第5讲《三角形的证明》全章复习与巩固(培优课程讲义例题练习含答案)
北师大版初二年级下册三角形的证明培优带答案
三角形证明单元检测卷A1.(4分)(2013•钦州)等腰三角形一个角是80°,则它顶角度数是( )A . 80°B . 80°或20°C . 80°或50°D . 20°2.(4分)下列命题逆命题是真命题是( )A . 如果a >0,b >0,则a+b >0B . 直角都相等C . 两直线平行,同位角相等D . 若a=6,则|a|=|b|3.△ABC 中,∠A :∠B :∠C=1:2:3,最小边BC=4 cm ,最长边AB 长是A . 5cmB . 6cmC . 7cmD . 8cm4.(4分)如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 是( )5.(4分)如图,在△ABC 中,∠B=30°,BC 垂直平分线交AB 于E ,垂足为D .若ED=5,则CE 长为()6.如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A=∠ABE .若AC=5,BC=3,则BD 长为( )7.(4分)如图,AB=AC ,BE ⊥AC 于点E ,CF ⊥AB 于点F ,BE 、CF 相交于点D ,则①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 平分线上.以上结论正确是( )8.(4分)如图所示,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD 等于( )9.如图所示,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC .∠EBC=∠E=60°,若BE=6,DE=2,则BC 长度是( )10.(4分)(2013•遂宁)如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D ,则下列说法中正确个数是( )①AD 是∠BAC 平分线;②∠ADC=60°;③点D 在AB 中垂线上;④S △DAC :S △ABC =1:3.A . ∠A=∠CB . A D=CBC . B E=DFD . A D ∥BC A . 10 B . 8C . 5D . 2.5A . 2.5B . 1.5C . 2D . 1A . ①B . ②C . ①②D . ①②③A . 10B . 12C . 24D . 48A . 6B . 8C . 9D . 10A .1B . 2C . 3D .412.(4分)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C 三点为顶点三角形是等腰三角形,则点C个数是()13.(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度最小值为4;④四边形CDFE面积保持不变;⑤△CDE面积最大值为8.其中正确结论是()A.①②③B.①④⑤C.①③④D.③④⑤二、填空题(每小题4分,共24分)14.(4分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中___.15.(4分)若(a﹣1)2+|b﹣2|=0,则以a、b为边长等腰三角形周长为_ .16.(4分)如图,在Rt△ABC中,∠ABC=90°,DE是AC垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C= _________ .17.(4分)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于_________ .18.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对点A处,则壁虎捕捉蚊子最短距离为m.19.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上点,CD=1,将△ABC沿直线AD翻折,使点C 落在AB边上点E处,若点P是直线AD上动点,则△PEB周长最小值是.三、解答题(每小题7分,共14分)20.(7分)如图,C是AB中点,AD=BE,CD=CE.求证:∠A=∠B.21.(7分)如图,两条公路OA和OB相交于O点,在∠AOB内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB距离相等,且到两工厂C、D距离相等,用尺规作出货站P位置.四、解答题(每小题10分,共40分)22.(10分)在四边形ABCD中,AB∥CD,∠D=90°,∠DCA=30°,CA平分∠DCB,AD=4cm,求AB长度?A.2B.3C.4D.523.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD长.24.(10分)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上一点D,点A旋转到点E位置.F,G分别是BD,BE上点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG度数.25.(10分)已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.(1)求证:BF=AC;(2)求证:.五、解答题(每小题12分.共24分)26.(12分)如图,在△ABC中,D是BC是中点,过点D直线GF交AC于点F,交AC平行线BG于点G,DE⊥DF交AB于点E,连接EG、EF.(1)求证:BG=CF;(2)求证:EG=EF;(3)请你判断BE+CF与EF大小关系,并证明你结论.27.(12分)△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC平行线,交直线AB于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,则△BEF是_________ 三角形;(2)若∠BAC=∠DAE≠60°①如图2,当点D在线段BC上移动,判断△BEF形状并证明;②当点D在线段BC延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应图形.北师大版八下《第1章三角形证明》2014年单元检测卷A(一)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2013•钦州)等腰三角形一个角是80°,则它顶角度数是()A.80°B.80°或20°C.80°或50°D.20°考点:等腰三角形性质.专题:分类讨论.分析:分80°角是顶角与底角两种情况讨论求解.解答:解:①80°角是顶角时,三角形顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角度数为80°或20°.故选B.点评:本题考查了等腰三角形两底角相等性质,难点在于要分情况讨论求解.2.(4分)下列命题逆命题是真命题是()A.如果a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|b|考点:命题与定理.分析:先写出每个命题逆命题,再进行判断即可.解答:解;A.如果a>0,b>0,则a+b>0:如果a+b>0,则a>0,b>0,是假命题;B.直角都相等逆命题是相等角是直角,是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,是真命题;D.若a=6,则|a|=|b|逆命题是若|a|=|b|,则a=6,是假命题.故选:C.点评:此题考查了命题与定理,两个命题中,如果第一个命题条件是第二个命题结论,而第一个命题结论又是第二个命题条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题逆命题.正确命题叫真命题,错误命题叫做假命题.判断命题真假关键是要熟悉课本中性质定理.3.(4分)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4 cm,最长边AB长是()A.5cm B.6cm C.7cm D.8cm考点:含30度角直角三角形.分析:三个内角比以及三角形内角和定理,得出各个角度数.以及直角三角形中角30°所对直角边是斜边一半.解答:解:根据三个内角比以及三角形内角和定理,得直角三角形中最小内角是30°,根据30°所对直角边是斜边一半,得最长边是最小边2倍,即8,故选D.点评:此题主要是运用了直角三角形中角30°所对直角边是斜边一半.4.(4分)(2013•安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE是()A.∠A=∠C B.A D=CB C.B E=DF D.A D∥BC考点:全等三角形判定.分析:求出AF=CE,再根据全等三角形判定定理判断即可.解答解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF 和△CBE 中∴△ADF ≌△CBE (ASA ),正确,故本选项错误;故选B . 点评: 本题考查了平行线性质,全等三角形判定应用,注意:全等三角形判定定理有SAS ,ASA ,AAS ,SSS .5.(4分)(2012•河池)如图,在△ABC 中,∠B=30°,BC 垂直平分线交AB 于E ,垂足为D .若ED=5,则C E 长为( )考点: 线段垂直平分线性质;含30度角直角三角形.分析: 根据线段垂直平分线性质得出BE=CE ,根据含30度角直角三角形性质求出BE 长,即可求出CE 长. 解答: 解:∵DE 是线段BC 垂直平分线,∴BE=CE ,∠BDE=90°(线段垂直平分线性质),∵∠B=30°,∴BE=2DE=2×5=10(直角三角形性质),∴CE=BE=10.故选A .点评: 本题考查了含30度角直角三角形性质和线段垂直平分线性质应用,关键是得到BE=CE 和求出BE 长,题目比较典型,难度适中.6.(4分)(2013•邯郸一模)如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A=∠ABE .若AC=5,BC=3,则BD 长为( )A . 2.5B . 1.5C .2 D .1考点: 等腰三角形判定与性质.分析: 由已知条件判定△BEC 等腰三角形,且BC=CE ;由等角对等边判定AE=BE ,则易求BD=BE=AE=(AC ﹣BC ).解答: 解:如图,∵CD 平分∠ACB ,BE ⊥CD ,∴BC=CE .又∵∠A=∠ABE ,∴AE=BE .∴BD=BE=AE=(AC ﹣BC ).∵AC=5,BC=3,∴BD=(5﹣3)=1.故选D .点评: 本题考查了等腰三角形判定与性质.注意等腰三角形“三合一”性质运用.7.(4分)如图,AB=AC ,BE ⊥AC 于点E ,CF ⊥AB 于点F ,BE 、CF 相交于点D ,则①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 平分线上.以上结论正确是( )A . ①B . ②C .①② D .①②③ 考点: 全等三角形判定与性质;角平分线性质.专题: 常规题型.分析: 从已知条件进行分析,首先可得△ABE ≌△ACF 得到角相等和边相等,运用这些结论,进而得到更多结论,最好运用排除法对各个选项进行验证从而确定最终答案.解答: 解:∵BE ⊥AC 于E ,CF ⊥AB 于F ,∴∠AEB=∠AFC=90°,∵AB=AC ,∠A=∠A ,∴△ABE ≌△ACF (①正确)∴AE=AF ,∴BF=CE ,∵BE ⊥AC 于E ,CF ⊥AB 于F ,∠BDF=∠CDE ,∴△BDF ≌△CDE (②正确),∴DF=DE ,连接AD ,A . 10B . 8C . 5D .2.5∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC平分线上(③正确),故选D.点评:此题考查了角平分线性质及全等三角形判定方法等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.。
人教版八上数学之《三角形》全章复习与巩固—巩固练习(基础)
