导数测试卷(含答案)

合集下载

导数测试题(人教A版理)(含答案)

导数测试题(人教A版理)(含答案)

导数(人教A 版理)测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21ln 2y x x =-的单调递减区间为 A .(1,1]- B .(0,1] C .[1,)+∞ D .(0,)+∞2.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为 A .(1,1)- B .(1,)-+∞ C .(,1)-∞- D .(,)-∞+∞3.设函数()e x f x x =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点4.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c =A .2-或2B .9-或3C .1-或1D .3-或15.设函数2()ln f x x x=+,则A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点 C .2x =为()f x 的极大值点 D .2x =为()f x 的极小值点6. 如图所示,在边长为1的正方形O ABC 中任取一 点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .177.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f8.已知函数()y f x =的图象在点(1,(1))f 处的切线方程是210x y -+=,则(1)2(1)f f '+=A .12B .1C .132D .29.设点P 在曲线e x y =上,点Q 在曲线11y x=-上,则||PQ 的最小值为A 1)-B 1)-C D10.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导数,当[0,]x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时,()02x f x π⎛⎫'-> ⎪⎝⎭.则函数()sin y f x x =-在[2,2]ππ-上的零点个数为A .2B .4C .5D .811.设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =的图象有且只有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +>,120y y +<12.已知ln ()ln 1xf x x x=-+,()f x 在0x x =处取最大值,以下各式正确的序号为 ①00()f x x <;②00()f x x =;③00()f x x >;④01()2f x <;⑤01()2f x >. A .①④ B .②④ C .②⑤ D .③⑤二、填空题:本大题共4小题,每小题5分,共20分.13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为 .14.计算定积分121(sin )d x x x -+=⎰ .15.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线21:C y x a =+到直线:l y x =的距离等于曲线222:(4)2C x y ++=到直线:l y x =的距离,则实数a = .16.已知[0,)x ∈+∞,给出下列四个不等式: ①2e 1x x x ≤++211124x x ≤-+;③21cos 12x x ≥-;④21ln(1)8x x x +≥-.其中,能够恒成立的不等式的序号是 .(写出你认为满足题意的所有不等式的序号)三、解答题:本大题共6小题,共70分. 17.求函数()e 2x f x ax =--的单调区间.18.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.19.设函数1()e (0)e x xf x a b a a =++>. (1)求()f x 在[0,)+∞内的最小值;(2)设曲线()y f x =在点(2,(2))f 处的切线方程为32y x =,求,a b 的值.20.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导数()()2g x f x '=+,求()g x 的极值点.21.已知0a >,b ∈R ,函数3()42f x ax bx a b =--+.(1)证明:当01x ≤≤时,①函数()f x 的最大值为|2|a b a -+;②()|2|0f x a b a +-+≥. (2)若1()1f x -≤≤对[0,1]x ∈恒成立,求a b +的取值范围.22.已知函数ln ()e xx kf x +=(k 为常数),曲线()y f x =在点(1,(1))f 处的切线与轴x 平行. (1)求k 的值;(2)求()f x 的单调区间;(3)设()()g x xf x '=,其中()f x '为()f x 的导函数,证明:对任意0x >,2()1e g x -<+.导数(人教A 版理)测试题答案1. B2. B3. C4. B5.D6. C7. D8. D9.解:函数e x y =的反函数为ln y x =,考查函数ln y x =与图象11y x=-的公共点情况,即 考查方程1ln 1x x =-的解的个数,即考查函数1()ln 1h x x x=+-的零点个数. 1()ln 1h x x x =+-,22111()x h x x x x-'=-=,当01x <<时,()0h x '<,()h x 递减;当1x >时,()0h x '>,()h x 递增.故0x >时,()(1)0h x h ≥=,即1ln 1x x≥-,仅当1x =时,取等号.因此||PQ 最小值就是函数e x y =及其反函数ln y x =图象上两点距离最小值,易知此时(0,1)P ,(1,0)Q ,故||PQ .答案:选C10.解:函数311()e (1)0e (1)21x xb f x x ax b a x bbx x a x b a -≥++-+≥<<-+=<+. 答案:选B11.解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只需(0)0F =或203F b ⎛⎫= ⎪⎝⎭.因为(0)1F =,故必有203F b ⎛⎫= ⎪⎝⎭,由此得b 不妨设12x x <,则223x b =所以1()()(F x x x x =-,比较系数得1x -,故1x =120x x +,由此知12121212110x x y y x x x x ++=+=<. 答案:B12.解:22111ln ln 1()[(ln )(1)](1)11(1)(1)x x x f x x x x x x x ++''=⋅-=--=-++++,由题意知0()0f x '=,即00ln 10x x ++=,00ln (1)x x =-+. 故00000000000ln ln (1)()ln 111x x x x x f x x x x x x -+=-===+++. 令函数()l n 1(0)g x x x x =++>,则1()10g x x'=+>,故函数()g x 为增函数,而011331l n l n e 0()22222g g x ⎛⎫⎛⎫=+>-=>= ⎪⎪⎝⎭⎝⎭,即01()2g g x ⎛⎫> ⎪⎝⎭,故012x <,所以01()2f x <.答案:B二、填空题:本大题共4小题,每小题5分,共20分. 13. 43y x =-.14.解:∵321cos sin 3x x x x '⎛⎫-=+ ⎪⎝⎭,∴11231112(sin )d cos 33x x x x x --⎛⎫+=-= ⎪⎝⎭⎰.215.曲线2C 是圆心为(0,4)-,半径r 的圆,圆心到直线:l y x =的距离1d ,所以曲线2C 到直线l 的距离为1d r -设曲线1C 上的点00(,)x y 到直线:l y x =的距离最短为d ,则过00(,)x y 的切线平行于直线y x =.已知函数2y x a =+,则00|21x x y x ='==,即012x =,014y a =+,点00(,)x y 到直线:l y x =的距离111||||a a d ⎛⎫-+- ⎪,由题意1||a -74a =-或94a =.当74a =-时,直线l 与曲线1C 相交,不合题意,故舍去.答案:49. 16.