第七章线粒体的结构与功能
线粒体的结构和功能
结构特点:内 有蛋白质和脂 质,具有一定
的流动性
功能:参与线 粒体中的氧化
磷酸化反应
与线粒体功能 的关系:膜间 间隙的状态影 响线粒体的能
量代谢
线粒体基质
单击添加标题
定义:线粒体基质是线粒体内膜和外膜之间的区域,是线粒体中最重要 的组成部分之一。
单击添加标题
主要成分:线粒体基质主要由水、无机盐、脂类、氨基酸、核苷酸和维 生素等组成。
线粒体在信号转导过程中起着关键作用,它能够通过调节能量代谢和氧化还原状 态来影响信号转导过程。
线粒体通过多种途径参与信号转导,包括分泌因子、自噬、细胞凋亡等,这些途 径相互作用,共同调节细胞的命运和功能。
线粒体在信号转导中的重要性和作用机制是当前研究的热点之一,深入了解线粒 体在信号转导中的作用将有助于揭示许多疾病的发病机制和寻找新的治疗策略。
铁代谢和铁储存
铁是线粒体中的重要元素,参与呼吸链中的电子传递。
线粒体通过吸收和利用铁,参与血红素的合成,维持铁的平衡。 当线粒体中的铁含量过高时,会通过铁蛋白将其储存起来,防止铁过载对 细胞造成损害。 线粒体中的铁还可以参与氧化应激反应和细胞凋亡等生物学过程。
THANKS
汇报人:XX
单击添加标题
功能:线粒体基质是细胞呼吸的主要场所,其中含有大量的酶,能够催 化 三 羧 酸 循 环 和 氧 化 磷 酸 化 等 反 应 , 产 生 AT P , 为 细 胞 提 供 能 量 。
单击添加标题
结构特点:线粒体基质呈晶体状结构,其中包含多种蛋白质和酶,这些 蛋白质和酶按照一定的排列方式和空间构象组成了各种反应体系。
Part Two
线粒体的功能
能量代谢
线粒体是细胞能量 代谢的主要场所, 通过氧化磷酸化过 程产生ATP,为细胞 提供能量。
线粒体的功能和结构
线粒体的功能和结构线粒体是细胞内的重要器官,广泛存在于动物、植物和真核微生物的细胞中。
它承担着维持细胞生命活动所必需的重要功能。
本文将围绕线粒体的功能和结构展开论述。
一、线粒体的结构线粒体是一个有独立膜结构的细胞器,具有双层膜结构,并且在许多方面类似于细菌。
它由外膜、内膜、内腔(基质)、内膜嵴(克里斯托)和核糖体组成。
1. 外膜:外膜是线粒体最外层的膜,类似于细胞膜。
它包裹着整个线粒体,与其他细胞结构相连。
2. 内膜:内膜是线粒体内部的第二层膜,相对于外膜来说更为密集。
内膜上有许多折叠形成的内膜嵴,增加了表面积,有利于能量产生。
3. 内腔(基质):内腔是线粒体内外膜之间的区域,内部含有许多溶解着各种物质的液体。
4. 内膜嵴(克里斯托):内膜嵴是内膜上的许多折叠结构,可以增加表面积,提供更多的位置供氧化磷酸化反应进行。
5. 核糖体:线粒体内还含有许多核糖体,用于合成线粒体内所需的蛋白质。
二、线粒体的功能1. 能量转换:线粒体是细胞中主要的能量产生场所,通过氧化磷酸化反应将葡萄糖等有机物氧化成二氧化碳和水,释放出大量的能量(ATP),供细胞生命活动所需。
2. 脂肪酸代谢:线粒体参与脂肪酸代谢的过程,通过β-氧化反应,将脂肪酸分解成较小的分子,进而产生能量。
3. 钙离子存储:线粒体内膜上存在着许多能够结合钙离子的通道蛋白,可将细胞负荷过多的钙离子转运到线粒体内部,起到细胞内钙离子浓度调节的作用。
4. 细胞凋亡调控:线粒体在细胞凋亡过程中发挥着重要的调控作用。
当细胞受到损伤或者某些刺激时,线粒体会释放细胞凋亡信号蛋白,触发细胞凋亡的发生。
5. 合成反应:线粒体参与了一些重要物质的合成反应,比如血色素、胆固醇等物质的合成。
6. 抗氧化作用:线粒体内有一系列与氧自由基损伤相关的抗氧化酶,如超氧化物歧化酶、谷胱甘肽过氧化酶等,可以中和细胞内过多的活性氧分子,维持细胞内氧化还原平衡。
结论:线粒体作为细胞内的重要器官,发挥着多种功能。
第七章 线粒体
第七章线粒体西北农林科技大学生命科学学院李绍军17334040@本章概要:7.1线粒体的形态与结构7.2线粒体的化学组成7.3线粒体的功能7.4线粒体质量控制与线粒体自噬7.5线粒体损伤与疾病7.6线粒体与细胞凋亡7.7线粒体的自主性问题7.8线粒体的分裂与增殖7.9线粒体的起源学习重点:1、线粒体的结构与功能。
2、线粒体与疾病、细胞凋亡之间的关系。
线粒体和叶绿体是能量转换的细胞器,细胞内各项生化活动所需的能量,主要由线粒体和叶绿体提供,故有细胞“动力厂”之称。
线粒体是在动物细胞中首先由本达(Benda,1897)发现的,命名为“mitochondria,mitochondrion”(来源于希腊字mitos=线,chondrion=粒),其后,在植物细胞(Meves,1904)中也看到了。
它们普遍地存在于真核生物的所有细胞中。
7.1线粒体的形态与结构7.1.1 形状、大小、数目和分布线粒体是细胞中最丰富的细胞器之一,通常占细胞质容积的20%~25%,其数目、形态受细胞对能量的需求的调节,因而是动态变化的。
线粒体各种结构类型模式图线粒体形状在一定的条件下是可以可逆的转变的,其转变方式有3种:①由线状断裂成小球或颗粒,②颗粒膨大呈中空的球状,③由球状、粒状或短棒状转变为线状。
6The Fusion and Fission of Mitochondria7.1.2 结构线粒体的基本结构可分为4 部分,①线粒体表面的外膜(outer membrane),内含脂肪和蛋白质,各占一半;②内膜(inner membrane),向内折叠伸出许多形式不同的嵴,形成复杂的内部膜系统,嵴内为嵴内腔;③内外膜间为8.5nm 厚的电子透明层,称为膜间隙(intermembrane space)它与嵴内腔相贯通;④在内膜以内的基质(matrix),为含有可溶性蛋白质和含钙的基质颗粒(matirx granule)等物质的溶液。