《三角形》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm2.如图所示的图形中,三角形的个数共有( )A.1个 B.2个 C.3个 D.4个3.一个多边形的对角线共有27条,则这个多边形的边数是()A.8 B.9 C.10 D. 114.已知三角形两边长分别为 4 cm和9 cm,则下列长度的四条线段中能作为第三边的是( )A.13 cm B.6 cm C.5 cm D.4 cm5.下列不能够镶嵌的正多边形组合是()A.正三角形与正六边形 B.正方形与正六边形C.正三角形与正方形 D.正五边形与正十边形6.下列说法不正确的是 ( )A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.(四川绵阳)王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再订上几根木条?( )A.0根 B.1根 C.2根 D.3根8.(2015•郑州模拟)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°二、填空题9.三角形的外角和等于它的内角和的倍;2013边形的外角和是.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11.已知多边形的内角和为540°,则该多边形的边数为;这个多边形一共有条对角线.12. 一个多边形的每个外角都是18°,则这个多边形的内角和为.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14. (2016•南京一模)如图,∠1+∠2+∠3+∠4+∠5=°.15.(2015春•南京校级月考)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.16.在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.三、解答题17.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.18.(2015春•丹江口市期末)如图,试求∠A+∠B+∠C+∠D+∠E的度数.19. 多边形内角和与某一个外角的度数总和是1350°,求多边形的边数.20.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D;【解析】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】根据多边形的对角线的条数公式列式,把所给数值代入进行计算即可求解.4. 【答案】B;【解析】根据三角形的三边关系进行判定.5. 【答案】B;【解析】A、正六边形的内角是120°,正三角形内角是60°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意;B、正六边形的内角是120°,正方形内角是90°,不能组成360°,所以不能镶嵌成一个平面,故本选项符合题意;C、正三角形的内角为60°,正方形的内角为90°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意;D、正五边形的内角为108°,正十边形的内角为144°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意.故选B.6. 【答案】C;【解析】三角形的三条高线的交点与三条角平分线的交点一定都在三角形内部,但三角形的三条高线的交点不确定:当三角形为锐角三角形时,则交点一定在三角形的内部;当三角形为钝角三角形时,交点一定在三角形的外部.7. 【答案】B;8. 【答案】B;【解析】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选B.二、填空题9.【答案】2,360°;【解析】三角形内角和为180°,任意多边形外角和等于360°.10.【答案】5 cm或7 cm;11.【答案】5 ,5;【解析】根据n边形的内角和定理得到关于n的方程∴(n﹣2)•180°=540°,解方程求得n,然后利用n边形的对角线条数为计算即可.12.【答案】3240°;【解析】由一个多边形的每个外角都等于18°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.13.【答案】15cm2,30cm2;【解析】△ABC的面积是△ABE面积的2倍.14.【答案】540°;【解析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.15.【答案】70°.【解析】解:∵∠A=40°,∴△ABC的∠B和∠C的外角和为:180°﹣∠1+180°﹣∠2=360°﹣(∠1+∠2)=360°﹣(180°﹣40°)=360°﹣140°=220°.由于CD、BD的平分线交于点D,则∠4+∠5=×220°=110°,根据三角形内角和定理,∠D=180°﹣110°=70°.16.【答案】10°.三、解答题17.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k 不满足三角形三边关系.所以不能围成三角形.18.【解析】解:连结BC,∵∠E+∠D+∠EFD=∠1+∠2+∠BFC=180°,又∵∠EFD=∠BFC,∴∠E+∠D=∠1+∠2,∴∠A+∠B+∠C+∠D+∠E=∠A+∠ABD+∠ACE+∠1+∠2=∠ABC+∠A+∠ACB=180゜.19.【解析】解:设这个外角度数为x,根据题意,得(n﹣2)×180°+x=1350°,解得:x=1350°﹣180°n+360°=1710°﹣180°n,由于0<x<180°,即0<1710°﹣180°n<180°,解得8.5<n<9.5,所以n=9.故多边形的边数是9.20.【解析】解:如图。
北师大版八年级下册三角形证明复习含答案
北师大版八年级下册三角形证明复习含答案三角形证明专题复习一.选择题(共15小题)1.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF =()A.3B.4C.5D.62.如图,已知△ABC的面积为8,在BC上截取BD=BA,作∠ABC的平分线交AD于点P,连接PC,则△BPC的面积为()A.2B.4C.5D.63.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5B.1C.1.5D.24.如图,△ABC中,∠B=60°,AB=8,点D在BC边上,且AD =AC.若BD=,则CD的长为()A.4B.C.5D.5.如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC 的长是()A.6B.8C.10D.146.如图,在△ABC中,∠ABC=60°,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且,则线段BE的长为()A.B.2C.3D.7.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC 的角平分线,则三角形ADC的面积为()A.3B.10C.12D.158.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL9.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来10.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.1311.如图,∠MON=60°,OA平分∠MON,P是射线OA上的一点,且OP=4,若点Q是射线OM上的一个动点,则PQ的最小值为()A.1B.2C.3D.412.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E 满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°13.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对14.如图,△ABC中,BO 平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7B.6C.5D.415.如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36°B.38.5°C.64°D.77°二.填空题(共15小题)16.△ABC中,AD⊥BC于D,∠ACD=60°,若AD=2,AB=2,则BC=______.17.已知等腰三角形的周长是14,设其腰长是x,底边长是y,则y与x的函数关系式为y =______,自变量x的取值范围是______.18.如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE =45°时,DF的长为______.19.如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC 的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当△DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是______.20.如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=24°,则∠C=______°.21.已知等腰三角形的底角为15°,腰长为8cm,则这个三角形的面积为______cm2.22.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是______.23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若∠EBC =30°,则∠A的度数为______.24.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=______cm.25.如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC 于点D,BD=1,则AC 的长______.26.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为______.27.如图,在△ABC中,AD=BD=BC,若∠A=x°,则∠ABC=______度(用含x的代数式表示).28.如图,在△ABC中,AC=AD=BD,∠B=28°,则∠CAD的度数为______°.29.如图,点O是边长为2的等边三角形ABC内任意一点,且OD⊥AC,OE⊥AB,OF⊥BC,则OD+OE+OF=______.30.如图,△ABC中,AD平分∠BAC,∠ACB=3∠B,CE⊥AD,AC=8,BC=BD,则CE=______.三.解答题(共20小题)31.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.32.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA 的长.33.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点P为AC的中点,点D为AB 边上一点,且AD=PD,延长DP交BC的延长线于点E,若AB=2,求PE的长.34.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:(1)EF⊥AB;(2)DE=2DF.35.如图,在△ABC中,∠ACB=110°,∠B>∠A,D,E为边AB 上的两个点,且BD=BC,AE=AC.(1)若∠A=30°,求∠DCE的度数;(2)∠DCE的度数会随着∠A度数的变化而变化吗?请说明理由.36.已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.37.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=AE吗?说明理由.38.如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.39.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,求BD的长.40.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB 交BD于点D,已知∠1=32°,求∠D的度数.41.如图,在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD、DC.(1)求证:∠CAD=∠DBC;(2)求∠BDC的度数.42.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长.43.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.44.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.45.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.46.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB 于E,交AC于F,若BE=3,EF=5,试求CF的值.47.如图,在△ABC中,AB=AC,点D在线段BC上,AD=BD,△ADC是等腰三角形,求△ABC三个内角的度数.48.如图,∠BAD=90°,AB=AC,AC的垂直平分线交BC于D.(1)求∠BAC的度数;(2)若AB=10,BC=10,求△ABD的周长.49.如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.50.如图,等边△ABC的边长为12,D为AB边上一动点,过点D作DE⊥BC于点E.过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF?三角形证明专题复习参考答案与试题解析一.选择题(共15小题)1.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.2.解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC 的面积为8,∴S△BPC=×8=4.故选:B.3.解:过点A作AE⊥BC于点E,∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=,∵BD=2,∴DE=﹣2=,∴CD=1,故选:B.4.