解: 对①,在区间[0,)+∞上,函数e x y =和21y x x =++的增长速度不在同一个“档次”上,随着x 的增大,e x y =的增长速度越来越快,会超过并会远远大于21y x x =++的增长速度,故不等式2e 1x x x ≤++不能恒成立.对②:令t 1t ≥,21x t =-.于是,原不等式对[0,)x ∈+∞是否恒成立534740t t t ⇔-+-≥对[1,)t ∈+∞是否恒成立.记53()4740,[1,)f t t t t t =-+-≥∈+∞,则42()51275(1)(1),[1,)f t t t t t t t t ⎛'=-+=+-∈+∞ ⎝,易知()f t 在⎛ ⎝内递减.当t ⎛∈ ⎝时,()(1)0f t f <=,故不等式534740t t t -+-≥对[1,)t ∈+∞不恒成立,从而排除选项B. 对③:记21()cos 1,[0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-≥在[0,)+∞上恒成立,故()f x 在[0,)+∞上递增,所以()(0)0f x f ≥=,即当[0,)x ∈+∞时,不等式21cos 12x x ≥-+恒成立.对④:取4x =,则左边2ln5lne 2=<==右边,此时21ln(1)8x x x +<-,从而排除选项D. 答案:选填③17.解:(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-. 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞上单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>.所以,()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.故()f x 的递减区间为(,ln )a -∞,递增区间为(ln ,)a +∞. 18.解:(1)因为3()f x ax bx c =++,故2()3f x ax b '=+. 由于()f x 在2x =处取得极值16c -,故有(2)0,(2)16,f f c '=⎧⎨=-⎩即120,8216,a b a b c c +=⎧⎨++=-⎩解得1,12.a b =⎧⎨=-⎩(2)由(1)知3()12f x x x c =-+,2()3123(2)(2)f x x x x '=-=+-.当(,2)x ∈-∞-时,()0f x '>,故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈-时,()0f x '<,故()f x 在(2,2)-上为减函数;当(2,)x ∈+∞时,()0f x '>,故()f x 在(2,)+∞上为增函数.由此可知()f x 在2x =-处取得极大值(2)16f c -=+,()f x 在2x =处取得极小值(2)16f c =-. 由题设条件知1628c +=,解得12c =.此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-+=-, 因此()f x 在[3,3]-上的最小值为(2)4f =-. 19.解:(1)1()e e x xf x a a '=-,当ln x a <-时,()0f x '<,()f x 在(,ln )a -∞-上递减;当ln x a >-时,()0f x '>,()f x 在(ln ,)a -+∞①若01a <<,ln 0a ->,()f x 在(0,ln )a -上递减,在(ln ,)a -+∞上递增,从而()f x 在[0,)+∞上的最小值为(ln )2f a b -=+; ②若1a ≥,ln 0a -≤,()f x 在(0,ln )a -上递增,从而()f x 在[0,)+∞上的最小值为1(0)f a b a=++.(2)依题意2213(2)e e 2f a a '=-=,解得2e 2a =或21e 2a =-(舍去), 所以2e a =,代入原函数可得1232b ++=,即12b =,故2e a =,12b =. 20.解:(1)由题设知2()32f x x ax b '=++,且(1)320f a b '-=-+=,(1)320f a b '=++=,解得0a =,3b =-.(2)由(1)知3()3f x x x =-.因为2()2(1)(2)f x x x +=-+,所以()0g x '=的根为121x x ==,32x =-,于是函数()g x 的极值点只可能是1或2-.当2x <-时,()0g x '<;当21x -<<时,()0g x '>,故2-是()g x 的极值点. 当21x -<<或1x >时,()0g x '>,故1不是()g x 的极值点. 所以的极值点为2-.21.解:(1)①22()122126b f x ax b a x a ⎛⎫'=-=-⎪⎝⎭.当0b ≤时,有()0f x '≥,此时()f x 在[0,)+∞上单调递增; 当0b >时,()12f x a x x ⎛'= ⎝,此时()f x在⎡⎢⎢⎣上单调递减,在⎫⎪⎪⎭上单调递增. 所以当01x ≤≤时,max 3,2,()max{(0),(1)}max{,3}|2|,2a b b a f x f f a b a b a b a a b b a-≤⎧==-+-==-+⎨-+>⎩.②由于01x ≤≤,故当2b a ≤时,333()|2|()34224222(221)f x a b a f x a b ax bx a ax ax a a x x +-+=+-=-+≥-+=-+. 当2b a >时,3333()|2|()42(1)244(1)244(1)22(221)f x a b a f x a b ax b x a ax a x a ax a x a a x x +-+=-+=+-->+-->+--=-+. 设3()221,01g x x x x =-+≤≤,则2()626g x x x x ⎛'=-= ⎝⎭⎝⎭,于是()g x ',()g x 随x 的变化情况如下:所以,min ()10g x g ==.所以当01x ≤≤时,32210x x -+>.故3()|2|2(221)f x a b a a x x +-+≥-+. (2)由①知,当01x ≤≤时,m ax ()|2|f x a b a =-+,所以|2|1a b a -+≤.若|2|1a b a -+≤,则由②知()(|2|)1f x a b a ≥--+≥-.所以1()1f x -≤≤对任意01x ≤≤恒成立的充要条件是|2|1,0,a b a a -+≤⎧⎨>⎩即20,31,0a b a b a -≥⎧⎪-≤⎨⎪>⎩或20,1,0.a b b a a -<⎧⎪-≤⎨⎪>⎩(*)在直角坐标系aOb 中,(*)所表示的平面区域为如图所示的阴影部分,其中不包括线段BC . 做一组平行直线()a b t t +=∈R ,得13a b -<+≤,所以a b +的取值范围是(1,3]-.22.解:(1)由ln ()e xx k f x +=,得1ln (),(0,)e xkx x xf x x x --'=∈+∞. 因为曲线()y f x =在(1,(1))f 处的切线与x 轴平行,(2)由(1)得1ln (),(0,)e x x xf x x x --'=∈+∞, 当(0,1)x ∈时,10x ->,ln 0x ->,()0f x '>;当(1,)x ∈+∞时,10x -<,ln 0x x -<,()0f x '<. 所以()f x 的单调增区间是(0,1),单调递减区间是(1,)+∞. (3)证明:因为2()()()g x x x f x '=+,所以1()(1ln ),(0,)e xx g x x x x x +=--∈+∞. 因此,对任意0x >,2()1e g x -<+等价于2e 1ln (1e )1xx x x x ---<++. 令()1ln ,(0,)h x x x x x =--∈+∞,则2()ln 2(ln ln e ),(0,)h x x x x -'=--=--∈+∞.因此,当2(0,e )x -∈时,()0h x '>,()h x 单调递增;当2(e ,)x -∈+∞时,()0h x '<,()h x 单调递减. 所以()h x 的最大值为22(e )1e h --=+,故21ln 1e x x x ---≤+.设()e (1)x x x ϕ=-+.因为0()e 1e e x x x ϕ'=-=-,所以当(0,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,()(0)0x ϕϕ>=,故当(0,)x ∈+∞时,()e (1)0x x x ϕ=-+>,即e 11xx >+. 所以22e 1ln 1e (1e )1x x x x x ----≤+<++.因此对任意0x >,2()1e g x -<+.。