第七章线粒体
H+ H+
H+
H+
线粒体基质
H+
H+
H+
H+
电化学梯度推动ATPase合成ATP
化学渗透假说
细 胞 质
线粒体外膜
H+ H+
线粒体内膜
H+
H+
H+ H+
H+
H+
复合体 Ⅲ
H+
复合体 Ⅳ
H+ H+
H
ATPase
H+ H+ H+ H+
ADP
H+ H+
ATP
电子传递链 化学渗透假说
线粒体外膜
细 胞 质
第七章 线粒体
Mitochondria
广东医学院基础学院 生物教研室 张华华
生命活动 生命活动需要的能量: 直接来自ATP,主要来自ATP
Mitochondria “Power plants” of the cell
细胞的“动力工 厂”
生物体内的能量代谢
主要能源物质 直接能源物质 ATP 细胞呼吸 释放能 量 用于各项生 命活动
nucleus
cytosol
matrix
线粒体:半自主性细胞器
(Mitochondrion: semiautonomous organelle)
细胞核编码多肽进入线粒体基质的过程
前体蛋白(precursor):转运入线粒体的蛋白质,
在转运到线粒体之前称为前体蛋白。
导肽:在其N-末端都有一段20~80个氨基酸组成
Leber遗传性视神经病(LHON)
视神经与视网膜神经元退化,发病较早,表现为急性亚急性 视力减退,导致失明。男性发病率为女性5倍,原因不明。
34ATP +CO2+H2O
糖酵解
细胞线粒体的结构与功能
细胞线粒体的结构与功能细胞线粒体是细胞内的一个重要的器官,它类似于一个小工厂,负责细胞内的能量产生和负载运输等生物活动。
在细胞内,线粒体的数量比较丰富,特别是在对能量需求高的组织和器官中,比如肌肉、心脏和神经元等,线粒体数量更为突出。
一、线粒体的结构线粒体是一个椭圆形的细胞器,大小约为1~5微米。
它含有两层膜系统,内膜和外膜。
内膜是向内凹陷的,并呈现出许多不同分子活性的复合物,这些复合物叫做呼吸链。
呼吸链从外膜转移到内膜,然后到了内膜上,呼吸链便开始催化化学反应;而外膜则是一个光滑的膜。
线粒体的内膜和外膜之间形成了线粒体间隙,其中储存着不同分子的粘液状物质,这个空间还可以储存不同分子和细胞器的碎片等物质。
线粒体中特别有趣的结构是线粒体基质和线粒体内质网。
基质是一个像胶状物一样的液体,其中储存着非常多的酶、核酸和其他小分子;线粒体内质网则是一个非常小的网络结构,可以让基质的分子进行扩散。
二、线粒体的功能线粒体的主要功能是细胞内的能量产生,这个过程就叫做酶促作用。
线粒体内的呼吸链酶系统可以让摄入的营养物质被破坏,产生出ATP分子来,这个分子就是细胞内能量生产的媒介物,它可以在细胞内和细胞外转移。
细胞内的许多需要能量的细胞活动都需要ATP这个动力源,比如,肌肉的收缩、神经传递和呼吸等都离不开这个分子。
此外,线粒体还有其他多种功能。
一方面,线粒体还具有调节细胞死亡、调节钙离子浓度和构成异染色质的功能;另一方面,线粒体则可以通过与其他细胞器的交流进行维持本身的平衡。
三、线粒体的重要性线粒体的重要性不仅在于其功能,而且还在于其与人类疾病之间的联系。
已知,线粒体中有许多功能基因,缺陷可以引起线粒体DNA突变及代谢疾病和神经性疾病。
例如,线粒体疾病可以导致一些代谢性疾病,如肌肉疾病和某些神经性疾病。
此外,线粒体的突变也与肿瘤的形成相关。
综上所述,线粒体是细胞内非常重要的器官,它不仅负责能量的产生,而且还参与了很多细胞内重要的生化反应。
线粒体的结构与功能
线粒体的结构与功能线粒体是细胞中的一个重要细胞器,它在细胞内发挥着关键的功能。
线粒体的结构和功能密切相关,对于细胞的正常运作以及人体的生命活动具有重要意义。
一、线粒体的结构线粒体是一个双层膜结构的细胞器,它由外膜、内膜、内膜间隙、基质以及线粒体DNA等组成。
外膜是线粒体的外层,具有较为松散的结构,内膜则是线粒体的内层,具有许多褶皱,形成了称为线粒体内膜嵴的结构。
内膜间隙是外膜和内膜之间的空间,基质则是线粒体内部的液体环境,其中含有线粒体DNA和许多线粒体蛋白质。
二、线粒体的功能线粒体是细胞中的“动力工厂”,它主要参与细胞的能量代谢和细胞呼吸过程。
线粒体内存在着呼吸链和三羧酸循环这两个重要的能量代谢途径。
1. 呼吸链呼吸链是线粒体内的一系列电子传递过程,它通过一系列的氧化还原反应将化学能转化为电化学能。
呼吸链位于线粒体内膜上,包括复合物I至复合物IV和ATP合成酶。
在呼吸链过程中,电子从NADH和FADH2等电子供体逐步传递给氧分子,产生水,并释放出大量的能量。
这些能量被用于合成ATP,提供给细胞进行各种生物学过程。
2. 三羧酸循环三羧酸循环是线粒体内的一个循环反应,它将葡萄糖等有机物分解为二氧化碳和水,并释放出能量。
在三羧酸循环中,葡萄糖被氧化为乙酰辅酶A,然后通过一系列反应生成丰富的电子供体NADH和FADH2。
这些电子供体将进一步参与呼吸链反应,最终产生ATP。
除了能量代谢,线粒体还具有其他重要的功能。
3. 钙离子调节线粒体在细胞内钙离子的调节中起着重要作用。
它能够吸收和释放钙离子,并参与细胞内钙离子浓度的平衡。
钙离子的平衡对于细胞的正常功能和细胞信号传导至关重要,而线粒体在其中扮演着重要的角色。
4. 细胞凋亡调控线粒体还参与细胞凋亡的调控。
在细胞凋亡过程中,线粒体会释放出细胞色素c等蛋白质,进而激活半胱氨酸蛋白酶家族,引发细胞凋亡。