解:过点A作AE⊥BC,∵AD=AC,∴E是CD的中点,∵∠B=60°,AB=8,在Rt△ABE中,BE=4,∵BD=,∴DE=4﹣=,∴CD=5,故选:C.5.解:∵DE垂直平分AC,∴AD=CD.∵△BCD的周长是14,BC=6,∴AB=BD+CD=14﹣6=8,∵AB=AC,∴AC=8.故选:B.6.解:连接BD,如图,∵DE=DF,DE⊥AB,DF⊥BC,∴BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,在Rt△BDE中,BE=DE=×=3.故选:C.7.解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.8.解:作△DEF,使DE=AB,∠A=∠D,∠E=∠B,根据ASA定理可知,△DEF与原来的图形一样,他所用定理是ASA,故选:C.9.解:根据题意得:AB=2×15=30(海里),∵∠NAC=42°,∠NBC=84°,∴∠C=∠NBC﹣∠NAC=42°,∴∠C=∠NAC,∴BC=AB=30海里.即从海岛B到灯塔C的距离是30海里.故选:C.10.解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE =BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.11.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:B.12.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;综上,∠OEC的度数不可能为60°,故选:C.13.解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.14.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.15.解:在△ABC中,AB=AD=DC,∵在三角形ABD中,AB=AD,∠BAD=26°,∴∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C=∠ADB=77°×=38.5°.故选:B.二.填空题(共15小题)16.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠ACD=60°,∴∠CAD=30°,∵AD=2,∴CD=AD=2,∵AB=2,∴BD===4,如图1,BC=BD+CD=6,如图2,BC=BD﹣CD=2,综上所述,BC=6或2,故答案为:6或2.17.解:∵2x+y=14,∴y=14﹣2x,即x<7,∵两边之和大于第三边∴x>,综上可得<x<7故答案为:y=﹣2x+14,<x<7.18.解:如图,过点P作PH⊥OB于点H,∵PE=PF,。
《三角形》全章复习与巩固(基础)知识讲解教案
《三角形》全章复习与巩固(基础)【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类【高清课堂:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理,得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()【变式】A.11 B.5C.2D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE ≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD证明:∠BAC=∠EAD=90°∠BAC +∠CAE=∠EAD +∠CAE即∠BAE=∠CAD又AB=AC,AE=AD,△ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA,又∠COE=∠AOD∠BEA+∠COE =∠CDA+∠AOD=90°则有∠DCE=180°- 90°=90°,所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA)∴BD=CE.6.己知:在ΔABC中,AD为中线.求证:AD<()12AB AC+【答案与解析】证明:延长AD至E,使DE=AD,∵AD为中线,∴BD=CD在△ADC与△EDB中DC DBADC BDEAD ED=⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS)∴AC=BE在△ABE中,AB+BE>AE,即AB+AC>2AD∴AD<()12AB AC+.【总结升华】用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.类型五、全等三角形判定的实际应用7.如图,小叶和小丽两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,从而得知两家的距离.解:在点B所在的河岸上取点C,连结BC,使CD=CB,利用测角仪器使得∠B=∠D,且A、C、E三点在同一直线上,测量出DE的长,就是AB的长.在△ABC和△ECD中B DCD CBACB ECD∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ECD(ASA)∴AB=DE.【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决.由已知易证△ABC≌△ECD,可得AB=DE,所以测得DE的长也就知道两家的距离是多少.类型六、用尺规作三角形8.作图:请你作出一个以线段a为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.【答案与解析】解:已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.。
八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案
《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
《三角形的证明》优质复习课件
作业布置
请完成本课程提供的作业练习,巩固所学知识,真 正掌握三角形证明的方法。
若三角形三个角中任意一个角小于90度,则可证 明此三角形是锐角三角形。
常见错误和易错点
1 计算错误
数值计算错误、公式使用错误等。
2 逻辑错误
通过错误的推理得出结果,或使用错误的定理。
3 形状错误
画图不准确,或对图形的性质理解不透彻。
总结回顾及作业布置
总结回顾
通过本课程,您将会重新掌握三角形的特征和性质, 更好地理解几何学中的证明问题。
内心定理
三角形内心为三角形内角平分线的交点。
三角形的证明方法
欧氏几何证明
基于欧几里得公理和定义的演绎 推理。
向量几何证明
应用向量的知识和运算的证明方 法。
坐标几何证明
使用坐标系和代数运算的证明方 法。
相关例题演示和解析
题目
如何证明一个三角形是等腰三角形?
如何证明一个三角形是锐角三角形?
解法
画出此三角形,分别计算出其两底边和顶角的大 小,如果两底边相等,则所构成的三角形是等腰 三角形。
余弦定理
a² =b² + c² - 2bc cosA
正弦定理
∠A的对边a/正弦值 =∠B的对边b/正弦值 =∠C的 对边c/正弦值。
正切定理
tan A=a/b
三角形的重要性质
1
高线定理
2
三角形三条高线交于一点,该点为垂心。
3
外心定理
4
三角形外心为三角形外接圆的圆心。
中线定理
三角形任意两条中线交于一点,且该点 到第三条中线的距离等于中线长度的一 半。
《三角形的证明》优质复 习课件
本课程将帮助您系统地复习三角形的性质和证明方法,让您轻松应对各种出 题形式。
专题1.10 《三角形的证明》全章复习与巩固(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
专题1.10 《三角形的证明》全章复习与巩固(知识讲解)【复习目标】1.了解等腰三角形、直角三角形、线段垂直平分线、角平分线的概念;理解等腰三角形、直角三角形、线段垂直平分线、角平分线的性质和判定;2.能用等腰三角形、直角三角形、线段垂直平分线、角平分线的性质和判定解一些决问题;3.会运用等腰三角形、直角三角形、线段垂直平分线、角的平分线的知识解决有关问题.【要点梳理】知识点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点三、垂直平分线线段垂直平分线定理:线段的垂直平分线的性质定理:线段的垂直平分线上的到这条线段两个端点的距离相等。
北师大版三角形的证明(全章节复习题)
北师⼤版三⾓形的证明(全章节复习题)等腰三⾓形(基础)知识讲解【学习⽬标】1. 了解等腰三⾓形、等边三⾓形的有关概念, 掌握等腰三⾓形的轴对称性;2. 掌握等腰三⾓形、等边三⾓形的性质,会利⽤这些性质进⾏简单的推理、证明、计算和作图.3. 理解并掌握等腰三⾓形、等边三⾓形的判定⽅法及其证明过程. 通过定理的证明和应⽤,初步了解转化思想,并培养学⽣逻辑思维能⼒、分析问题和解决问题的能⼒.4. 理解反证法并能⽤反证法推理证明简单⼏何题.【要点梳理】要点⼀、等腰三⾓形的定义1.等腰三⾓形有两条边相等的三⾓形,叫做等腰三⾓形,其中相等的两条边叫做腰,另⼀边叫做底,两腰所夹的⾓叫做顶⾓,底边与腰的夹⾓叫做底⾓.如图所⽰,在△ABC中,AB=AC,△ABC是等腰三⾓形,其中AB、AC为腰,BC为底边,∠A是顶⾓,∠B、∠C是底⾓.2.等腰三⾓形的作法已知线段a,b(如图).⽤直尺和圆规作等腰三⾓形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆⼼,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三⾓形3.等腰三⾓形的对称性(1)等腰三⾓形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的⾼线.结论:等腰三⾓形是轴对称图形,顶⾓平分线(底边上的⾼线或中线)所在的直线是它的对称轴.4.等边三⾓形三条边都相等的三⾓形叫做等边三⾓形.也称为正三⾓形.等边三⾓形是⼀类特殊的等腰三⾓形,有三条对称轴,每个⾓的平分线(底边上的⾼线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三⾓形的底⾓只能为锐⾓,不能为钝⾓(或直⾓),但顶⾓可为钝⾓(或直⾓).∠A=180°-2∠B,∠B=∠C=1802A-∠.(2)等边三⾓形与等腰三⾓形的关系:等边三⾓形是特殊的等腰三⾓形,等腰三⾓形不⼀定是等边三⾓形.要点⼆、等腰三⾓形的性质1.等腰三⾓形的性质性质1:等腰三⾓形的两个底⾓相等,简称“在同⼀个三⾓形中,等边对等⾓”.推论:等边三⾓形的三个内⾓都相等,并且每个内⾓都等于60°.性质2:等腰三⾓形的顶⾓平分线、底边上中线和⾼线互相重合.简称“等腰三⾓形三线合⼀”.2.等腰三⾓形中重要线段的性质等腰三⾓形的两底⾓的平分线(两腰上的⾼、两腰上的中线)相等.要点诠释:这条性质,还可以推⼴到⼀下结论:(1)等腰三⾓形底边上的⾼上任⼀点到两腰的距离相等。
《三角形》全章复习与巩固(培优篇)(含答案)
《三角形》全章复习与巩固(培优篇)(含答案)一、单选题1.如图,ZkABC的面积为3()C∏Λ AE=ED, BD=2DC,则图中四边形EDCF的面积等于()A. 8.5B. 8C. 9.5D. 92.如图,41/,。
“平分/^位>和/88,若/8 = 34。
,/0 = 42。
,则NΛ∕=()A. 34oB. 38oC. 40oD. 42°3.已知MBC中,CD是A8边上的高,C£平分ZAC8.若NA =机。
,ZB = ∕ιo, m≠n,则NQCE的度数等于()A. -m oB. -n oC. ,(〃?。
一〃。
)D. -∖m o-n o2 2 2v f2l4.如图,AD∕∕BC,N力=NA8C,点E是边力。
上一点,连接4E交5C的延长线于点儿点尸是边A8上一点,使得NFBE= ∕FEB,作NFE"的角平分线EG交5〃于点G.若N8EG=40。
,则NOE”的度数为()A. 50oB. 75oC. 100oD. 125°5.如图,在第1个4A∕3C中,ZB=3()o, A1B=CB,在边A/3上任取一点力,延长C4/到使A∕A2=A∕O,得到第2个△ A lΛ2D i在边4。
上任取一点E,延长4/2到4,使A2A3=A2E,得到第3个AA2λ3E,…按此做法继续下去,则第2021个三角形中以A2O2O为顶点的底角度数是()7 .如图,在四边形A5CO 中,AD//BC,若ND45的角平分线A£交。
于E,连接8E,且8E 边平分NABC,得到如下结 论:(l)ZAEB=90o ;(2)I3C+AD=AB ;③BE=^CD ; ®BC=CE-⑤若 A8=x,则 BE 的取值范围为 0<3EVx,那么以 8 .如图,已知AB = AC,点。
、E 分别在AC 、A8上且ΛE = AD,连接EC, BD, EC 交BD 于点、M,连接AM,过点A 分别 作AE_LC£AG_L8O,垂足分别为F 、G,卜.列结论:①.EBM 咨&DCM ;②NEMB = NFAG ;③M4平分NEMD ;④如果 S.BEM =S,ADM ,则E 是的中点;其中正确结论的个数为( )9 .“经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:A. (!) 2020∙75oB.弓)2020∙65oC. (;) 2021 ∙75D. (!) 2021 ∙6506.如图所示,锐角^ABC 中,D, E 分别是AB, AC 边上的点,2∖ADC/ z √iOC, ∆AEB^ ^AEB ,, 且C'D∕∕EB f "BC, BE 、CD 交于点F,若NBAO40。