导数及其应用综合检测综合测试题(有答案)

导数及其应用综合检测综合测试题(有答案)

导数及其应用综合检测综合测试题(有答案)第一章导数及其应用综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2010•全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1 B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 [答案] A [解析] y′=2x+a,∴y′|x =0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1. 2.一物体的运动方程为s=2tsint+t,则它的速度方程为( ) A.v=2sint+2tcost+1 B.v=2sint+2tcost C.v=2sint D.v=2sint +2cost+1 [答案] A [解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sint+2tcost+1,故选A. 3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( ) A.4 B.5 C.6 D.7 [答案] D [解析] 由导数的几何意义知,曲线y=x2+3x在点A(2,10)处的切线的斜率就是函数y=x2+3x在x=2时的导数,y′|x=2=7,故选D. 4.函数y=x|x(x-3)|+1( ) A.极大值为f(2)=5,极小值为f(0)=1 B.极大值为f(2)=5,极小值为f(3)=1 C.极大值为f(2)=5,极小值为f(0)=f(3)=1 D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3 [答案] B [解析] y=x|x(x-3)|+1 =x3-3x2+1 (x<0或x>3)-x3+3x2+1(0≤x≤3) ∴y′=3x2-6x (x<0或x>3)-3x2+6x (0≤x≤3) x 变化时,f′(x),f(x)变化情况如下表: x (-∞,0) 0 (0,2) 2 (2,3) 3 (3,+∞) f′(x) + 0 + 0 - 0 + f(x) ��无极值��极大值5 ��极小值1 ��∴f(x)极大=f(2)=5,f(x)极小=f(3)=1 故应选B. 5.(2009•安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( ) A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 [答案] A [解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式.∵f(x)=2f(2-x)-x2+8x-8,∴f(2-x)=2f(x)-x2-4x+4,∴f(x)=x2,∴f′(x)=2x,∴曲线y=f(x)在点(1,f(1))处的切线斜率为2,切线方程为y-1=2(x-1),∴y=2x-1. 6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于( ) A.2 B.3 C.4 D.5 [答案] D [解析] f′(x)=3x2+2ax+3,∵f(x)在x=-3时取得极值,∴x=-3是方程3x2+2ax+3=0的根,∴a=5,故选D. 7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( ) A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) [答案] D [解析] 令F(x)=f(x)•g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0. 又由g(-3)=0,知g(3)=0 ∴F(-3)=0,进而F(3)=0 于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)•g(x)<0的解集为(-∞,-3)∪(0,3),故应选D. 8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( ) A.①② B.③④ C.①③ D.①④ [答案] B [解析] ③不正确;导函数过原点,但三次函数在x=0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B. 9.(2010•湖南理,5)241xdx等于( ) A.-2ln2 B.2ln2 C.-ln2 D.ln2 [答案] D [解析] 因为(lnx)′=1x,所以 241xdx=lnx|42=ln4-ln2=ln2. 10.已知三次函数f(x)=13x3-(4m-1)x2+(15m2-2m-7)x+2在x∈(-∞,+∞)是增函数,则m的取值范围是( ) A.m<2或m>4 B.-4<m<-2 C.2<m<4 D.以上皆不正确 [答案] D [解析] f′(x)=x2-2(4m-1)x+15m2-2m-7,由题意得x2-2(4m-1)x+15m2-2m-7≥0恒成立,∴Δ=4(4m-1)2-4(15m2-2m-7) =64m2-32m+4-60m2+8m+28 =4(m2-6m+8)≤0,∴2≤m≤4,故选D. 11.已知f(x)=x3+bx2+cx+d在区间[-1,2]上是减函数,那么b+c( ) A.有最大值152 B.有最大值-152 C.有最小值152 D.有最小值-152 [答案] B [解析] 由题意f′(x)=3x2+2bx+c在[-1,2]上,f′(x)≤0恒成立.所以f′(-1)≤0f′(2)≤0 即2b-c-3≥04b+c+12≤0 令b+c=z,b=-c+z,如图过A-6,-32得z最大,最大值为b+c=-6-32=-152.故应选B. 12.设f(x)、g(x)是定义域为R的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( ) A.f(x)g(x)>f(b)g(b) B.f(x)g(a)>f(a)g(x) C.f(x)g(b)>f(b)g(x) D.f(x)g(x)>f(a)g(x) [答案] C [解析] 令F(x)=f(x)g(x) 则F′(x)=f′(x)g(x)-f(x)g′(x)g2(x)<0 f(x)、g(x)是定义域为R 恒大于零的实数∴F(x)在R上为递减函数,当x∈(a,b)时,f(x)g(x)>f(b)g(b) ∴f(x)g(b)>f(b)g(x).故应选C. 二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.-2-1dx(11+5x)3=________. [答案] 772 [解析] 取F(x)=-110(5x+11)2,从而F′(x)=1(11+5x)3 则-2-1dx(11+5x)3=F(-1)-F(-2) =-110×62+110×12=110-1360=772. 14.若函数f(x)=ax2-1x的单调增区间为(0,+∞),则实数a的取值范围是________. [答案] a≥0 [解析] f′(x)=ax-1x′=a+1x2,由题意得,a+1x2≥0,对x∈(0,+∞)恒成立,∴a≥-1x2,x∈(0,+∞)恒成立,∴a≥0. 15.(2009•陕西理,16)设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为________. [答案] -2 [解析] 本小题主要考查导数的几何意义和对数函数的有关性质. k=y′|x=1=n+1,∴切线l:y-1=(n+1)(x-1),令y=0,x=nn+1,∴an=lgnn+1,∴原式=lg12+lg23+…+lg99100 =lg12×23×…×99100=lg1100=-2. 16.如图阴影部分是由曲线y =1x,y2=x与直线x=2,y=0围成,则其面积为________. [答案] 23+ln2 [解析] 由y2=x,y=1x,得交点A(1,1) 由x=2y=1x得交点B2,12. 故所求面积S=01xdx+121xdx =23x3210+lnx21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2010•江西理,19)设函数f(x)=lnx+ln(2-x)+ax(a>0). (1)当a=1时,求f(x)的单调区间; (2)若f(x)在(0,1]上的最大值为12,求a的值. [解析] 函数f(x)的定义域为(0,2),f ′(x)=1x-12-x+a, (1)当a=1时,f ′(x)=-x2+2x(2-x),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2); (2)当x∈(0,1]时,f ′(x)=2-2xx(2-x)+a>0,即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=12. 18.(本题满分12分)求曲线y=2x-x2,y=2x2-4x所围成图形的面积. [解析] 由y=2x-x2,y=2x2-4x得x1=0,x2=2. 由图可知,所求图形的面积为S=02(2x-x2)dx+|02(2x2-4x)dx|=02(2x-x2)dx-02(2x2-4x)dx. 因为x2-13x3′=2x-x2, 23x3-2x2′=2x2-4x,所以S=x2-13x320-23x3-2x220=4. 19.(本题满分12分)设函数f(x)=x3-3ax+b(a≠0). (1)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值; (2)求函数f(x)的单调区间与极值点. [分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想. [解析] (1)f′(x)=3x2-3a. 因为曲线y=f(x)在点(2,f(2))处与直线y=8相切,所以f′(2)=0,f(2)=8.即3(4-a)=0,8-6a+b=8. 解得a=4,b=24. (2)f′(x)=3(x2-a)(a≠0).当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点.当a>0时,由f′(x)=0得x =±a. 当x∈(-∞,-a)时,f′(x)>0,函数f(x)单调递增;当x∈(-a,a)时,f′(x)<0,函数f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,函数f(x)单调递增.此时x=-a是f(x)的极大值点,x=a是f(x)的极小值点. 20.(本题满分12分)已知函数f(x)=12x2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,12x2+lnx<23x3. [解析] (1)依题意知函数的定义域为{x|x>0},∵f′(x)=x+1x,故f′(x)>0,∴f(x)的单调增区间为(0,+∞). (2)设g(x)=23x3-12x2-lnx,∴g′(x)=2x2-x-1x,∵当x>1时,g′(x)=(x-1)(2x2+x+1)x>0,∴g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=16>0,∴当x>1时,12x2+lnx<23x3. 21.(本题满分12分)设函数f(x)=x3-92x2+6x-a. (1)对于任意实数x, f′(x)≥m恒成立,求m的最大值; (2)若方程f(x)=0有且仅有一个实根,求a的取值范围. [分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题. [解析] (1)f′(x)=3x2-9x+6=3(x-1)(x-2).因为x∈(-∞,+∞).f′(x)≥m,即3x2-9x+(6-m)≥0恒成立.所以Δ=81-12(6-m)≤0,得m≤-34,即m的最大值为-34. (2)因为当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时f′(x)>0. 所以当x=1时,f(x)取极大值f(1)=52-a,当x=2时,f(x)取极小值f(2)=2-a. 故当f(2)>0或f(1)<0时,方程f(x)=0仅有一个实根,解得a<2或a>52. 22.(本题满分14分)已知函数f(x)=-x3+ax2+1(a∈R). (1)若函数y=f(x)在区间0,23上递增,在区间23,+∞上递减,求a的值; (2)当x∈[0,1]时,设函数y=f(x)图象上任意一点处的切线的倾斜角为θ,若给定常数a∈32,+∞,求θ的取值范围; (3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1(m∈R)的图象与函数y=f(x)的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由. [解析] (1)依题意f′23=0,由f′(x)=-3x2+2ax,得-3232+2a•23=0,即a=1. (2)当x∈[0,1]时,tanθ=f′(x)=-3x2+2ax=-3x-a32+a23. 由a∈32,+∞,得a3∈12,+∞. ①当a3∈12,1,即a∈32,3时,f′(x)max =a23, f(x)min=f′(0)=0. 此时0≤tanθ≤a23. ②当a3∈(1,+∞),即a∈(3,+∞)时,f′(x)max=f′(1)=2a-3,f′(x)min =f′(0)=0,此时,0≤tanθ≤2a-3. 又∵θ∈[0,π),∴当32<a≤3时,θ∈0,arctana23,当a>3时,θ∈[0,arctan(2a-3)]. (3)函数y=f(x)与g(x)=x4-5x3+(2-m)x2+1(m∈R)的图象恰有3个交点,等价于方程-x3+x2+1=x4-5x3+(2-m)x2+1恰有3个不等实根,∴x4-4x3+(1-m)x2=0,显然x=0是其中一个根(二重根),方程x2-4x+(1-m)=0有两个非零不等实根,则Δ=16-4(1-m)>01-m≠0 ∴m>-3且m≠1 故当m>-3且m≠1时,函数y=f(x)与y=g(x)的图象恰有3个交点.。