细胞凋亡是维持组织和器官正常发育的重要过程,而线粒体在其中发挥着重要作用。
第七章线粒体的结构与功能PPT课件
一.线粒体的形态、大小和分布 形态:光镜: 线状、粒状、短杆状;有的圆形、哑铃形、星形;还有分枝状、环状等
*
线粒体的形态
光学显微镜下线粒体的形态
返回目录
*
化学渗透学说示意图
*
细胞氧化:在酶的催化下,氧将细胞内各种供能物质氧化而释放能量的过程。由于细胞氧化过程中,要消耗O2释放CO2和H2O所以又称细胞呼吸。
*
细胞氧化的基本过程
1、酵 解: 在细胞质基质内进行,反应过程不需要氧——无氧酵解
2、乙酰辅酶A生成: 线粒体基质内进行
3、三羧酸循环: 在线粒体基质内进行
线粒体的形态多种多样, 一般呈线状,也有粒状或短线状。细胞的生理状况发生变化时线粒体的形态亦将随之而改变。
*
线粒体的数量
同一类型细胞中,线粒体的数目是相对稳定的。 在不同类型的细胞中线粒体的数目相差很大。 生理活动旺盛的细胞(心肌细胞)线粒体多。
数百 ~ 数千个
3 105万个(有些卵母细胞)
特征酶:苹果酸脱氢酶
氧化还原酶 37%*源自线粒体各部分蛋白及酶的分布
线粒体的化学组成
线粒体的化学组分主要是由蛋白质、脂类和水份等组成
红色标注各部分的标志酶
*
线粒体:提供细胞95%以上的能量--- 细胞内的动力工厂 糖酵解:提供细胞少量的能量
细胞内的供能物质:主要糖类
*
知识回顾:真核细胞中的氧化作用 糖的氧化: 葡萄糖→细胞→ 胞质中分解为丙酮酸(不需要氧,糖酵解) ◆糖氧化成丙酮酸 ◆丙酮酸脱羧生成乙酰CoA ◆乙酰CoA进入三羧酸循环彻底氧化
线粒体的结构和生物学功能
线粒体的结构和生物学功能线粒体是一个细胞内的膜包裹有特殊约50-500nm长的细节空间的细胞质小器官,是一个具有自主性的细胞器,存在于几乎所有真核细胞的细胞质内,它是能量代谢、呼吸和ATP生成的中心。
本文将从线粒体的结构、功能和作用入手,探讨线粒体在生物学中的重要性。
一、线粒体的结构与特征线粒体是与质体、粒糖体、内质网、高尔基体、核糖体等细胞器共同构成了细胞质的生命基础组织单元。
线粒体主要由两层膜组成。
它的外膜光滑,由磷脂体和蛋白质组成,具有通透性,内膜分裂成许多内向的小褶皱,称为线粒体内膜,内膜上覆盖着一些与ATP合成有关的酶,称为呼吸链系统。
线粒体的内部充满着胶状物和线性的DNA,其中胶状物被称为线粒体基质,它含有大量的磷酸酸二酯、核苷酸、氨基酸和线粒体酶等蛋白质,可以帮助线粒体进行与膜相关的蛋白质合成、ATP生成等多种生化作用。
此外,线粒体还拥有DNA遗传物质和对应的一些负责线粒体基因表达的基因转录因子、细胞质基因解读因子、线粒体RNA和蛋白质等诸多特殊结构。
二、线粒体的生物学功能A .产生ATP线粒体是生命体中能够将化学能量转化成生命活动所需要的能量--ATP最主要的机构。
线粒体通过呼吸链系统产生化学能(ATP)和水。
线粒体细胞膜内嵌有四个大分子复合物的蛋白质,每个复合物含有数个电子传递物质,从而可以产生能量。
呼吸链上的能量转化过程,又被称之为线粒体内呼吸(简称CTP)。
该化学反应方程式为:糖 + O2 + ADP + Pi --ATP(能量)+ CO2 + H2O从上式可见,葡萄糖分子被分解成二氧化碳(H2O)和ATP. ATP是细胞中的一种重要化学能,细胞外的ATP对于人体能量代谢是必不可缺的。
B.产生能量与氧化作用线粒体活化正常功能可使用糖类氧化与脂肪氧化的方法,将其中的能量存储为ATP,这是我们的身体所需要的能量,也是我们所用的能量来源。
任何细胞瞬间需要能量的状况下,线粒体内呼吸的速度都会加快,从而会产生更多的ATP,以满足人体的需要。
细胞生物学第七章线粒体与叶绿体知识点整理
细胞生物学第七章线粒体与叶绿体知识点整理线粒体和叶绿体是细胞中两个重要的细胞器。
它们在细胞代谢和能量转换中发挥着重要的作用。
以下是关于线粒体和叶绿体的一些重要知识点:线粒体:1.结构:线粒体是一个由两层膜包围的细胞器。
它包含一个外膜和一个内膜,内膜形成了许多内突起,称为线粒体内膜嵴。
2.能量转换:线粒体是细胞中的能量生产中心。
它通过细胞呼吸过程中的氧化磷酸化来产生能量,将食物分子中的化学能转化为细胞可以使用的三磷酸腺苷(ATP)。
3. 基因组:线粒体具有自己的基因组,称为线粒体DNA(mtDNA)。
它主要编码细胞呼吸过程中所需的蛋白质。
mtDNA由母亲遗传给子代,因此线粒体DNA有助于研究人类的遗传和进化。
4.线粒体疾病:线粒体功能障碍可以导致许多疾病,如线粒体脑肌病、线粒体糖尿病和阿尔茨海默病。
这些疾病通常会影响能量的产生和细胞的正常功能。
叶绿体:1.结构:叶绿体是植物和一些原生生物中的细胞器。
它也是由两层膜包围,并且内膜形成了一系列叫做叶绿体嵴的结构。
2.光合作用:叶绿体是光合作用的主要场所,其中光能转化为化学能以供细胞使用。
叶绿体中的叶绿素能够吸收太阳能,并将其转化为光合作用的产物,如葡萄糖。
3. 基因组:叶绿体也具有自己的基因组,称为叶绿体DNA(cpDNA)。
它主要编码参与光合作用和叶绿体功能的蛋白质。
4.叶绿体疾病:类似于线粒体疾病,叶绿体功能障碍也会导致一系列疾病,在植物中称为叶绿体遗传病。
这些疾病通常会导致叶绿体的正常结构和功能受损。
1.起源:线粒体起源于古代原核生物,而叶绿体起源于古代蓝藻细菌。
这些细菌进化成为现代细胞中的线粒体和叶绿体。
2.功能:线粒体主要参与能量转换,而叶绿体主要参与光合作用。
它们在细胞代谢中的角色不同,但都与能量生产和细胞功能密切相关。