《三角形的证明》全章复习与巩固--巩固练习(提高)
《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2.(2016秋•仙游县期中)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60° D.有一个内角小于60°3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)4. 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°6.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()CA、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′7.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个 B.2个 C.3个 D.4个8. 在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A、三边中线的交点B、三条角平分线的交点C、三边上高的交点D、三边中垂线的交点二、填空题9. 如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________ .3510.用反证法证明“三角形中至少有一个角不小于60°时,第一步为假设“”11. 如图,在Rt△ABC中.∠C=90°,BC=6,AC=8,点D在AC上,将△BCD沿BD折叠,使点C恰好落在AB边的点C′处,则△ADC′的面积是_________.12. 如图,长方体的长为5,宽为3,高为12,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.13. 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是___________.14.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE= cm.15.(2015•辽阳)如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.16. 如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.三、解答题17.(2016秋•江都区校级期中)如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF 相交于点D,若BD=CD.求证:AD平分∠BAC.18. 如图,在长方形ABCD 中,DC=5cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F ,若△ABF 的面积为30cm 2,求折叠△AED 的面积.19. 如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点E,直线BM 、CN 交与F 点.(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)20.阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB ∴△AEB ≌△AEC(第一步) ∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.【答案与解析】一.选择题1. 【答案】D;【解析】解:因为是一块正方形的绿地,所以∠C=90°,由勾股定理得,AB=25米,计算得由A点顺着AC,CB到B点的路程是24+7=31米,而AB=25米,则少走31﹣25=6米.故选D.2. 【答案】A;【解析】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.3. 【答案】D;【解析】解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°-90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE,故选D.4. 【答案】B;【解析】∵AD平分∠CAB交BC于点D∴CAD=∠EAD∵E⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=CE【解析】解:∵AB=AC,AD=BD=BC,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°,∠ABC=∠C=72°.6. 【答案】B;【解析】添加A选项中条件可用ASA判定两个三角形全等;添加B选项中条件无法判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是ASA证明三角形全等.故选B.7. 【答案】D;【解析】解:如图,∵以点O为圆心,以OA为半径画弧,交x轴于点B、C;以点A为圆心,以AO为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个,综上所述,符合条件的点P共有4个,故选:D.8. 【答案】D;【解析】三角形三边中垂线的运用.二.填空题9. 【答案】125°;【解析】解:∵AB=AC,∠B=35°,∴∠C=35°,∠A=110°,∵DE⊥BC,∴∠ADE=360°-110°-35°-90°=125°,∵125°>110°>90°>35°,∴四边形中,最大角的度数为:125°.故选C.10.【答案】三角形的三个内角都小于60°;【解析】第一步应假设结论不成立,即三角形的三个内角都小于60°.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.11.【答案】6;12.【答案】13;13.【答案】20;【解析】根据题意得,x-4=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.14.【答案】7;【解析】解:∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°∴∠BAD+∠EAC=90°,∠BAD+∠B=90°∴∠EAC=∠B∵AB=AC∴△ABD≌△ACE(AAS)∴AD=CE,BD=AE∴DE=AD+AE=CE+BD=7cm.故填7.15.【答案】8;【解析】解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD===8.故答案为:8.16.【答案】AH=CB或EH=BE或AE=CE;【解析】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=BE或AE=CE.三.解答题17.【解析】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴△BDF≌△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.18.【解析】解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.19.【解析】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,∴△ACN≌△MCB,∴AN=MB.(2)证明:由(1)得△ACN≌△MCB,∴∠1=∠2,又∠ACM=∠BCN=∠MCN=60°,CN=CM∴△ECN≌△FCB,∴EC=FC.∴△ECF是等边三角形.图1C BA图2B M(3)AN=MB 成立,△ECF 是等边三角形不成立.20.【解析】解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC 中, ∵BE=CE∴∠EBC=∠ECB 又∵∠ABE=∠ACE ∴∠ABC=∠ACB ∴AB=AC .在△AEB 和△AEC 中,AE=AE ,BE=CE ,AB=AC ∴△AEB ≌△AEC (SSS ) ∴∠BAE=∠CAE .。
《三角形的证明》全章复习与巩固--知识讲解(提高)
《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础. 要点二、直角三角形 1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ) 要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线. 要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围; ②利用线段的垂直平分线定理可解决两条线段的和距离最短问题. 要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 3.如何用尺规作图法作出角平分线 要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD . 【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE , 即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形, ∴AC=CD ,CE=CB , ∵在△ACE 与△DCB 中, ,AC DCACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ), ∴AE=BD , ∠CAE=∠CDB ; ∵∠AFC=∠DFH ,∠FAC+∠AFC=90°, ∴∠DHF=∠ACD=90°, ∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点. 举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . (1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BEBF BF=⎧⎨=⎩ ∴△BCF ≌△BEF , ∴CF=EF ; ∵△ABC ≌△DBE , ∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( ) ①两个锐角对应相等的两个直角三角形全等, ②斜边及一锐角对应相等的两个直角三角形全等, ③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. A.1 B.2 C.3 D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可; 【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确; 所以,正确的说法个数是3个. 故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景: 在△ABC 中,AB 、BC 、AC 三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
备战中考数学(北师大版)巩固复习三角形的证明(含解析)
备战中考数学(北师大版)巩固复习三角形的证明(含解析)2019备战中考数学(北师大版)巩固复习-三角形的证明(含解析)一、单选题1.下列说法错误的是()A. 等腰三角形的高、中线、角平分线互相重合B. 三角形两边的垂直平分线的交点到三个顶点距离相等C. 等腰三角形的两个底角相等D. 等腰三角形顶角的外角是底角的二倍2.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是()A. 115°B. 75°C. 105°A. 线段的垂直平分线 B. 一个半径为定值的圆 C. 一条直线的平行线 D. 一个角等于已知角6.如图,在长方形ABCD中,AB=4,AD=6,点E 是线段AD上的一个动点,点P是点A关于直线BE的对称点,在点E的运动过程中,使△PBC为等腰三角形的点E的位置共有()A. 1个B. 2个C. 3D. 无数个7.等腰三角形腰上的高与底边的夹角等于()A. 底角B. 底角的一半C. 顶角D. 顶角的一半8.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE 的周长为()A. 6B. 14C. 24D. 259.腰长为10,一条中线长为6的等腰三角形的底边长为()A. 16B. 8C. 8或D. 16或10.已知等腰三角形的一内角度数为40°,则它的顶角的度数为( )A. 40°B. 80°C. 100°D. 40°或100°11.如图,在△ABC中,∠C=90°, AD平分∠CAB,BC=8cm,BD=5cm,那么D点到直线AB的距离是()A. 8cmB. 3cmC. 13cmD. 5cm二、填空题12.如图,在△ABC中,∠ACB=90°,AD平分∠ABC,BC=10cm,BD:DC=3:2,则点D到AB 的距离________cm.13.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①________;②________;(2)当∠B=60°时,还可以得出正确结论:________ ;(只需写出一个)14.如图,已知OC是∠AOB的平分线,DC∥OB,那么△DOC一定是________三角形(填按边分类的所属类型).15.