导数、定积分及应用测试-答案

导数、定积分及应用测试-答案

《导数、定积分及应用测试》参考答案:1、( B ) 2.( B ) 3.(A ) 4.( C ) 5.( B ) 6、( B ) 7、( D ) 8、(C ) 9、( B ) 10、(D )11、解:11231001()()3f x dx ax c dx ax cx=+=+⎰⎰203ac ax c =+=+03x =∴12、a>2或a<-1; 13、-1/2 ; 14、10;15、设kx F =,则由题可得010.=k ,所以做功就是求定积分1800106..=⎰xdx 。

16题、解方程组⎩⎨⎧-==2xx y kxy 得:直线kx y =分抛物线2x x y -=的交点的横坐标为0=x 和k x -=1抛物线2x x y -=与x 轴所围成图形为面积为61|)3121()(1032102=-=-=⎰x x dx x x S 由题设得 dx kx dx x x Sk k ⎰⎰----=10102)(26)1()(3102k dx kx x x k-=--=⎰- 又61=S ,所以21)1(3=-k ,从而得:2413-=k 17题、(1)323)('2-+=bx ax x f ,依题意, 0)1(')1('=-=f f ,即⎩⎨⎧=--=-+.0323,0323b a b a解得 0,1==b a ∴x x x f 3)('3-=,∴)1)(1(333)('2-+=-=x x x x f 令0)('=x f ,得 1,1=-=x x 若),1()1,(+∞--∞∈ x ,则0)('>x f 故)(x f 在),1()1,(+∞--∞和上是增函数; 若)11(,-∈x ,则0)('<x f 故)(x f 在)1,1(-上是减函数;所以2)1(=-f 是极大值,2)1(-=f 是极小值。

(2)曲线方程为x x y 33-=,点)16,0(A 不在曲线上。

全国卷数学导数专题测试

全国卷数学导数专题测试

导数 专题测试(限时120min )一、单选题1.函数()2ln 1f x x x =-+的单调递减区间为( )A .(0,2)B .(0,)eC .1,e ⎛⎫+∞ ⎪⎝⎭D .(2,)+∞2.函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<3.函数9()(2)2f x x x x =++的最小值为( ) A .174 B .4 C .6 D .724.函数()sin f x x x =的导函数()f x '在区间[]π,π-上的图象大致为( )A .B .C .D .5.已知函数()f x =2a ≤是()f x a ≥恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分不必要条件6.函数()||3e x x xf =的部分图象大致为( ) A . B .C .D .7.已知函数()()221sin 1x x f x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20208.设函数()f x 在R 上可导,其导函数为()f x ',且函数()2y x =-()f x '的图像如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()2f 和极小值()1fB .函数()f x 有极大值()2f -和极小值()1fC .函数()f x 有极大值()2f 和极小值()2f -D .函数()f x 有极大值()2f -和极小值()2f9.已知函数()2ln ,013,22x x e x f x x x e e e ⎧<≤⎪⎪=⎨⎪-+>⎪⎩,若,a b c <<且()()()f a f b f c ==,则ln ln b a c a b ⋅的取值范围是( ) A .(),3e e B .()3,e e -- C .()1,3e D .()3,1e --10.设函数2()()()f x x x a x =--∈R ,当3a >时,不等式()22(sin 1)sin f k f k θθ---≥-对任意的[1,0]k ∈-恒成立,则θ的可能取值是( )A .3π-B .43πC .2π-D .56π 11.若函数()y f x =的图象上存在两个不同的点,A B ,使得曲线()y f x =在这两点处的切线重合,称函数()y f x =为“自重合”函数.下列函数中是“自重合”函数的为( )A .ln y x x =+B .e 1x y =+C .3y x =D .cos y x x =-12.在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( )A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭二、填空题13.若函数f (x )=x 3+mx 2+x +1在R 上无极值点,则实数m 的取值范围是_____.14.已知曲线C :()3f x x ax a =-+,若过曲线C 外一点1,0A 引曲线C 的两条切线,它们的倾斜角互补,则实数a 的值为______.15.定义在()0+∞,上的函数()f x 满足:0x ∀>有()()0f x xf x '+>成立且()12f =,则不等式()2f x x <的解集为__________.16.数列{}n a 中,112a =,()()()*111n n n na a n n na +=∈++N ,若不等式()24110n n a n nλ++-≥恒成立,则实数λ的取值范围为__________.三、解答题17.求下列函数的导数.(1)22y x x -=+;(2)32x x x y e e =-+;(3)2ln 1x y x =+;(4)2sin cos 22x x y x =-. 18.在“①()f x 在1x =处取得极小值2,①()f x 在1x =-处取得极大值6,①()f x 的极大值为6,极小值为2”这三个条件中任选一个,补充在下面的问题中,并解答.问题:已知函数()33f x x ax b =-+(0a >),且______,求()f x 的单调区间.19.已知函数3211()326m f x x x x =+-+. (1)当1m =时,求曲线()f x 上在点(1,(1))f 处的切线方程;(2)这下面三个条件中任选一个补充在下面的问题中,并加以解答.若()f x ___________,求实数m 的取值范围.①在区间(,1)m m +上是单调减函数;①在1,22⎛⎫ ⎪⎝⎭上存在减区间;①在区间(,)m +∞上存在极小值. 20.已知函数()211cos 4f x a x x ⎛⎫=-+ ⎪⎝⎭. (1)当2a =时,求曲线()y f x =在点()(),f ππ处的切线方程;(2)当1a ≥时,证明:对任意[]0,2x ∈,()0f x ≤.。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