3.基因组:线粒体和叶绿体都有自己的基因组,具有其中一种程度的自主复制和表达能力。
不过,线粒体基因组比较小,叶绿体基因组比较大。
线粒体的结构和功能
线粒体的结构和功能线粒体是细胞中重要的细胞器之一,它在细胞呼吸和能量产生中发挥着至关重要的作用。
线粒体是由多个磷脂双层组成的,其结构和功能对于细胞的正常运行具有不可或缺的作用。
本文将详细介绍线粒体的结构和功能。
一、线粒体的结构线粒体是一种双层膜结构的细胞器,分为外膜、内膜和基质三个部分。
1. 外膜外膜是线粒体外侧的一层薄膜,主要由磷脂和蛋白质构成。
外膜表面富含蛋白质通道,可以控制物质的进出。
2. 内膜内膜是线粒体内层的一层薄膜,相对于外膜而言,内膜结构更为复杂。
内膜上有很多褶皱,形成了称为嵴的结构。
嵴的存在大大增加了内膜的表面积,提高了线粒体对反应物质的吸收能力。
内膜中还存在着许多与能量产生相关的酶和蛋白质复合物。
3. 基质基质是线粒体内部的液体环境,富含多种离子和代谢物质。
线粒体基质中存在着外膜和内膜之间的间隙,称为内膜间隙。
二、线粒体的功能线粒体是细胞中主要负责产生能量的地方,其功能主要包括细胞呼吸和 ATP 合成。
1. 细胞呼吸细胞呼吸是线粒体最重要的功能之一,其过程包括糖分解和氧化磷酸化两个阶段。
在糖分解过程中,葡萄糖被分解成两个分子的丙酮酸。
随后,丙酮酸进入线粒体基质,经过氧化酮丙酸循环生成丰富的电子和质子。
在氧化磷酸化过程中,这些电子和质子被导入线粒体内膜嵴上的电子传递链,通过一系列酶的作用,最终与氧结合形成水。
在这个过程中,释放出的能量被用于合成 ATP,为细胞提供能量。
2. ATP 合成线粒体内膜上的嵴上存在着 ATP 合成酶复合物,该复合物负责合成 ATP。
在嵴内,质子通过 ATP 合成酶复合物,通过嵴与基质之间的差异,使得 ADP 和磷酸根结合形成 ATP。
这个过程被称为氧化磷酸化,在细胞内能量供给中起着至关重要的作用。
三、线粒体的重要性线粒体的功能对于细胞的正常运行至关重要。
正常的细胞呼吸和ATP 合成能够提供细胞所需要的能量,维持细胞的正常代谢和生理功能。
线粒体还参与调节细胞内的钙离子浓度、维持细胞内的氧化还原平衡和调节细胞凋亡等重要生理过程。
线粒体的结构与功能——探究能量代谢的重要组成部分(高一生物教案)
线粒体的结构与功能——探究能量代谢的重要组成部分(高一生物教案)。
一、线粒体的结构线粒体是一个由内外双层膜组成的细胞器,内膜比外膜更细,也更滑。
内膜与外膜之间形成了一个空间,称为内外膜间隙。
线粒体内膜上有许多折叠的褶皱,称为嵴。
嵴的表面上有一种叫作“ATP酶”的蛋白质,它们能够产生能量。
线粒体内部包含许多短而粗的纤维,称为线粒体基质,这些纤维包含许多蛋白质和其他分子,这些分子参与能量转化过程。
线粒体还包含一些小而密集的结构,称为线粒体核糖体。
二、线粒体的功能线粒体的主要功能是进行能量代谢,将葡萄糖等有机物转化为ATP,并将其释放到细胞中。
ATP是细胞中所有活动的驱动力,包括肌肉收缩、分裂细胞、蛋白质合成等等。
线粒体的能量转化过程可以划分为三个主要阶段:糖解、肌酸循环和呼吸链。
在糖解中,葡萄糖被分解成两个分子的乳酸和ATP。
在肌酸循环中,以肌酸与ATP化合为主,使高能物质中的磷酸转移到紧急需要能量的地方,使其能够迅速产生能量。
在呼吸链中,细胞利用乳酸和其他有机物继续生产ATP。
这个过程通过使用氧气消耗细胞外呼吸氧,然后释放了用于产生ATP的能量。
三、线粒体在生命中的重要性线粒体不仅在能量代谢中发挥着重要的作用,而且与许多人类疾病的发生和发展有关。
许多疾病,例如糖尿病、癌症等,都与线粒体的功能异常有关。
糖尿病的发生与线粒体能量代谢紊乱有关,身体的能量无法正常转化,而是被存储在脂肪细胞中。
癌症细胞中的线粒体发生异常,导致能量代谢过程的改变,使癌细胞得以快速增殖。
另外,线粒体的DNA也与人类健康息息相关。
线粒体DNA带有一些突变可能会引起许多疾病,这些疾病通常会影响神经系统和肌肉组织。
四、结论线粒体是细胞中相当重要的器官,承担着能量代谢过程的关键作用。
通过了解线粒体的结构和功能,我们可以更好地了解细胞能量代谢以及人类疾病的发生和发展。
感谢生物学为我们打开了探究微观世界的大门,研究细胞如何运作的奥秘并助于我们更好地认识人类本身。
线粒体的结构与功能
线粒体的结构与功能线粒体是一个细胞内重要的器官,它承担着细胞内的能量转换以及代谢调节。
线粒体的结构与功能密切相关,下面就从不同的角度进行探讨。
一、线粒体的结构线粒体是典型的膜结构,包括外膜、内膜和基质。
其中外膜是较为松散的,内膜则形成了众多的棱柱状结构。
内膜的众多褶皱形成了许多隔室,叫做内膜嵴,这些嵴上面有一些较小的颗粒,叫做氧化磷酸化复合体。
线粒体的基质是第三个结构部分,和细胞液相连,和细胞胶原质不相连。
二、线粒体的代谢功能线粒体的代谢功能十分重要,其主要是通过糖酵解和三酰甘油分解来产生能量。
糖酵解是指葡萄糖被分解成乳酸或酒精,同时还产生少量能量。
三酰甘油分解是指三酰甘油被氧化分解,产生大量ATP能量。
这些过程发生在线粒体中的基质中。
三、线粒体的能量转换线粒体是细胞的能量转换器,它的主要功能是将化学能转化成ATP能量,ATP 又成为能量的主要载体。
ATP在细胞中承担着重要的能量供应和传递功能,可以看做是生物体内部的“通用能”之一。
四、线粒体与细胞凋亡线粒体还是调节细胞死亡的器官,它有促进和抑制细胞凋亡的作用。
当线粒体受到损伤时,会引起线粒体通道打开,释放出许多细胞凋亡的信号分子,这些信号分子会引起细胞凋亡。