如图,CE平分∠ACB,且CE⊥D B,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则BD的长为________.16.如图,在△ABC中,AB=AC,∠A=36°,BD 是△ABC的角平分线,则∠ABD=________°.17.如图所示,BD是∠ABC的平分线,DE⊥AB于=144cm,则DE的点E,AB=36cm,BC=24cm,S△ABC长是________ .三、解答题18.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?19.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.20.将一副直角三角板如图摆放,等腰直角板ABC 的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形四、综合题21.已知锐角三角形ABC内接于⊙O,AD⊥BC,垂足为D.(1)如图1,,BD=DC,求∠B的度数;(2)如图2,BE⊥AC,垂足为E,BE交AD于点F,过点B作BG∥AD交⊙O于点G,在AB边上取一点H,使得AH=BG.求证:△AFH是等腰三角形.22.如图,在△ABC中,AB=c,AC=b.AD是△ABC 的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD 相交于O,已知△ADC的面积为1.(1)证明:DE=DF;(2)试探究线段EF和AD是否垂直?并说明理由;(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.23.已知一个等腰三角形的两边长a、b满足方程组(1)求a、b的值.(2)求这个等腰三角形的周长.24.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形(2)求证:∠EMD=2∠DAC.答案解析部分一、单选题1.【答案】A【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故A 错误;B、三角形两边的垂直平分线的交点到三个顶点的距离相等,故B正确;C、等腰三角形的两个底角相等,故C正确;D、等腰三角形顶角的外角是底角的二倍,故D 正确,故选:A.【分析】利用等腰三角形的性质和线段垂直平分线的性质分别对四个选项进行判断后即可确定正确的选项.2.【答案】A【考点】线段垂直平分线的性质【解析】【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBD=∠ABC=25°,∵AD垂直平分线段BC,∴EB=EC,∠ADC=90°,∴∠C=∠EBD=25°,∴∠AEC=∠ADC+∠C=115°.故选A.【分析】由BE是∠ABC的平分线,∠ABC=50°,可求得∠EBD的度数,然后由AD垂直平分线段BC,根据线段垂直平分线的性质,可得EB=ED,继而求得∠C的度数,然后由三角形外角的性质,求得答案.3.【答案】D【考点】直角三角形全等的判定【解析】【分析】两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL。
北师大版八年级下册《三角形的证明》培优(2021年整理)
(完整)北师大版八年级下册《三角形的证明》培优(word版可编辑修改)(完整)北师大版八年级下册《三角形的证明》培优(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北师大版八年级下册《三角形的证明》培优(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北师大版八年级下册《三角形的证明》培优(word版可编辑修改)的全部内容。
三角形的证明单元检测卷(提高)1等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.下列命题的逆命题是真命题的是()A.如果a>0,b>0,则a+b>0B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|b| 3.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4 cm,最长边AB的长是A.5cm B.6cm C.7cm D.8cm4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.A D=CB C.B E=DF D.A D∥BC5.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10B.8C.5D.2.56.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为()A.2。
5B.1。
5C.2D.17.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A.①B.②C.①②D.①②③8.如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于()A.10B.12C.24D.489.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6B.8C.9D.1010.(如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N 为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.412.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.513.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤二、填空题14.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中___.15.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为_ .16.如图,在R t△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C=_________ .17.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于_________ .18.如图,圆柱形容器中,高为1。
(完整版)三角形的证明培优习题解析
三角形的证明培优习题解析1、 如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若CD= 2,求AD 的长.(1)证:∵AD ⊥BC,∠BAD=45°,∴⊿ADB 是等腰直角三角形,∠ABD=∠BAD∴AD=BD ;∵AB ⊥BC ,BE ⊥AC ,∴∠ACD+∠DAC=90°,∠ACD+∠CBE=90°,∴∠DAC=∠CBE,又∵∠ADC=∠BDF=90°,∴△ADC ≌△BDF(ASA),∴AC=BF,∵AB ⊥BC ,BE ⊥AC ,∴AE=EC ,即AC=2AE ,∴BF=AC=2AE 。
(2)∵△ABF ≌△CBF∴DF=CD=2∴在Rt △CDF 中,CF=22CD DF +=22)2()2(+=4=2∵BE ⊥AC ,AE=EC,∴AF=FC,∴AD=AF+DF=2+2 。
2、如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(Ⅰ)若设AP=x ,则PC=__________ ,QC=___________ ;(用含x 的代数式表示)(Ⅱ)当∠BQD=30°时,求AP 的长;(Ⅲ)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.2.解: (1)(6分)解法一:过P 作PE ∥QC则△AFP 是等边三角形,∵P 、Q 同时出发、速度相同,即BQ =AP∴BQ =PF∴△DBQ ≌△DFP ,∴BD =DF∵∠=BQD ∠BDQ =∠FDP =∠FPD =30°,∴BD =DF =FA =31AB =631 =2, ∴AP =2. 解法二: ∵P 、Q 同时同速出发,∴AQ =BQ设AP =BQ =x ,则PC =6-x ,QC =6+x在Rt △QCP 中,∠CQP =30°,∠C =60° ∴∠CQP =90°∴QC =2PC ,即6+x =2(6-x )∴x =2∴AP =2(2)由(1)知BD =DF而△APF 是等边三角形,PE ⊥AF ,∵AE =EF又DE +(BD +AE )=AB =6,∴DE +(DF +EF )=6,即DE +DE =6∵DE =3为定值,即 DE 的长不变3.(3分)(2013•临沂)如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是 3 .解答: 解:∵四边形ABCD 是菱形,∴BC=CD ,∠B=∠D=60°,∵AE ⊥BC ,AF ⊥CD∴AB •AE=CD •AF ,∠BAE=∠DAF=30°,∴AE=AF ,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF 是等边三角形,∴AE=EF ,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,过A 作AM ⊥EF ,∴AM=AE •cos60°=3,∴△AEF的面积是:EF•AM=×2×3=3.故答案为:3.4.(3分)(2013•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.5.(11分)(2013•威海)【操作发现】:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF 的长直角边DE重合.【问题解决】:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.解答:(1)由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴3,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴3BF=16,∴3,∵AG⊥BC,∠ABC=45°,∴BG=AG=43, ∴AG=DH , ∵AG ∥DH ,∴四边形AGHD 为矩形,∴AD=GH=BF ﹣BG ﹣HF=16﹣43﹣4=12﹣43.6.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC.⑴求证:△BAD ≌△AEC ; ⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.解析:(1)证明:∵AB=AC,∴∠B=∠ACB.又 ∵四边形ABDE 是平行四边形∴AE ∥BD , AE=BD ,∴∠ACB=∠CAE=∠B ,∴⊿DBA ≌⊿AEC(SAS) ………………4分(2)过A 作AG ⊥BC,垂足为G.设AG=x ,在Rt △AGD 中,∵∠ADC=450,∴AG=DG=x ,在Rt △AGB 中,∵∠B=300,∴BG=x 3,………………6分又∵BD=10.∴BG-DG=BD,即103=-x x ,解得AG=x=5351310+=-.…………………8分∴S 平行四边形ABDE =BD·AG=10×(535+)=50350+.………………10分7.(4分)(2013•淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则DE 的长为( )解答: ∵BQ 平分∠ABC ,BQ ⊥AE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD ﹣BC=6,8.(2013聊城)如图,在等边△ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .解:如图,∵在等边△ABC 中,∠B=60°,AB=6,D 是BC 的中点,∴AD ⊥BD ,∠BAD=∠CAD=30°,∴BD=21AB =621 =3 AD= ==3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE ,∴∠DAE=∠EAC+∠BAD=60°,∴△ADE 的等边三角形,∴DE=AD=3,即线段DE 的长度为3.9. (2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .证明:∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC ,CD=CE ,∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,,∴△ACE ≌△BCD (SAS ),∴BD=AE .10.(2013•湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB=BC ,∠ABC=90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB=PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由(2)知BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′11.(2013菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.①证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵AB=CB,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°﹣∠BCD=90°﹣15°=75°;12.(4分)(2013•莱芜)如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD= .解:连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CD=DF=CD=AB=,由折叠的性质可得AE=A'E ,∴A'E=DE ,在Rt △EA'F 和Rt △EDF 中, ∵,∴Rt △EA'F ≌Rt △EDF (HL ),∴A'F=DF=, BF=BA'+A'F=AB+DF=1+=,在Rt △BCF 中,BC==.∴AD=BC=. 13.(7分) (2013北京)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料 ):第5讲《三角形的证明》全章复习与巩固(提高)