高二数学下册(必修三)导数 单元测试卷及答案解析

高二数学下册(必修三)导数 单元测试卷及答案解析

高二数学下册(必修三)导数 单元测试卷及答案解析一 、单选题(本大题共8小题,共40分)1.(5分)函数f(x)在x =4处的切线方程为y =3x +5,则f(4)+f ′(4)=( )A. 10B. 20C. 30D. 402.(5分)设a 为实数,函数f (x )=x 3+ax 2+(a −2)x 的导函数是f ′(x),且f ′(x)是偶函数,则曲线y =f (x )在原点处的切线方程为( )A. y =−2xB. y =3xC. y =−3xD. y =−4x3.(5分)若函数f(x)=x 2+lnx 的图像在(a,f(a))处的切线与直线2x +6y −5=0垂直,则a 的值为( )A. 1B. 2或14C. 2D. 1或124.(5分)已知函数f (x )={&ln (x +1),−1<x ⩽14 x 2+14,x >14 ,且关于x 的方程f (x )−kx =0恰有2个实数解,则实数k 的取值范围是( )A. [1,54] B. [54,+∞)C. [4ln 54,1]D. [4ln 54,1]⋃[54,+∞)5.(5分)曲线y =13x 3 在x =1处切线的倾斜角为( )A. 1B. −π4C. π4D.5π46.(5分) 若曲线f(x)=x 4−4x 在点A 处的切线平行于x 轴,则点A 的坐标为( )A. (-1,2)B. (1,-3)C. (1,0)D. (1,5)7.(5分)曲线f(x)=e x lnx 在x =1处的切线与坐标轴围成的三角形面积为( )A. e4B. e2C. eD. 2e8.(5分)曲线f(x)=x 2+3x 在点A(1,4)处的切线斜率为( )A. 2B. 5C. 6D. 11二 、多选题(本大题共5小题,共25分) 9.(5分)下列命题中是真命题有()A. 若f′(x0)=0,则x0是函数f(x)的极值点B. 函数y=f(x)的切线与函数可以有两个公共点C. 函数y=f(x)在x=1处的切线方程为2x−y=0,则f′(1)=2D. 若函数f(x)的导数f′(x)<1,且f(1)=2,则不等式f(x)>x+1的解集是(−∞,1)10.(5分)若函数y=f(x)的图象上存在两点,使得函数图象在这两点处的切线互相垂直,则称函数y=f(x)具有“T性质”.则下列函数中具有“T性质”的是()A. y=xe x B. y=cosx+1 C. y=1x3D. y=ln2log2x11.(5分)已知函数f(x)=x+√2x图象上的一条切线与g(x)=x的图象交于点M,与直线x=0交于点N,则下列结论不正确的有()A. 函数f(x)的最小值为2√2B. 函数的值域为(−∞,−2√24]C. |MN|2的最小值为16−8√2D. 函数f(x)图象上任一点的切线倾斜角的所在范围为[0,π4]12.(5分)已知曲线上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a可能的取值()A. 196B. 3 C. 103D. 9213.(5分)设函数f(x)=x−ln|x|x,则下列选项中正确的是()A. f(x)为奇函数B. 函数y=f(x)−1有两个零点C. 函数y=f(x)+f(2x)的图象关于点(0,2)对称D. 过原点与函数f(x)相切的直线有且只有一条三、填空题(本大题共5小题,共25分)14.(5分)已知倾斜角为45°的直线l与曲线y=lnx−2x+1相切,则直线l的方程是 ______.15.(5分)已知曲线C:y=x3−3x2+2x,直线l过(0,0)与曲线C相切,则直线l的方程是______ .16.(5分)函数f(x)={1−2x,x⩾012x2+2x,x<0,函数g(x)=k(x−2),若方程f(x)=g(x)恰有三个实数解,则实数k的取值范围为__________.17.(5分)函数f(x)=√4x+1,则函数f(x)在x=2处切线的斜率为 ______.18.(5分)某物体作直线运动,其位移S与时间t的运动规律为S=t+2√t(t的单位为秒,S的单位为米),则它在第4秒末的瞬时速度应该为______米/秒.四、解答题(本大题共5小题,共60分)19.(12分)已知函数f(x)=x3+x−16.(1)求曲线y=f(x)在点(2,−6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.20.(12分)在抛物线C:y=ax2(a>0)上取两点A(m1,n1),B(m2,n2),且m2−m1=4,过点A,B分别作抛物线C的切线,两切线交于点P(1,−3).(1)求抛物线C的方程;(2)设直线l交抛物线C于M,N两点,记直线OM,ON(其中O为坐标原点)的斜率分别为k OM,k ON,且k OM.k ON=−2,若ΔOMN的面积为2√3,求直线l的方程.21.(12分)已知函数f(x)=(x+a)lnx,g(x)=x 2e x.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x−y=0平行.(1)求a的值;(2)证明:方程f(x)=g(x)在(1,2)内有且只有一个实根.22.(12分)设f(x)=ae x+1ae x+b(a>0)(I)设曲线y=f(x)在点(2,f(2))的切线方程为y=32x;求a,b的值.(II)求f(x)在[0,+∞)上的最小值.23.(12分)已知曲线y=13x3+43,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.参考答案与解析1.【答案】B;【解析】解:∵函数f(x)在x=4处的切线方程为y=3x+5,∴f′(4)=3,又f(4)=3×4+5=17,∴f(4)+f′(4)=17+3=20.故选:B.由已知可得f′(4),在切线方程中取x=4求得f(4),则答案可求.此题主要考查对数的几何意义及其应用,是基础题.2.【答案】A;【解析】此题主要考查导数的几何意义,函数的奇偶性,直线的点斜式方程,属于基础题.求导函数f′(x),由f′(x)是偶函数求出a的值,然后根据导数的几何意义求切线方程.解:由f(x)=x3+ax2+(a−2)x,得,f′(x)=3x2+2ax+(a−2),又∵f′(x)是偶函数,∴2a=0,即a=0,∴f′(x)=3x2−2,∴曲线y=f(x)在原点处的切线斜率为−2,曲线y=f(x)在原点处的切线方程为y=−2x,故选A.3.【答案】D;【解析】解:函数f(x)=x2+lnx的导数为f′(x)=2x+1x,在(a,f(a))处的切线的斜率为2a+1a,由切线与直线2x+6y−5=0垂直,可得−13(2a+1a)=−1,解得a=1或12,故选:D.求得f(x)的导数,由导数的几何意义可得切线的斜率,再由两直线垂直的条件,解方程可得所求值.此题主要考查导数的运用:求切线的斜率,以及两直线垂直的条件,考查方程思想和运算能力,属于基础题.4.【答案】C;【解析】此题主要考查了方程的根与函数的图象之间的关系应用及学生的作图能力,同时考查了导数的几何意义的应用,属于中档题.方程f(x)=kx恰有两个不同实数根,等价于y=f(x)与y=kx有2个交点,又k表示直线y= kx的斜率,求出k的取值范围.解:画出函数f(x)图象,可求得函数f(x)=ln(x+1)(−1<x⩽14)图象在点O(0,0)处的切线方程为y=x,过点O(0,0)且与函数f(x)=x2+14(x>14)图象相切的直线方程也为y=x,即得直线y=x为函数f(x)图象的切线,且有两个切点,切点为O(0,0)和A(12,12 ),关于x的方程f(x)−kx=0恰有2个实数解当且仅当直线y=kx函数f(x)图象有两个公共点,由图可知当且仅当k OB⩽k⩽k OA时符合题意,又k OA=1,k OB=ln(14+1)14=4ln54,则求得4ln54⩽k⩽1.故选C.5.【答案】C;【解析】解:∵y =13x 3,∴y ′=x 2,设曲线y =13x 3 在x =1处切线的倾斜角为α,根据导数的几何意义可知,切线的斜率k =y ′|x=1=12=1=tan α, ∴α=π4,即倾斜角为π4. 故选C .欲求在x =1处的切线倾斜角,先根据导数的几何意义可知k =y ′|x=1,再结合正切函数的值求出角α的值即可.该题考查了导数的几何意义,以及利用正切函数的性质可求倾斜角,本题属于容易题.6.【答案】B;【解析】解:f(x)=x 4−4x 的导数为f ′(x)=4x 3−4, 设切点为A(m,n),则n =m 4−4m , 可得切线的斜率为k =4m 3−4=0, 解得m =1,n =−3.即A(1,−3). 故选:B .求得函数的导数,设出切点A(m,n),代入函数式,求得切线的斜率,令它为0,解得m ,n ,进而得到切点A 的坐标.