但有时线粒体的损伤并不一定会导致细胞凋亡,因为线粒体还有“保护通道”可以防止细胞凋亡的发生。
五、线粒体的病变与疾病线粒体的病变和疾病是很多人所知道的,比如线粒体膜的一些突变会导致糖尿病、肥胖症等;线粒体的另外一类突变则会引发遗传性疾病,如脑炎、肌无力症等疾病都与线粒体失调有关。
总之,线粒体对于细胞的生长、发育和能量供应起着重要的作用。
不良的线粒体结构和功能会导致各种细胞紊乱,这也是人们持续关注线粒体的重要原因之一。
线粒体的结构和功能
线粒体的结构和功能线粒体作为细胞的重要器官,在细胞的代谢和能量供应中起着关键作用。
本文将从线粒体的结构和功能两个方面进行探讨。
一、线粒体的结构线粒体是一种具有自主遗传系统的细胞器,其形态和结构通常呈长椭圆形,大小约为1-10微米。
线粒体由两层膜组成,分别为外膜和内膜,并且中间还有一层间质。
外膜比较光滑,同时与细胞质相连,而内膜则形成了许多褶皱结构,称为内膜嵴。
这些内膜嵴的折叠增加了线粒体的表面积,有利于线粒体内部物质的交换和化学反应的进行。
除了膜结构,线粒体内部还存在线粒体基质和线粒体DNA。
线粒体基质是线粒体内的液体部分,其中含有许多溶解物质和酶。
而线粒体DNA则是线粒体自身的遗传物质,编码了一部分线粒体所需要的蛋白质。
二、线粒体的功能线粒体作为细胞的“能量中心”,主要参与细胞的能量产生、细胞呼吸以及细胞凋亡等多种功能。
1. 能量产生线粒体是细胞内最主要的能量供应器。
通过细胞呼吸,线粒体能够将有机物质(如葡萄糖、脂肪等)与氧气进行反应,产生大量的ATP(三磷酸腺苷)。
ATP是生物体内储存和释放能量的重要分子,向整个细胞提供所需的能量。
2. 脂肪酸代谢线粒体参与了脂肪酸的代谢过程。
脂肪酸经过一系列酶的催化作用,进入线粒体内,通过β氧化途径逐步分解,最终生成能量。
3. 钙离子调节线粒体在细胞钙离子平衡的调节中也发挥重要作用。
在细胞内钙离子浓度增加时,线粒体会吸收过量的钙离子,避免细胞内钙离子浓度过高对细胞器的损伤。
4. 细胞凋亡线粒体还参与了细胞凋亡的过程。
当细胞受到损伤或遇到应激时,线粒体会释放出一系列促使细胞发生凋亡的信号分子,从而引发细胞凋亡的程序,确保机体正常的生长与发育。
综上所述,线粒体作为细胞内重要的细胞器,在维持细胞的能量供应、代谢调节、细胞凋亡等方面发挥着重要功能。
对线粒体结构和功能的深入了解,有助于进一步探索其在细胞生理和疾病发生中的作用,为相关疾病的治疗和预防提供指导。
线粒体的结构和功能
线粒体的结构和功能线粒体是细胞内能量生产工厂,是动植物细胞中的一种亚细胞器,通过呼吸作用以ATP形式储存和提供能量。
线粒体的结构和功能十分复杂,下文将详细探讨线粒体的组成结构和生物学功能。
一、线粒体的组成结构线粒体是一个双层膜结构,内、外膜之间隔着一个空隙,称为线粒体基质。
内、外膜的结构和化学成分不同,内膜面积远远超过外膜,形成了许多被称为“嵴”的层状结构,这些嵴与线粒体基质分开,形成了许多大小不同的空间,称为“内膜小圆体”,它们是呼吸链复合物的主要定位部位。
除了内、外膜外,线粒体还含有一些独特的组块,比如核心体、肋骨体、肥厚带等。
其中,核心体是线粒体中最大的组成部分,约占整个线粒体体积的70%。
它是一条螺旋状的结构,在线粒体嵴的基础上进一步紧密排列而成。
肋骨体是核心体的一个重要组成部分,由许多蛋白质和RNA分子组成。
它是线粒体独特的组成结构,与核糖体和蛋白质合成有关。
二、线粒体的生物学功能线粒体是细胞中的能量生产中心,主要完成细胞内呼吸作用,并合成ATP,为细胞提供能量。
线粒体内的呼吸链是ATP生物合成过程的关键环节,通过不同的蛋白质复合物,将细胞在糖酵解和三羧酸循环中生成的NADH和FADH2的电子传递至氧分子,最终产生ATP。
线粒体还能参与一些其他生物学过程,如细胞信号转导、钙离子平衡以及调节细胞凋亡等。
除此之外,线粒体还拥有自主复制和调控细胞活动的功能。
线粒体复制是细胞分裂和增殖的基础,同时也能够通过调节内膜通透性和释放胞外因子等方式,参与细胞增殖、分化和凋亡等生物学过程。
三、线粒体的调控及相关疾病线粒体疾病是与线粒体功能紊乱相关的疾病,包括罕见的遗传性线粒体疾病和一些普遍性疾病的线粒体功能损害。
线粒体疾病具有高度的临床异质性和灵敏性,临床上表现为多种多样、程度不等的病征,主要涉及神经、心脏、肌肉及内分泌系统等。
相关的诊断方法和治疗手段较为有限,尚待进一步研究。
除了线粒体疾病,一些其他疾病也与线粒体相关,如代谢疾病、肿瘤、免疫系统疾病等。
线粒体的结构和功能
线粒体的结构和功能线粒体是细胞中的一个重要细胞器,它在能量代谢、钙离子稳态调节、细胞凋亡等方面具有重要的功能。
本文将介绍线粒体的结构和功能,并探讨其在生物学过程中的重要作用。
一、线粒体的结构线粒体是细胞内的一种球形或棒状结构,大小约为1至10微米。
它主要由外膜、内膜、内腔和基质组成。
1. 外膜:外膜由磷脂双层构成,可以将线粒体与细胞质分隔开来,起到保护内膜的作用。
2. 内膜:内膜是由多种脂质和蛋白质构成的,与外膜相比,内膜更为丰富,并且包含许多重要的蛋白质通道和酶。
3. 内腔:内腔是线粒体内膜所包围的空间,其中含有多种酶、离子和溶质,用于线粒体内质的代谢反应。
4. 基质:基质是线粒体内腔的内部空间,其中包含了线粒体所需的DNA、RNA、核糖体和多种蛋白质,参与线粒体内的各种生化反应。
二、线粒体的功能线粒体是能量供应的中心,其功能主要包括能量代谢、钙离子稳态调节和细胞凋亡。
1. 能量代谢:线粒体是细胞内最重要的能量源,通过氧化磷酸化的过程将葡萄糖和脂肪酸等有机物转化为三磷酸腺苷(ATP),向细胞提供能量。