《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.212【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2019•南开区一模)问题背景:,BC BE BFBF =⎧⎨=⎩在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答. 类型三、线段垂直平分线4. 如图,在锐角△ABC 中,AD、CE 分别是BC 、AB 边上的高,AD 、CE 相交于F ,BF 的中点为P ,AC 的中点为Q ,连接PQ 、DE .(1)求证:直线PQ 是线段DE 的垂直平分线;(2)如果△ABC 是钝角三角形,∠BAC >90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P 、Q 都在线段DE 的垂直平分线上即可.即证P 、Q 分别到D 、E 的距离相等.故连接PD 、PE 、QD 、QE ,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.(2)当△ABC 为钝角三角形时,(1)中的结论仍成立.如图,△ABC 是钝角三角形,∠BAC >90°.原题改写为:如图,在钝角△ABC 中,AD 、CE 分别是BC 、AB 边上的高,DA 与CE 的延长线 交于点F ,BF 的中点为P ,AC 的中点为Q ,连接PQ 、DE .求证:直线PQ 垂直且平分线段DE .证明:连接PD ,PE ,QD ,QE ,则PD 、PE 分别是Rt △BDF 和Rt △BEF 的中线,∴PD=BF ,PE=BF , ∴PD=PE ,点P 在线段DE 的垂直平分线上.同理可证QD=QE ,∴点Q 在线段DE 的垂直平分线上.∴直线PQ 垂直平分线段DE .【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一举一反三:【变式】在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A=40度.(1)求∠M 的度数;(2)若将∠A 的度数改为80°,其余条件不变,再求∠M 的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A 改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.1212【答案】类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2019春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2.(2019秋•仙游县期中)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60° D.有一个内角小于60°3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料 ):第5讲《三角形的证明》全章复习与巩固(基础)
《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a 的等边三角形它的高是,面积是;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL 一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、 三角形的证明2a 24a 121. 已知:点D 是△ABC 的边BC 的中点,DE⊥AC,DF⊥AB,垂足分别为E ,F ,且BF=CE . 求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE⊥AC,DF⊥AB,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D 是BC 的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴△BDF 与△CDE 为直角三角形,在Rt△BDF 和Rt△CDE 中,∴Rt△BFD≌Rt△CED(HL ),∴∠B=∠C,∴AB=AC,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2019秋•江阴市校级期中)已知:如图,△AMN 的周长为18,∠B,∠C 的平分线相交于点O ,过O 点的直线MN∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN∥BC,∴∠BOM=∠OBC,∠CON=∠OCB,∵∠B,∠C 的平分线相交于点O ,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON ,∵△AMN 的周长为18,,BF CE BD CD =⎧⎨=⎩∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,【思路点拨】又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D 为AB 中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在R t△ADE 中,根据勾股定理,得,,∵∠A=30°,∠C=90°,∴BC=在Rt△ABC中,=3,∴S △ABC =. 【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB 的两边上分别取点M ,N ,使OM=ON ,再过点M 作OB 的垂线,过点N 作OA 的垂线,垂足分别为C 、D ,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP 就是∠AOB 的平分线吗?②请你只用三角板设法作出图∠AOB 的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt △OCM 与Rt △ODN 中,依据ASA 得出OC=OD;在Rt △O CP 与Rt △O DP 中,因为OP=OP ,OC=OD 得出Rt△O C P≌Rt△O DP (HL ),所以∠C OP=∠DOP ,即OP 平分∠AOB. ②可作出两个直角三角形,利用HL 定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt △OCM 和Rt △ODN 中,∴△OCM ≌△ODN (AAS ),∴OC=OD ,在△OCP 与△ODP 中,∵∴Rt △OCP ≌Rt △ODP (HL ),=1212COM DON OCM ODN OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩,OC OD OP OP=⎧⎨=⎩∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE⊥OA,ED⊥OB,∴∠OCE=∠ODE=90°,在Rt△OCE 与Rt△ODE 中,∵,∴Rt△OCE≌Rt△ODE(HL ),∴∠EOC=∠EOD, ∴OE为∠AOB的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2019秋•麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A 的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE 是AB 的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,OC OD OE OE=⎧⎨=⎩∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC;∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2019秋•兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.《三角形的证明》全章复习与巩固(基础)【巩固练习】一、选择题1.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数是()A. 35°B. 40°C. 70°D. 110°2.三角形的三个内角中,锐角的个数不少于()A. 1 个B. 2 个C. 3个D.不确定3.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,其中一定可以拼成的图形的是()A.①②③B.②③④C.①③④D.①②④4.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A. AD=AE B.∠AEB=∠ADC C. BE=CD D. AB=AC5.(2019•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.3 D.+26.(2019•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对7.有两个角和其中一个角的对边对应相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对8.面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对二、填空题9.如果等腰三角形的一个底角是80°,那么顶角是_________ 度.10.△ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大12°,那么∠B= _________ 度.11.(2019秋•洛阳校级月考)如果a,b,c为三角形的三边,且(a﹣b)2+(a﹣c)2+|b ﹣c|=0,则这个三角形是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_________ ,使△AEH≌△CEB.13.等腰直角三角形一条边长是1 cm,那么它斜边上的高是_________ .14.在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:_________ .15.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是_________ .16.已知△ABC中,∠A=90°,角平分线BE、CF交于点O,则∠BOC= _________ .三、解答题17.(2019秋•定州市期中)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.18.(2019秋•太和县期中)如图:△ABC中,∠ABC和∠ACB的平分线交于F点,过F点作DE∥BC,分别交AB、AC于点D、E.求证:(1)BD=DF.(2)△ADE的周长等于AB+AC.19. 如图,D,E是△ABC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.20.(2019春•建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.【答案与解析】一.选择题1.【答案】B;【解析】解:设∠A的度数是x,则∠C=∠B=,∵BD平分∠ABC交AC边于点D∴∠DBC=,∴++75=180°,∴x=40°.∴∠A的度数是40°.故选B.2.【答案】B;【解析】解:由三角形内角和为180度可知:三角形的三个内角中,锐角的个数不少于2个.故选B.3.【答案】D;【解析】解:两个全等的直角三角形,一定可以拼成平行四边形(直角边重合,两直角不邻),等腰三角形(直角边重合,两直角相邻),以及矩形(斜边重合);若为等腰直角三角形,则可拼成正方形;所以①②④一定可以拼接而成,③不一定拼成.4.【答案】B;【解析】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;5.【答案】C;【解析】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.6.