该题考查导数的运用:求切线的斜率,考查导数的几何意义,设出切点和正确求导是解答该题的关键,属于基础题.7.【答案】B; 【解析】此题主要考查导数的几何意义及三角形面积公式,属于基础题,先求出曲线f(x)=e x lnx 在x =1处的切线方程,再其求与坐标轴的交点即可求得三角形面积;解:f ′(x)=e xlnx +e x x,则f ′(1)=e ,f(1)=0,∴曲线f(x)=e x lnx 在x =1处的切线方程为y =e(x −1),令x=0,得y=−e,令y=0,得x=1,∴切线与坐标轴围成的三角形面积为S=12×e×1=e2.故选B.8.【答案】B;【解析】解:函数的导数为f′(x)=2x+3,所以函数在A(1,4)处的切线斜率k=f′(1)=2+3=5.故选:B.求曲线在点处得切线的斜率,就是求曲线在该点处得导数值.该题考查了导数的几何意义.导数的几何意义是指函数y=f(x)在点x0处的导数是曲线y= f(x)在点P(x0,y0)处的切线的斜率.它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.9.【答案】BCD;【解析】此题主要考查极值的概念,导数的几何意义,利用导数研究函数的单调性,利用单调性求解不等式,属于中档题.由题意结合知识点,逐个选项分析即可.解:选项A,若f′(x0)=0,x0不一定是函数f(x)的极值点,例如函数f(x)=x3,f′(0)=0,但x=0不是极值点,故错误;选项B,函数y=f(x)的切线与函数可以有两个公共点,例如函数f(x)=x3−3x,在x=1处的切线为y=−2与函数还有一个公共点为(−2,−2),故正确;选项C,因为函数y=f(x)在x=1处的切线方程为2x−y=0,所以f′(1)=2,故正确. 选项D,令g(x)=f(x)−x−1,因为函数f(x)的导数f′(x)<1,则g′(x)=f′(x)−1<0,所以函数g(x)=f(x)−x−1在R上单调递减,又g(1)=f(1)−2=0,由不等式f(x) > x+1得g(x) > 0=g(1),得x 1,所以不等式f(x) > x+1的解集是(−∞,1),故正确.故选BCD.10.【答案】AB;【解析】解:由题意,可知若函数y =f(x)具有“T 性质”,则存在两点, 使得函数在这两点处的导数值的乘积为−1, 对于A ,(xe x )′=1−x e x,满足条件;对于B ,(cosx +1)′=−sinx ,满足条件;对于C ,(1x 3)′=−3x 4<0恒成立,负数乘以负数不可能得到−1,不满足条件;对于D ,(ln2log 2x)′=ln2.1xln2=1x >0恒成立,正数乘以正数不可能得到−1,不满足条件. 故选:AB.分别求出四个选项中函数的导函数,看是否满足存在两点,使得函数在这两点处的导数值的乘积为−1即可.此题主要考查导数的几何意义及应用,考查化归与转化思想,关键是熟记基本初等函数的导函数,是中档题.11.【答案】ABD; 【解析】此题主要考查导数的运算和几何意义以及基本不等式求最值,属于中档题. 由题意和导数的运算结合基本不等式,逐个选项验证正误即可. 解:已知f(x)=x +√2x,当x >0时,f(x)=x +√2x⩾2√24,当x <0时,f(x)=x +√2x⩽−2√24,故选项A 、B 不正确;设直线l 与函数f(x)的图象相切于点(x 0,x 02+√2x 0),函数f(x)的导函数为f ′(x)=1−√2x 2=x 2−√2x 2,则直线l 的方程为y −x 02+√2x 0=x 02−√2x 02(x −x 0),即y =x 02−√2x 02x +2√2x 0,直线l 与g(x)=x 的交点为M(2x 0,2x 0),与x =0的交点为N(0,2√2x 0), 所以|MN|2=4x 02+(2x 0−2√2x 0)2=8x 02+8x 02−8√2⩾16−8√2,当且仅当x 02=1时取等号,故选项C 正确; f ′(x)=1−√2x 2=x 2−√2x 2⩽1,可知切线斜率可为负值,即倾斜角可以为钝角,故选项D 不正确.故选ABD.12.【答案】AC;【解析】此题主要考查导数的几何意义和二次方程的实根的分布,考查运算能力,属于中档题.求出导数,由题意可得2x2−2x+a=3有两个不相等的正根,由此列出不等式组即可得到a 的取值范围,进而可得a的可能取值.解:f(x)=23x3−x2+ax−1的导数为f′(x)=2x2−2x+a,由题意可得2x2−2x+a=3有两个不相等的正根,则{Δ=28−8a>0a−32>0,解得3<a<72,故选:AC.13.【答案】BCD;【解析】解:函数f(x)=x−ln|x|x的定义域为{ x|x≠0},f(−x)+f(x)=1−ln|−x|−x +1−ln|x|x=2≠0,所以f(x)不为奇函数,故A错误;由f(x)=1,可得ln|x|x=0,解得x=±1,故y=f(x)−1有两个零点,故B正确;由f(−x)+f(−2x)+f(x)+f(2x)=[f(−x)+f(x)]+[f(−2x)+f(2x)]=2+2=4,则函数y=f(x)+f(2x)的图象关于点(0,2)对称,故C正确;当x>0时,f(x)=1−lnxx ,f′(x)=−1−lnxx2,设过原点与f(x)相切的切点为(m,n),则切线的方程为y−n=lnm−1m2(x−m),即y−1+lnmm =lnm−1m2(x−m),代入(0,0),可得1+m=2lnm,设g(m)=2lnm−1−m,g′(m)=2m−1,当0<m<2时,g(m)递增,m>2时,g(m)递减,则g(m)的最大值为g(2)=2ln2−3<0,所以x>0时,不存在过原点的切线;当x<0时,f(x)=1−ln(−x)x ,f′(x)=−1−ln(−x)x2,设过原点与f(x)相切的切点为(s,t)(s<0),则切线的方程为y−t=ln(−s)−1s2(x−s),即y−1+ln(−s)s =ln(−s)−1s2(x−s),代入(0,0),可得1+s=2ln(−s),设g(s)=2ln(−s)−1−s,g′(m)=2s−1<0,所以g(s)递减,则g(s)只有一个零点,所以x<0时,只存在一条过原点的切线.综上可得存在一条过原点的切线,故D正确.故选:BCD.由函数的奇偶性和零点、对称性、导数的几何意义,可得结论.此题主要考查导数的运用:求切线的方程,考查方程思想和运算能力、推理能力,属于中档题.14.【答案】x−y+ln2−2=0;【解析】由直线的倾斜角求得直线的斜率,求出原函数的导函数,由导函数值为1求解切点坐标,再由直线方程的点斜式得答案.此题主要考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,是基础题.解:直线的倾斜角为45°,则直线的斜率为tan45°=1,由y=lnx−2x +1,得y′=1x+2x2,由y′=1x +2x2=1,解得x=−1(舍去)或x=2.∴切点坐标为(2,ln2),则直线l的方程为y−ln2=1×(x−2),即x−y+ln2−2=0.故答案为:x−y+ln2−2=0.15.【答案】y=−x或y=−14x或y=2x;【解析】求出函数的导数,结合直线关系即可得到结论.这道题主要考查函数的切线的求解,根据函数导数的几何意义是解决本题的关键.注意要进行分类讨论.解:函数的导数为f ′(x)=3x 2−6x +2, 设切点为(a,b),则k =f ′(a)=3a 2−6a +2,b =a 3−3a 2+2a , 则切线的方程y −b =(3a 2−6a +2)(x −a), 即y =(3a 2−6a +2)x −2a 3+9a 2−4a , ∵直线l 过点(0,0), ∴−2a 3+9a 2−4a =0, 即2a 3−9a 2+4a =0, 则a(a −4)(2a −1)=0, 解得a =0或a =4或a =12,当a =1时,对应的直线方程为y =−x , 当a =12时,对应的直线方程为y =−14x , 当a =0时,对应的直线方程为y =2x , 故答案为:y =−x 或y =−14x 或y =2x16.【答案】(0,4-2√3) ; 【解析】此题主要考查函数的零点与方程的根之间的关系,函数的导数求解切线方程,考查数形结合以及计算能力,是难题.画f(x)={1−2x ,x ⩾012x 2+2x,x <0,的图象,结合直线g(x)=k(x −2)过定点(2,0),函数g(x)的图象与f(x)=12x 2+2x ,x <0的图象相切时,函数f(x),g(x)的图象恰有两个交点.设切点为P(x 0,y 0),由f ˈ(x)=x +2,x <0,求出切线的斜率,利用函数的图象的交点个数与函数的零点个数,推出k 的范围即可.解:依题意,画出f(x)={1−2x,x⩾012x2+2x,x<0的图象如图:因为直线g(x)=k(x−2)过定点(2,0),由图象可知,当函数g(x)的图象与f(x)=12x2+2x,x<0的图象相切时,函数f(x),g(x)的图象恰有两个交点.