2. 钙离子稳态调节:线粒体在钙离子的调节中起到重要作用。
它能够吸收和释放细胞内的钙离子,维持细胞内钙离子的平衡,以调节细胞内的一系列生物学过程。
3. 细胞凋亡:线粒体的功能失调会导致细胞凋亡。
线粒体在细胞凋亡过程中释放细胞色素C,激活半胱天冬酶家族的酶活性,引发细胞内的一系列反应,最终导致细胞死亡。
三、线粒体在生物学过程中的重要作用线粒体在细胞的生物学过程中具有重要的作用。
它参与了多种代谢途径,如糖酵解、脂肪酸氧化和氧化磷酸化,为细胞提供能量。
线粒体还参与细胞内氧化还原反应,调节细胞内的氧化还原平衡。
此外,线粒体还参与细胞的衰老和死亡过程,对维持细胞的功能和稳态至关重要。
综上所述,线粒体作为细胞中的重要细胞器,其结构和功能是维持细胞正常生理活动的关键。
通过能量代谢、钙离子稳态调节和细胞凋亡等多种功能发挥作用,为细胞的生存和正常功能提供保障。
第七章线粒体的结构与功能
外膜含有多套运输蛋白 (通道蛋白) ,围成筒 状园柱体,中央有小孔, 孔径:2-3nm,允许分 子量为10 000以内的物 质可以自由通过。
--
Hale Waihona Puke 外膜内位于外膜内侧,由一层 单位膜构成。
膜 外膜 嵴 内膜
厚5-6nm,其通透性很 差,但有高度的选择通 透性,借助载体蛋白控 制内外物质的交换。
◆内膜的标志酶是细胞色素氧化酶。
2
线粒体膜的运输系统
膜间间隙(intermembrane space)
◆标志酶:腺苷酸激酶 ◆功能:建立电化学梯度
线粒体基质(matrix)
◆标志酶:苹果酸脱氢酶
◆功能: ●TCA循环 ●脂肪酸氧化 ●氨基酸降解 ●合成部分线粒体蛋白
--
线粒体中酶的分布
线粒体中约有120种酶--------氧化还原酶 37%
内外膜之间有6-8nm宽 间隙—膜间隙
内膜向内突起形成—嵴
嵴与嵴之间的腔—嵴间腔
嵴间腔 嵴内腔 膜间隙
嵴内的空隙——嵴内腔 (内--室)
(外室)
嵴与基粒
嵴:内膜向内室折叠形成, 可增加内膜的表面积。
嵴的形态和排列方式差别 很大,
嵴间腔 (内室)
主要有两种类型:
板层状(大多数高等动物 细胞中线粒体的嵴);
可溶性的ATP酶 (F1) 360 000
对寡酶素敏感蛋白 (OSCP) 18 000
疏水蛋白(HP F0 ) 70 000
9nm 9nm
3-4nm 长
4.5-6nm
6-11.5nm 高5-6nm
头部: 合成ATP
柄部: 调节质子通道 基片 :质子的通道
--
生物化学知识点与题目 第七章 生物氧化
第七章生物氧化知识点:一、生物氧化的特点和方式,高能化合物生物氧化的特点;CO2生成的两种脱羧方式;高能化合物二、线粒体的结构和功能、呼吸链与氧化磷酸化线粒体内膜与外膜对于物质的通透性;线粒体内膜和基质中发生的反应;呼吸链的组成;递氢体与递电子体;偶联部位;呼吸链的抑制剂及其抑制部位;P/O;氧化磷酸化三、线粒体外NADH(或NADPH)的氧化磷酸化线粒体外NADPH异柠檬酸穿梭作用;线粒体外NADH磷酸甘油穿梭作用;苹果酸穿梭作用,分别偶联几个ATP的生成一、生物氧化的特点和方式,高能化合物知识点:生物氧化的特点;CO2生成的两种脱羧方式;高能化合物名词解释:生物氧化;高能化合物填空题:1.生物氧化是在细胞中,同时产生的过程。
2.是所有生命形式的主要的能量载体。
3.是高能磷酸化合物的贮存形式,可随时转化为ATP供机体利用。
4.高能磷酸化合物通常是指水解时的化合物,其中重要的是,被称为能量代谢的。
选择题:1.生物氧化的底物是:A、无机离子B、蛋白质C、核酸D、小分子有机物2、下列不属于高能化合物的是:A、1,3-二磷酸甘油酸B、磷酸烯醇式丙酮酸C、NTPD、dNDPE、1-磷酸葡萄糖3、下列不属于高能化合物的是:A、磷酸肌酸B、脂酰~SCoAC、乙酰~SCoAD、dNDPE、1-磷酸葡萄糖4.A TP含有几个高能键:A、1个B、2个C、3个D、4个5.除了哪一种化合物外,下列化合物都含有高能键?A、磷酸烯醇式丙酮酸B、磷酸肌酸C、ADPD、G-6-PE、1,3-二磷酸甘油酸6.呼吸链的电子传递体中,有一组分不是蛋白质而是脂质,这就是:A、NAD+B、FMNC、Fe-SD、CoQE、Cyt判断题:1.在生物圈中,能量从光养生物流向化养生物,而物质在二者之间循环。
2.磷酸肌酸是高能磷酸化合物的贮存形式,可随时转化为A TP供机体利用。
5.生物化学中的高能键是指水解断裂时释放较多自由能的不稳定键。
二、线粒体的结构和功能、呼吸链与氧化磷酸化知识点:线粒体内膜与外膜对于物质的通透性;线粒体内膜和基质中发生的反应;呼吸链的组成;递氢体与递电子体;偶联部位;呼吸链的抑制剂及其抑制部位;P/O;氧化磷酸化名词解释:P/O;呼吸链;电子传递抑制剂;解偶联剂;氧化磷酸化;底物磷酸化填空题:1.真核细胞生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子都定位于。
线粒体的结构与功能
线粒体的结构与功能线粒体是细胞的重要组成部分,它在细胞内扮演着能量生产的关键角色。
线粒体的结构与功能密不可分,本文将从线粒体的结构、线粒体内膜的功能以及线粒体DNA的特点等方面进行探讨。
首先,我们来了解一下线粒体的结构。
线粒体是一个双层膜结构的细胞器,它由外膜、内膜和基质组成。
外膜是线粒体的外层,它具有较为松散的结构,可以容易地让物质通过。
而内膜则是线粒体的内层,它具有较为严密的结构,有许多蛋白质通道形成的膜蛋白复合物,这些膜蛋白复合物形成了内膜的特殊结构,被称为呼吸链。