【答案】C;【解析】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.7.【答案】A;【解析】解:有两个角和其中一个角的对边对应相等,符合“角角边”判定方法,所以,两个三角形必定全等.8.【答案】C;【解析】解:因为两个面积相等的三角形,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.二、填空题9.【答案】 20;【解析】解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是80°,∴另一个底角也是80°,∴顶角的度数为180°﹣80°﹣80°=20°.10.【答案】28;【解析】解:设∠B=x,则∠A=2x,∠C=3x+12°,∵∠A+∠B+∠C=180°,∴x+2x+3x+12°=180°,解得x=28°.故答案为:28.11.【答案】等边三角形;【解析】解:∵(a﹣b)2+(a﹣c)2+|b﹣c|=0,∴a﹣b=0,a﹣c=0,b﹣c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形;故答案为:等边三角形.12.【答案】AH=CB或EH=BE或AE=CE;【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.13.【答案】cm或cm;【解析】解:(1)当1cm是斜边,则其高就是斜边1的一半是cm;(2)当其直角边是1cm时,根据勾股定理得其斜边是cm,再根据其高是斜边的一半得高是cm;所以它斜边上的高是cm或cm.14.【答案】在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.【解析】解:把①②作为条件③作为结论,∵AB=AD,∠BAC=∠DAC,又∵AC=AC,∴△ABC≌△ADC,∴BC=BD.故答案为:在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.15.【答案】PA=PB=PC;【解析】∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.16.【答案】135°;【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为135°.三、解答题17.【解析】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
初中数学三角形证明巩固练习含答案
三角形证明巩固练习一.选择题(共35小题)1.如图,△ABC中,∠ACB=90°,∠CAB=30°,BD是∠ABC的平分线,DE⊥AB,垂足为E,CD=2,则AC=()A.4B.4C.6D.62.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,AB=20,CD=6,若∠C=90°,则△ABD面积是()A.120B.80C.60D.403.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为()A.13B.14C.18D.214.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,连接EF交AD 于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,△AEF是等边三角形,其中正确的结论的个数为()A.2B.3C.4D.15.如图,在△ABC中,AB=8,AC=5,过点A的直线DE∥CB,∠ABC与∠ACB的平分线分别交DE于E,D两点,则DE的长为()A.10B.13C.14D.186.如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为()A.30°B.120°C.30°或120°D.30°或75°或120°7.如图在△ABC中,AD是它的角平分线,AB=9,AC=6,BC=10,则CD的长为()A.B.4C.4.5D.68.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P 到直线AC的距离为4,则点P到直线AB的距离为()A.4B.3C.2D.19.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D,如果AC=5cm,那么AE+DE等于()A.3cm B.4cm C.5cm D.6cm10.在△ABC中,AB=AC,AC的垂直平分线DE交AC于点D,交BC于点E,且∠BAE =90°,若DE=1,则BE=()A.4B.3C.2D.无法确定11.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.24B.48C.54D.10812.如图,△ABC的面积为14cm2,AP垂直于∠ABC的平分线BP于P,则△PBC的面积为()A.4cm2B.5cm2C.6cm2D.7cm213.如图,在△ABC中,∠A=90°,CE平分∠ACB,ED垂直平分BC,CE=4,ED=2,则AB的长为()A.5B.6C.10D.1214.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°15.如图,CE平分∠BCD且CE⊥BD于点E,∠DAB=∠ABD,AC=24,△BCD的周长为34,则BD的长为()A.10B.12C.14D.1616.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°17.如图,△ABC中,BP平分∠ABC,AP⊥BP于P,连接PC,若△P AB的面积为3.5cm2,△PBC的面积为4.5cm2,则△P AC的面积为()A.0.25cm2B.0.5cm2C.1cm2D.1.5cm218.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是()A.3B.4C.5D.719.如图,在△ABC中,AD平分∠BAC,AD=BD,∠B=50°,则∠C的度数是()A.35°B.30°C.42°D.20°20.如图,点P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D,若PD=2,则点P 到边OB的距离是()A.4B.C.2D.121.如图,AD是∠BAC的平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=4,则AC的长是()A.5B.6C.8D.722.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°23.如图,在△ABC中,∠A为钝角,AB=20cm,AC=12cm,点P从点B出发以3cm/s 的速度向点A运动,点Q同时从点A出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ是等腰三角形时,运动的时间是()A.2.5s B.3s C.3.5s D.4s24.如图,在△ABC中,DE是AB的垂直平分线,且分别交AB、AC于点D和E,∠A=50°,∠C=60°,则∠EBC为()A.30°B.20°C.25°D.35°25.如图,点A在线段BC的垂直平分线上,D为AB上一点,且AD=DC,∠A=28°,则∠BCD的度数()A.38°B.48°C.62°D.76°26.如图,PM=PN,∠BOC=30°,则∠AOB的度数()A.30°B.45°C.60°D.50°27.如图,△ABC中,AD是角平分线,BE是△ABD中的中线,若△ABC的面积是24,AB =5,AC=3,则△ABE的面积是()A.15B.12C.7.5D.628.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC的最大值为()A.40B.28C.20D.1029.如图,在△ABC中,已知BC=13,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.11B.13C.14D.1530.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=5,则DF 的长度是()A.6B.5C.4D.331.如图,在△ABC中,DE垂直平分AC,若BC=22cm,AB=14cm,则△ABD的周长为()A.24cm B.25cm C.30cm D.36cm32.如图:一把直尺压住射线OB,另一把完全一样的直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确33.如图,在△ABC中,∠A=108°,AC的垂直平分线MN交BC于点D,且AB+BD=BC,则∠B的度数是()A.24°B.26°C.48°D.52°34.如图,AD平分∠BAC,DE∥AB交AC于E,DF⊥AB于点F,若∠BAC=30°,AE=2,则DF的长为()A.B.1C.D.235.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个二.填空题(共10小题)36.已知△ABC中,∠ACB=90°.点I为△ABC各内角平分线的交点,过I点作AB的垂线,垂足为H.若BC=6,AC=8,AB=10,则IH=_______.37.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为_______.38.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=_______.39.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC 于点E,AC=8cm,△ABE的周长为15cm,则AB的长是_______.40.如图,△ABC中,∠A=70°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则∠EDF=_______度.41.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=8cm,DE=3cm,则△BCD的面积为_______cm2.42.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.DE=12,BC=14,则△BCD的面积为_______.43.已知:如图,四边形ABCD中,∠ABC=∠ADC=90°,AC与BD相交于点O,E、F 分别是AC、BD的中点.则∠EFO=_______.44.若△ABC的周长为41cm,边BC=17cm,且AB<AC,角平分线AD将△ABC的面积分3:5的两部分,则AB=_______cm.45.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE⊥BC于E,AD=3,DC=4,则DE=_______.三.解答题(共5小题)46.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.47.在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分线段AB.(1)求∠A;(2)若DE=2cm,BD=4cm,求AC的长.48.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.49.如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC的度数.50.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D,AC=4cm,CB=8cm,求△ACE的周长.三角形证明巩固练习参考答案与试题解析一.选择题(共35小题)1.解:∵,△ABC中,∠ACB=90°,∠CAB=30°,BD是∠ABC的平分线,DE⊥AB,∴DC=DE=2,∴AD=4,∴AC=4+2=6,故选:C.2.解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=6,∴△ABD面积=,故选:C.3.解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故选:A.4.解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AD平分∠BAC,∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴AE=AF,∴△AEF是等边三角形,④正确.故选:B.5.解:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠E=∠EBC,∴∠E=∠ABE,∴AB=AE,同理可得:AD=AC,∴DE=AD+AE=AC+AB=5+8=13,故选:B.6.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当D在D1时,OD=PD,∵∠AOP=∠OPD=30°,∴∠ODP=180°﹣30°﹣30°=120°;②当D在D2点时,OP=OD,则∠OPD=∠ODP=(180°﹣30°)=75°;③当D在D3时,OP=DP,则∠ODP=∠AOP=30°;综上所述:120°或75°或30°,故选:D.7.解:作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,===,∴=,∵BC=10,∴CD=BC=4,故选:B.8.