 196 1985 396 357 1968 230 207 1986 409 371 1969 237 215 1987 415 382 1970 247 220 1988 432 397 1971 256 228 1989 440 406 1972 268 242 1990 448 413 1973 287 253 1991 449 411 1974 285 251 1992 461 422 1975 290 257 1993 467 434 1976 301 271 1994 478 447 1977 311 283 1995 493 458 1)用普通最小二乘法估计收入消费模型:y=b1+b2x2+u2)检验自相关。

(显著水平5%)3)用适当方法消除问题。

实验步骤:0- 利用普通最小二乘法估计收入消费模型,建立模型:LS Y C X 。

得到如下估计结果,如图1所示。

Dependent Variable: Y Method: Least Squares Date: 12/05/13 Time: 16:58 Sample: 1960 1995 Included observations: 36Variable Coefficient Std. Error t-Statistic Prob. C -9.428745 2.504347 -3.764951 0.0006 X0.935866 0.007467125.34110.0000 R-squared0.997841 Mean dependent var 289.9444 Adjusted R-squared 0.997777 S.D. dependent var 95.82125 S.E. of regression 4.517862 Akaike info criterion 5.907908 Sum squared resid 693.9767 Schwarz criterion 5.995881 Log likelihood -104.3423 F-statistic 15710.39 Durbin-Watson stat0.523428Prob(F-statistic)0.000000图1其检验报告如下:x y93587.043.9ˆ+-= =t (-3.764951) (125.3411) 2R =0.997841 F =15710.39二.对模型进行自相关检验。

计量经济学实验报告(自相关性)

计量经济学实验报告(自相关性)

实验6.美国股票价格指数与经济增长的关系——自相关性的判定和修正一、实验内容:研究美国股票价格指数与经济增长的关系。

1、实验目的:练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。

2、实验要求:(1)分析数据,建立适当的计量经济学模型(2)对所建立的模型进行自相关分析(3)对存在自相关性的模型进行调整与修正二、实验报告1、问题提出通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系?GDP是一国经济成就的根本反映。

从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP 增长,股票价格就随之上涨,实际走势有时恰恰相反。

必须将GDP与经济形势结合起来考虑。

在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。

本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。

2、指标选择:指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。

3、数据来源:实验数据来自《总统经济报告》(1989年),如表1所示:表1 4、数据处理将两组数据利用Eviews绘图,如图1、2所示:图1 GDP数据简图图2 SPI数据简图经过直观的图形检验,在1970-1987年间,美国的GDP保持持续平稳上升,SPI虽然有些波动,但波动程度不大,和现实经济相符,从图形上我们并没有发现有异常数据的存在。

所以可以保证数据的质量是可以满足此次实验的要求。

计量经济学自相关的检验与修正实验报告

计量经济学自相关的检验与修正实验报告

《计量经济学》实训报告实训项目名称自相关模型的检验与处理实训时间 2012-01-02实训地点实验楼308班级学号姓名实 训 (实 践 ) 报 告实 训 名 称 自相关模型的检验与处理一、 实训目的掌握自相关模型的检验及处理方法。

二 、实训要求掌握自相关模型的图形法检验、DW 检验,与科克伦—奥克特迭代法对自相关修正。

三、实训内容1.检测进口额模型12i i i Y X u ββ=++的自相关性;2.检验模型中存在的问题,并采取适当的补救措施予以处理;四、实训步骤1.建立Workfile 和对象,录入数据;2.参数估计、检验模型的自相关;3.利用科克伦-奥科特迭代法处理模型中的自相关问题。

五、实训分析、总结表1列出了1985-2003年中国实际GDP 和进口额的统计数据。

假设实际GDP (X )与实际进口额(Y )之间满足线性约束,则理论模型设定为:12i i i Y X u ββ=++其中i Y 表示实际进口额,i X 表示实际GDP 。

表1 1985-2003年中国实际GDP和进口额年份实际GDP(X,亿元)实际进口额(Y,亿元)1985 8964.4 2543.21986 9753.27 2983.41987 10884.65 3450.11988 12114.62 3571.61989 12611.32 3045.91990 13090.55 2950.41991 14294.88 33381992 16324.75 4182.21993 18528.59 5244.41994 20863.19 6311.91995 23053.83 7002.21996 25267 7707.21997 27490.49 8305.41998 29634.75 9301.31999 31738.82 9794.82000 34277.92 10842.52001 36848.76 12125.62002 39907.21 14118.82003 43618.58 17612.21.建立Workfile和对象,录入1985-2003年中国实际GDP(X)和进口额(Y)图1 1985-2003年中国实际GDP(X)和进口额(Y)2.参数估计、检验模型的自相关使用普通最小二乘法估计消费模型得:图2 样本的回归估计结果-1690.3090.387979i Y X ∧=+20.965870 481.1009 0.523859R F DW ===通过分析可知:该回归方程可决系数较高,回归系数均显著。