内膜将线粒体分为内外两个区域,内膜区域称为基质,外膜区域则与细胞质相连。
接下来,我们来探讨一下线粒体内膜的功能。
内膜是线粒体中最重要的结构之一,它承担着许多重要的生物学功能。
首先,内膜上的膜蛋白复合物参与了线粒体呼吸链的过程。
呼吸链是线粒体产生能量的主要途径,通过将氧气和有机物质(如葡萄糖)在内膜上进行氧化还原反应,产生大量的能量分子ATP。
其次,内膜上的膜蛋白还参与了线粒体对钙离子的调节。
钙离子在细胞内起着重要的信号传导作用,而线粒体内的钙离子浓度的调节则与细胞的生存和死亡密切相关。
最后,内膜上的膜蛋白还参与了线粒体与其他细胞器之间的物质转运。
线粒体与内质网之间的物质转运是细胞内许多重要生物过程的基础,包括脂质代谢、蛋白质合成等。
此外,线粒体还具有自己的DNA,被称为线粒体DNA。
线粒体DNA与细胞核DNA有所不同,它是环状的,长度较短,编码了一部分与线粒体功能相关的蛋白质。
线粒体DNA的特点是具有高度的遗传稳定性和高度的突变率。
遗传稳定性是指线粒体DNA在传递给下一代时很少发生突变,而突变率则是指线粒体DNA 在细胞内发生突变的频率较高。
这种高突变率是因为线粒体DNA缺乏一些修复机制,容易受到氧化损伤等外界因素的影响。
因此,线粒体DNA的突变与许多遗传性疾病的发生有关。
综上所述,线粒体的结构与功能密不可分。
线粒体的结构包括外膜、内膜和基质,内膜上的膜蛋白复合物参与了线粒体呼吸链的过程、调节钙离子浓度以及与其他细胞器之间的物质转运。
简述线粒体的结构和功能
简述线粒体的结构和功能线粒体,这个名字听上去是不是有点高深?别担心,今天咱们就来聊聊这个小家伙,让它不再神秘。
线粒体被称为“细胞的发电厂”,它的主要任务就是为细胞提供能量,换句话说,线粒体就是细胞的“电池”。
就像你早上起床需要一杯咖啡提提神,线粒体给细胞提供能量,让它们可以忙碌地工作。
1. 线粒体的结构1.1 外膜与内膜首先,线粒体的结构就像是一个双层堡垒。
外面是一层叫外膜的“保护罩”,这层膜非常光滑,像个温柔的母亲,给线粒体提供了一个安全的环境。
而内膜就有点意思了,它是高度折叠的,形成了一些叫做“皱褶”的结构,这些皱褶不仅增加了表面积,还让它的功能更加强大。
就像是把一个普通的桌子变成了一个超大的工作台,空间大了,工作效率自然高了!1.2 基质与细胞呼吸线粒体的内部有一部分叫基质,这可不是个简单的地方。
这里面装着各种重要的酶和分子,负责进行细胞呼吸。
细胞呼吸就像是线粒体的“厨房”,它在这里把我们吃的食物转化为能量,供细胞使用。
想象一下,如果线粒体是个餐馆,基质就是厨房,外膜是餐厅的门,内膜是后厨,整个线粒体就是一个忙碌的小城市,大家各司其职。
2. 线粒体的功能2.1 能量的生产线粒体的主要功能就是产生能量,这个过程叫做“氧化磷酸化”。
简单来说,就是把食物里的营养物质和氧气结合起来,转化为ATP(腺苷三磷酸),这就是细胞的“能量货币”。
就像是银行里存的钱,ATP存得越多,细胞的活力就越强!你想想,如果没有线粒体的帮忙,咱们每天可就得像个没电的手机,动不了。
2.2 参与细胞的调控除了提供能量,线粒体还参与细胞的调控。
它们能够释放一些信号分子,影响细胞的生长、分裂甚至死亡。
简单来说,线粒体就像是细胞的“调度员”,指挥着细胞的各种活动。
比如,当细胞受到压力或受到损伤时,线粒体会发出信号,告诉细胞该如何应对。
这就像在一场大戏中,线粒体负责给演员发放剧本,确保每个人都能完美演出。
3. 线粒体的重要性3.1 对健康的影响线粒体对我们的健康至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形态:光镜: 线状、粒状、短杆状;有的圆形、哑铃
形、星形;还有分枝状、环状等
线粒体的形态
线粒体的形态多 种多样, 一般呈 线状,也有粒状 或短线状。细胞 的生理状况发生 变化时线粒体的 形态亦将随之而 改变。
光学显微镜下线粒体的形态
线粒体的数量
同一类型细胞中,线粒体的数目是相对稳定的。
线粒体的形态
线粒体的形态
线粒体结构
二.线粒体的亚微结构
电镜:线粒体是由两层单位膜围成的封闭的囊状结构。
外膜 内膜
膜间隙 (膜间腔、外室)
嵴
嵴间隙 (嵴间腔 、内室 )
内含基质
8.2
线粒体的结构与化学组成
电镜下,线粒体是由两层高度特 化的单位膜套叠而成的囊状结构, 主要由外膜、内膜、膜间腔和基 质腔四部分组成
◆含有大量的心磷脂(cardiolipin),心磷脂与 离子的不可渗透性有关;
◆3类酶:运输酶类、合成酶类、电子传递和 ATP合成的酶类;
◆内膜的标志酶是细胞色素氧化酶。
2
线粒体膜的运输系统
膜间间隙(intermembrane space)
◆标志酶:腺苷酸激酶 ◆功能:建立电化学梯度
线粒体基质(matrix)
一层单位膜。
厚6—7nm,平整、光滑。
外膜含有多套运输蛋白 (通道蛋白) ,围成筒 状园柱体,中央有小孔, 孔径:2-3nm,允许分 子量为10 000以内的物 质可以自由通过。
内
位于外膜内侧,由一层 单位膜构成。
膜 外膜 嵴 内膜
厚5-6nm,其通透性很 差,但有高度的选择通 透性,借助载体蛋白控 制内外物质的交换。
在不同类型的细胞中线粒体的数目相差很大。
数百 ~ 数千个
1个 3 105万个(有些卵母细胞) 50万个(巨大变形虫)
生理活动旺盛的细胞(心肌细胞)线粒体多。
线粒体的分布
肌细胞和精子的线粒体分布
线粒体包围着脂肪滴
线粒体较多分布在需要ATP的部位!!