解:如图,过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,∵BD、CE是△ABC的外角平分线,∴PF=PG,PG=PH,∴PF=PG=PH,∵点P到AC的距离为4,∴PH=4,即点P到AB的距离为4.故选:A.9.解:∵在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,∴CE=DE,∴AE+DE=AE+CE=AC=5cm,故选:C.10.解:∵AB=AC,∴∠B=∠C,又∵AC边的垂直平分线交BC于点E,∴AE=CE,∴∠CAE=∠C.∴∠B+∠C+∠BAE+∠CAE=180°,即3∠B+90°=180°,∴∠B=30°∴∠C=30°,∵DE=1,∴EC=2=AE,∴BE=4,故选:A.11.解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,CD=4,∴DE=CD=4,∵AC=12,AB=15,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.12.解:如图,延长AP,交BC于点D,∵AP⊥BP,∴∠BP A=∠BPD=90°,∵BP平分∠ABC,∴∠ABP=∠DBP,又∵BP=BP,∴△ABP≌△DBP(ASA),∴S△ABP=S△DBP,AP=DP,∴△APC与△DPC等底同高,∴S△APC=S△DPC,∴S△ABP+S△APC=S△DBP+S△DPC,即S△BPC=S△ABC=×14=7cm2,故选:D.13.解:∵DE是BC边的垂直平分线,∴BE=EC=5,ED⊥BC,∵CE平分∠ACB,EA⊥AC,∴EA=ED=3,∴AB=AE+EB=ED+EC=5+1=6.故选:B.14.解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.15.解:∵CE平分∠BCD且CE⊥BD于点E,∴△DCB是等腰三角形,∴DC=CB,∵∠DAB=∠ABD,∴AD=DB,∵AC=AD+DC=DB+DC=24,∵△BCD的周长=DC+DB+CB=34,∴CB=34﹣24=10,∴DC=10,∴BD=24﹣10=14,故选:C.16.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.17.解:延长AP交BC于D,∵BP平分∠ABC,AP⊥BP,∴∠ABP=∠DBP,∠APB=∠DPB=90°,在△ABP与△DBP中,,∴△ABP≌△DBP(ASA),∴AP=PD,∴S△PBD=S△ABP=3.5cm2,∵△PBC的面积为4.5cm2,∴S△CPD=1cm2,∴△P AC的面积=S△CPD=1cm2,故选:C.18.解:过点D作DE⊥AB交AB于点E,如图所示:∵∠C=90°,∴DC⊥AC,又∵AD是∠BAC的角平分线,DE⊥AB,∴CD=ED,又∵BC=BD+DC,BC=7,BD=4,∴DC=BC﹣BD=7﹣4=3,∴ED=3,即点D到AB的距离是3,故选:A.19.解:∵∠B=50°,AD=BD,∴∠BAD=∠B=50°.∵AD平分∠BAC,∴∠BAC=2∠BAD=100°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣100°=30°.故选:B.20.解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选:C.21.解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=9,∴AC=5.故选:A.22.解:∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,∴∠BPC=180°﹣65°=115°.故选:B.23.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选:D.24.解:∠ABC=180°﹣∠A﹣∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=50°,∴∠EBC=70°﹣50°=20°,故选:B.25.解:∵点A在线段BC的垂直平分线上,∴AB=AC,∵∠A=28°,∴∠ACB===76°,∵AD=DC,∴∠ACD=∠A=28°,∴∠BCD=∠ACB﹣∠ACD=76°﹣28°=48°.故选:B.26.解:如图所示:∵点P在∠AOB的内部,PM⊥AO,PN⊥OB,PM=PN,∴点P在∠AOB的角平分线上,∴OC平分∠AOB,∵∠BOC=30°,∴∠AOB=60°,故选:C.27.解:如图过点D作DF⊥AB,DG⊥AC,垂足分别为F、G,∵AD是角平分线,∴DF=DG,设DF=DG=h,S△ABC=S△ABD+S△ADC24=AB•DF+AC•DG∴5h+3h=48解得h=6,∴S△ABD=×5×6=15∵BE是△ABD中的中线,∴S△ABE=S△BDE=S△ABD=7.5.故选:C.28.解:如图:延长AB,CD交点于E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC面积最大,即S△BDC最大面积=××10×4=10.故选:D.29.解:∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DB=DA,EC=EA,∴△ADE的周长=AD+AE+DE=BD+DE+EC=BC=13,故选:B.30.解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=5,故选:B.31.解:∵DE垂直平分AC,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=36(cm).故选:D.32.解:如图所示:过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:B.33.解:∵DM是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C,∴∠ADB=2∠C,∵AB+BD=BC,DC+BD=BC,∴AB=DC,∴AB=AD,∴∠B=∠ADB=2∠C,由三角形内角和定理得,∠B+∠C+∠BAC=180°,解得,∠B=48°,故选:C.34.解:过D作DG⊥AC,∵DE∥AB,∴∠GED=∠CAB=30°,∵AD是∠CAB的平分线,∴∠EAD=15°,∴∠EDA=30°﹣15°=15°,∴AE=ED=2,在Rt△GED中,∠GED=30°,DE=2,∴DG=1,∵DF⊥AB,AD是∠CAB的平分线,∴DF=DG=1,故选:B.35.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.二.填空题(共10小题)36.解:作IE⊥AC于E,IF⊥BC于F,连接IA、IB、IC,∵I为△ABC各内角平分线的交点,IE⊥AC,IF⊥BC,IH⊥AB,∴IE=IF=IH,则×AB×IH+×AC×IE+×BC×IF=×BC×AC,解得,IH=2,故答案为:237.解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=7,∴D到OA的距离等于DE的长,即为7.故答案为:7.38.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.39.解:∵DE是BC的垂直平分线,∴BE=CE,∴△ABE的周长=AB+AE+BE=AB+AE+CE=AB+AC,∵AC=8cm,△ABE的周长为15cm,∴AB+8=15,解得AB=7cm,故答案为:7cm.40.解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵∠A=70°,∴∠B+∠C=180°﹣∠A=108°,∴∠EDB+∠FDC=110°,∴∠EDF=70°,故答案为:70°.41.解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=3,∴△BCD的面积=×BC×DF=12(cm2),故答案为:12.42.解:作DF⊥BC于F,∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=12,∴△BCD的面积=×BC×DF=×14×12=84,故答案为:84.43.解:连接EB、ED,∵∠ABC=90°,E是AC的中点,∴BE=AC,同理,DE=AC,∴EB=ED,又F是BD的中点,∴EF⊥BD,∴∠EFO=90°,故答案为:90°.44.解:作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵AD将△ABC分为面积比为3:5的两部分,∴AB:AC=3:5,∵△ABC的周长为41cm,边BC=17cm,∴AB+AC=24cm,设AB=3xcm,则AC=5xcm,则3x+5x=24,解得,x=3,则AB=3x=9cm,故答案为:9.45.解:∵∠A=90°,∴DA⊥BA,又∵BD是∠ABC的平分线,DE⊥BC,∴DE=AD,∵AD=3,∴DE=3,故答案为:3.三.解答题(共5小题)46.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.47.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴∠A=∠DBE.∵BD平分∠ABC,∴∠CBD=∠DBE.∵∠C=90°,∴∠A=∠DBE=∠CBD,∴∠A=30°;(2)∵∠C=90°,∴DC⊥BC,∵DE⊥BA,BD平分∠ABC,DE=DC=2cm,∴BD=AD=4cm,∴AC=AD+DC=6cm.48.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.49.解:∵△ABC是等边三角形,AD为中线,∴AD⊥BC,∠CAD=30°,∵AD=AE,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.50.解:∵DE是AB边的垂直平分线,∴EA=EB,∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+BC=12(cm).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础. 要点二、直角三角形 1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ) 要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线. 要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围; ②利用线段的垂直平分线定理可解决两条线段的和距离最短问题. 要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 3.如何用尺规作图法作出角平分线 要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD . 【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE , 即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形, ∴AC=CD ,CE=CB , ∵在△ACE 与△DCB 中, ,AC DCACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ), ∴AE=BD , ∠CAE=∠CDB ; ∵∠AFC=∠DFH ,∠FAC+∠AFC=90°, ∴∠DHF=∠ACD=90°, ∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点. 举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . (1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BEBF BF=⎧⎨=⎩ ∴△BCF ≌△BEF , ∴CF=EF ; ∵△ABC ≌△DBE , ∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( ) ①两个锐角对应相等的两个直角三角形全等, ②斜边及一锐角对应相等的两个直角三角形全等, ③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. A.1 B.2 C.3 D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可; 【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确; 所以,正确的说法个数是3个. 故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(•南开区一模)问题背景: 在△ABC 中,AB 、BC 、AC 三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2.(秋•仙游县期中)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60° D.有一个内角小于60°3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。