自相关实验报告

自相关实验报告

⾃相关实验报告《计量经济学》实训报告实训项⽬名称⾃相关的检验与消除实训时间实训地点班级学号姓名实训(实践) 报告实训名称⾃相关的检验与消除⼀、实训⽬的1、中国进⼝需求与国内⽣产总值是⼀个值得研究的问题。

通过实际出⼝额模型的分析可以判断中国进⼝需求,这是宏观经济分析的重要参数。

2、使学⽣掌握针对实际问题简历、估计、检验和应⽤计量经济学单⽅程模型的⽅法以及⾄少掌握⼀种计量经济学软件的使⽤,提⾼学⽣的动⼿能⼒。

⼆、实训要求1、要求学⽣能对⼀般的实际经济问题运⽤计量经济学⽅法进⾏分析研究2、掌握计量经济学软件包Eviews估计和检验单⽅程模型的同法和操作步骤3、对模型的结果进⾏经济解释三、实训内容1、⽤DW验证法,验证该模型是否存在⾃相关。

2、⽤⼴义差分法消除⾃相关,进⾏多次迭代法。

四、实训步骤课后练习题6.5的数据1985—2003年中国实际GDP和进⼝额1. ⽤OLS⽅法估计参数,建⽴回归模型:ls y c x回归结果:Y=-1690.309+0.387979XT= (-3.824856) (21.93401) R^2=0.96587 S.E.=822.3285 2. 检验是否存在⾃相关(1)图⽰法(scat e1 e2):结果表明:由上图e1与e2的散点图可知,⼤部分的点落在I、III象限,表明随即误差项存在着正相关。

(2)DW检验法回归结果:Y = -1690.309+0.3880X , R^2=0.9659,df=17, DW=0.5239该⽅程的可绝系数较⾼,回归系数均显著。

对样本量为19、⼀个解释变量的模型,查DW统计表可知,dL=1.18,dU=1.4;模型中DW结论:显然该模型中存在⾃相关。

(3) BG检验(LM检验)结果表明:观察偏相关发现出现⾃相关(⼀维)结果表明:观察Prob=0.000942<0.5,显著,存在⾃相关3. 消除⾃相关的⽅法:使⽤⼴义差分法进⾏修正(1)genr e1=resid,genr e2=resid(-1),Ls e1 e2,得到e1与e2的回归⽅程为:E1=0.9202E2;(2)对原模型进⾏⼴义差分,得到⼴义差分⽅程为:Y-0.9202*Y(-1) = β1*(1-0.9202)+β2*(X-0.9202X)+ µ回归结果:Y*= -921.9049+0.6264 X*(其中Y*= Y-0.9202*Y(-1);X*= X-0.9202*X(-1));R^2=0.8381; df=16; DW=0.7151;由于使⽤了⼴义差分法,样本容量减少了1个,为18个。

计量经济学自相关性检验报告分析(doc 7页)

计量经济学自相关性检验报告分析(doc 7页)

计量经济学自相关性检验报告分析(doc 7页)计量经济学自相关性检验实验报告实验内容:自相关性检验工业增加值主要由全社会固定资产投资决定。

为了考察全社会固定资产投资对工业增加值的影响,可使用如下模型:Y=;其中,X 表示全社会固定资产投资,Y表示工业增加值。

下表列出了中国1998-2000的全社会固定资产投资X与工业增加值Y的统计数据。

单位:亿元年份固定资产投资X工业增加值Y年份固定资产投资X工业增加值Y1980910.91996.519915594.58087.1 198********.419928080.110284.519821230.42162.3199313072.314143.8 19831430.12375.6199417042.119359.6 19841832.92789199520019.324718.3 19852543.23448.7199622913.529082.6 19863120.63967199724941.132412.1 19873791.74585.8199828406.233387.9 19884753.85777.2199929854.735087.2 19894410.46484200032917.739570.3 199045176858一、估计回归方程OLS法的估计结果如下:Y=668.0114+1.181861X(2.24039)(61.0963)R2=0.994936,R2=0.994669,SE=951.3388,D.W.=1.282353。

二、进行序列相关性检验(1)图示检验法通过残差与残差滞后一期的散点图可以判断,随机干扰项存在正序列相关性。

(2)回归检验法一阶回归检验e=0.356978e1-t+εtt二阶回归检验e=0.572433e1-t-0.607831e2-t+εtt可见:该模型存在二阶序列相关。

(3)杜宾-瓦森(D.W)检验法由OLS法的估计结果知:D.W.=1.282353。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档