返回目录
大小:细胞内较大的细胞器。一般直径:0.5—
疏水蛋白(HP F0 ) 70 000
9nm 9nm
3-4nm 长
4.5-6nm
6-11.5nm 高5-6nm
头部 : 合成ATP
柄部 : 调节质子通道 基片 :质子的通道
嵴内腔 基粒
(ATP酶复合体)αβຫໍສະໝຸດ βF1αβαδ
定子
γ
b
转子 ε
F0
a c
H+
基质
基质:内膜和嵴围成
的腔隙,腔内充满较 致密的物质——线粒 体基质。
线粒体的形态、数量与分布
线粒体(mitochondrion)是存在于真核细 胞中的一种较大细胞器,在光学显微镜下观 察呈“短线状”或“颗粒状”的形态学特征 而命名为线粒体,是细胞内氧化磷酸化和形 成ATP的主要场所,细胞生命活动所需的能 量有95%来自线粒体,因此有细胞“动力 工厂”之称。
返回目录
1894年 ——Altmann —— 光镜 —— 生命小体 (bioblast) 1897年 —— Benda —— 线粒体(mitochondria)
线粒体的超微结构 电子显微镜下线粒体的形态结构 A、B扫描电镜图;C透射电镜图
电镜:线粒体是由两层单位膜围成的封闭的囊状结构。
线
外膜
粒
内膜
体
的
膜间腔 (外腔)
超
微
嵴
结
构
嵴间腔
(内腔 )
内含基质,有DNA
嵴和基粒
嵴间腔 (内腔)
膜间隙 嵴 内膜 外膜 (外腔)
嵴:内膜向内腔折叠形成,可增加内 膜的表面积。
◆标志酶:苹果酸脱氢酶
◆功能: ●TCA循环 ●脂肪酸氧化 ●氨基酸降解 ●合成部分线粒体蛋白
线粒体中酶的分布
线粒体中约有120种酶--------氧化还原酶 37%
部位 外膜 膜间隙 内膜
基质
酶的名称
单胺氧化酶、犬尿氨酸羟化酶、NADH-细胞色素C还原酶、 脂类代谢有关的酶(酰基辅酶A合成酶、脂肪酸激酶等) 特征酶:单胺氧化酶
嵴间腔 (内室)
膜间隙 嵴 内膜 外膜 (外室)
脂类
蛋白质
酶类
线 线粒体 DNA
粒 体
线粒体 mRNA
基 质
线粒体 tRNA
线粒体核糖体 基质颗粒
线粒体核糖体 线粒体DNA嵴内腔 基粒 基质颗粒 (ATP酶)
线粒体结构与化学组成
外膜(outer membrane) 内膜(inner membrane) 膜间隙(intermembrane space) 线粒体基质(matrix)
基粒(ATP酶复合体): 基质面上许多带柄的小颗 粒。与膜面垂直而规律排 列。
99nnmm
3-4nm 长
4.5-6nm
6-11.5nm 高5-6nm
头部 : 合成ATP
柄部 : 调控质子通道 基片:质子的通道
基粒 (ATP酶复合体)
基粒的结构
基粒结构模式图
返回目录
外膜
外膜
包围在线粒体外表面的
内外膜之间有6-8nm宽 间隙—膜间隙
内膜向内突起形成—嵴
嵴与嵴之间的腔—嵴间腔
嵴间腔 嵴内腔 膜间隙
嵴内的空隙——嵴内腔 (内室)
(外室)
嵴与基粒
嵴:内膜向内室折叠形成,
可增加内膜的表面积。
嵴间腔
嵴的形态和排列方式差别 很大,
(内室)
主要有两种类型:
板层状(大多数高等动物 细胞中线粒体的嵴);
小管状(原生动物和其它 一些较低等的动物细胞中 线粒体的嵴)。
膜间隙 嵴 内膜 外膜 (外室)
嵴内腔
嵴与基粒
基粒(ATP酶复合体):内 膜和嵴膜基质面上许多带柄 的小颗粒。与膜面垂直而规 律排列。
嵴间腔 (内室)
膜间隙 嵴 内膜 外膜 (外室)
ATP酶复合体抑制 多肽 10 000(调节 酶活性)
可溶性的ATP酶 (F1) 360 000
对寡酶素敏感蛋白 (OSCP) 18 000
1.0um; 长度:3um。
数目:不同类型的细胞中差异较大。正常细胞中:
1000—2000个。
分布:因细胞形态和类型的不同而存在差异。通常
分布于细胞生理功能旺盛的区域和需要能量较多的 部位。
总之:线粒体的形态、大小、数目和分布在不 同形态和类型的细胞可朔性较大。
光镜下绿色颗粒 显示线粒体,红色 颗粒显示溶酶体
1
外膜(outer membrane)
◆标志酶:单胺氧化酶 ◆外膜含有较大的通道蛋白:孔蛋白
最大允许5000D的分子自由通过
细 菌 外 膜 中 的 孔 蛋 白
Organization and Function of Mitochondria
内膜(inner membrane)
◆线粒体进行电子传递和氧化磷酸化的部位, 通透性差;