下面利用导数法求该切线的斜率.设切点为P(x0,y0),由fˈ(x)=x+2,x<0,则k=f′(x0)=x0+2=12x02+2x0x0-2,解得x0=2+2√3(舍去)或x0=2-2√3,则k=4−2√3,要使方程f(x)=g(x)恰有三个实数解,则函数f(x),g(x)的图象恰有三个交点,结合图象可的实数k的取值范围为(0,4-2√3),故答案为(0,4-2√3).17.【答案】23;【解析】解:由f(x)=√4x+1,得f′(x)=2(4x+1)−1 2,所以函数f(x)在x=2处切线的斜率k=f′(2)=23.故答案为:23.对f(x)求导,根据导数的几何意义,得到f(x)在x=2处的切线斜率.此题主要考查了利用导数研究函数的切线方程和导数的几何意义,属基础题.18.【答案】32;【解析】解:S=t+2√t,∴S′=1+√t,∴它在4秒末的瞬时速度为1+√4=32,故答案为:32.物理中的瞬时速度常用导数来求,故求出S的导数,代入4求值.该题考查变化的快慢与变化率,解答本题关键是理解导数的物理意义,由此转化为求导数的问题.19.【答案】解:(1)∵f′(x)=(x3+x−16)′=3x2+1,∴在点(2,−6)处的切线的斜率k=f′(2)=3×22+1=13,∴切线的方程为y=13x−32.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,∴直线l的方程为y=(3x02+1)(x−x0)+x03+x0−16.又∵直线l过点(0,0),∴0=(3x02+1)(−x0)+x03+x0−16,整理,得x03=−8,∴x0=−2,∴y0=(−2)3+(−2)−16=−26,直线l的斜率k=3×(−2)2+1=13,∴直线l的方程为y=13x,切点坐标为(−2,−26).;【解析】(1)先求出函数的导函数,再求出函数在(2,−6)处的导数即斜率,易求切线方程.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,从而求得直线l的方程,有条件直线1过原点可求解切点坐标,进而可得直线1的方程.此题主要考查直线的点斜式方程,属基础题型,较为简单.20.【答案】解:(1)由y=ax2(a>0)得y′=2ax(a>0),则曲线在点A处的切线斜率为2am1,曲线在点A处的切线方程为y−am12=2am1(x−m1),曲线在点A处的切线过点P(1,−3),故am12−2am1−3=0①,同理可得曲线y=ax2(a>0)在点B处的切线方程为y−am22=2am2(x−m2),∴am12−2am1−3=0②,①−②得m1+m2=2,m2−m1=4,∵m2−m1=4,∴m1=−1,m2=3,将m1=−1代入①,可得a=1,故抛物线方程为x2=y;(2)由题意知直线l的斜率存在,设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x2−kx−b=0,∴x1+x2=k,x1.x2=−b,∴k OM.k ON=x12x1.x22x2=x1x2=−2,可得b=2,∴直线l经过点(0,2),∴SΔ=12×|OP|×|x1−x2|=2√3,∴|x1−x2|=2√3,∴k2=4,∴k=±2,经检验k=±2,b=2符合题意,∴直线l的方程为y=2x+2或y=2x−2.;【解析】此题主要考查了直线与抛物线涉及到利用导数求曲线的切线方程、抛物线的几何性质、直线方程的求法等知识,综合性较强.(1)利用导数,可以求出曲线在点A,B处的切线斜率为2am1,2am2,从而求出切线方程,得到关于m1,m2的关系式,可以求出m的值,从而求出切线方程;(2)设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x1+x2=k,x1.x2=−b,求出b=2,根据题意列方程求出k的值,从而求出直线方程.21.【答案】(本题满分为12分)解:(1)f′(x)=lnx+ax+1,由题意知,曲线y=f(x)在点(1,f(1))处的切线斜率为2,则f'(1)=2,所以a+1=2,解得a=1.…(4分)(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x 2e x,x∈(1,2),则ˈ(1)=−1e <0,ˈ(2)=3ln2−4e2>0,所以h(1)h(2)<0,所以函数h(x)在(1,2)内一定有零点,…(8分)可得ˈ′(x)=lnx+x+1x −2x−x2e x(e x)2=lnx+1x+1−−(x−1)2+1e x>1−1e>0,∴h(x)在(1,2)上单调递增,所以函数h(x)在(1,2)内有且只有一个零点,即方程f(x)=g(x)在(1,2)内有且只有一个实根.…(12分);【解析】(1)求得f(x)的导数,可得x=1处切线的斜率,由两直线平行的条件:斜率相等,解方程即可得到所求值.(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x2e x ,x∈(1,2),由ˈ(1)=−1e<0,ˈ(2)=3ln2−4e2>0,可得函数ˈ(x)在(1,2)内一定有零点,进而证明ˈ′(x)>0,可得ˈ(x)在(1,2)上单调递增,即可得证.此题主要考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,考查函数的零点判定定理,正确求导是解答该题的关键,属于中档题.22.【答案】解:(I )由题意得,f(x)=ae x +1aex+b ,则f ′(x)=ae x −1ae x,因为在点(2,f (2))的切线方程为y=32x ,所以{(f(2)=3f ′(2)=32), 即{(ae 2+1ae 2+b =3ae 2−1ae 2=32),解得{(a =2e 2b =12)…(6分)(Ⅱ)设t=e x (t ≥1),则原函数化为:y =at +1at +b , 所以y ′=a −1at 2=a 2t 2−1at 2,令y ′=0,解得t=±1a ,(1)当a ≥1时,则y ′>0在[1,+∞)上成立, 所以函数y =at +1at +b 在[1,+∞)上是增函数, 则当t=1(x=0)时,函数f (x )取到最小值是a +1a +b ; (2)当0<a <1时,y =at +1at +b ≥2+b ,当且仅当at=1(t=e x =1a >1,则x=-lna )时,取等号, 此时函数f (x )取到最小值是b+2,综上可得,当a ≥1时,函数f (x )的最小值是a +1a +b ; 当0<a <1时,函数f (x )的最小值是b+2.…(12分); 【解析】(Ⅰ)由求导公式和法则求出f ′(x),根据导数的几何意义和条件列出方程组,求出a 、b 的值; (Ⅱ)设t =e x (t ⩾1),代入原函数化简并求出导数,根据临界点和区间对a 进行分类讨论,利用导数与单调性、基本不等式求出函数的最小值.此题主要考查求导公式和法则,导数的几何意义,以及导数与函数单调性、基本不等式求函数的最值问题,属于中档题.23.【答案】解:(1)∵P(2,4)在曲线y =13x 3+43上,且y ′=x 2 ∴在点P(2,4)处的切线的斜率k =y ′|x=2=4;∴曲线在点P(2,4)处的切线方程为y −4=4(x −2),即4x −y −4=0.(2)设曲线y =13x 3+43与过点P(2,4)的切线相切于点A(x 0,13x 03+43),则切线的斜率k=y′|x=x=x02,∴切线方程为y−(13x03+43)=x02(x−x0),即y=x02.x−23x03+43∵点P(2,4)在切线上,∴4=2x02−23x03+43,即x03−3x02+4=0,∴x03+x02−4x02+4=0,∴(x0+1)(x0−2)2=0解得x0=−1或x0=2故所求的切线方程为4x−y−4=0或x−y+2=0.(3)设切点为(x0,y0)则切线的斜率为k=x02=4,x0=±2.切点为(2,4),(−2,−43)∴切线方程为y−4=4(x−2)和y+43=4(x+2)即4x−y−4=0和12x−3y+20=0.;【解析】该题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.(1)根据曲线的解析式求出导函数,把P的横坐标代入导函数中即可求出切线的斜率,根据P的坐标和求出的斜率写出切线的方程即可;(2)设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可;(3)设出切点坐标,由切线的斜率为4,把切点的横坐标代入导函数中求出的函数值等于4列出关于切点横坐标的方程,求出方程的解即可得到切点的横坐标,代入曲线方程即可求出相应的纵坐标,根据切点坐标和斜率分别写出切线方程即可.。

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。

导数同步测试题(2)含答案

导数同步测试题(2)含答案

导数同步测试题(2)一.选择题1.函数f (x )=x 3﹣mx 2+4x 在[1,3]上是单调增函数,则实数m 的取值范围是( C )2.函数f (x )=x ﹣3x ﹣m 在R 上有三个零点,则实数m 的取值范围是(A ) A .()2,2- B. ()2,0- C. ()0,2 D.()(),22,-∞-⋃+∞3.若函数y=e x+mx 在()0,+∞上有极值,则实数m 的取值范围是( D )4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为( A )121226.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设()f x '是函数y=f (x )的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解x 0,则称点(x 0,f (x 0))为函数y=f (x )的“拐点”.某同学经过探究发现:任何一个一元三次函数都有“拐点”;且该“拐点”正是该函数的对称中心.若f (x )=x 3﹣x 2+x+1,则f ()+f ()=(B )二.填空题 7. 函数1411()142y x x x =+≤≤-的最小值是 9 . 8.定义在R 上的函数f (x ),其导函数()f x '满足()f x '>1,且f (2)=3,则关于x 的不等式f (x )<x+1的解集为 (﹣∞,2) .9.设函数()0)xf x ke k =>(的图像位于直线10)y kx k =+>(的上方,则k 的取值范围是()1,+∞.10. 记1()()f x f x =,f 2(x )=f 1′(x ), f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x ) (n ∈N *,n ≥2),若f (x )=sin x +cos x ,则2014()6f π=_________;12若2014(),(0)x xf x e e f -=+=则________.011.已知函数2()ln (0)xf x a x x a a =+->,对∀x 1,x 2∈[0,1],不等式|f (x 1)﹣f (x 2)|≤a ﹣1恒成立,则a 的取值范围 a≥e12.函数2()ln 2ax f x x x =-在()0,+∞上有两个极值,则a 的取值范围是 ()0,1三.解答题13.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. (1)求a 的值;(2)求函数()f x 的单调区间;(3)若直线y m =与函数()y f x =的图像恰有三个交点,求m 的取值范围。

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.对于函数2ln ()xf x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .fff <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x =,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x--=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.5.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nn a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.7.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

导数测试答案

导数测试答案

导数测试答案选择题:1-----5 DAAAA 6-----10 ADBAB 11---12 CB填空题:13. 0.686 J 14. 34 15. (-1,0] 16. 6 17. 解 (1))(x f '=3x 2-x +b ,因f (x )在(-≦,+≦)上是增函数,则)(x f '≥0.即3x 2-x +b ≥0,≨b ≥x -3x 2在(-≦,+≦)恒成立.设g (x )=x -3x 2,当x =61时,g (x )max =121,≨b ≥121.(2)由题意知)1('f =0,即3-1+b =0,≨b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因)(x f '=3x 2-x -2,令)(x f '=0,得x =1或x =-32.≧f (1)=-23+c , f (-,21)1(,2722)32c f c +=-+=,f (2)=2+c . ≨f (x )max =f (2)=2+c ,≨2+c <c 2.解得c >2或c <-1,所以c 的取值范围为(-≦,-1)∪(2,+≦).18.解 命题p :由原式得f (x )=x 3-ax 2-4x +4a ,≨)(x f '=3x 2-2ax -4,y '的图象为开口向上且过点(0,-4)的抛物线.由条件得)2(-'f ≥0且)2('f ≥0, 即⎩⎨⎧≥-≥+.048084a a ≨-2≤a ≤2.命题q : x 0⎰ (2t -2)d t =(t 2-2t )|x 0=x 2-2x =(x -1)2-1>a ,≧该不等式的解集为R ,≨a <-1.当p 正确q 不正确时,-1≤a ≤2;当p 不正确q 正确时,a <-2.≨a 的取值范围是(-≦,-2)∪[-1,2].19.解(1)当火车的速度v =0时火车完全停止,即5-t +t +155=0,≨t 2-4t -60=0,解得t =10或t =-6(舍去).即从开始紧急刹车至火车完全停止所经过的时间为10 s.(2)由(1)知,从开始紧急刹车至火车完全停止所经过的时间为10 s,又由火车的速度v (t )=5-t +t +155,得火车正常行驶的速度v =v (0)=60 (m/s).≨火车正常运行的路程与紧急刹车后火车运行的路程之差为60×10-t tt d )1555(100++-⎰ =600-,11ln 55600|)1ln(55251002-=⎥⎦⎤⎢⎣⎡++-t t t 即紧急刹车后火车运行的路程比正常运行的路程少了(600-55 ln11)米.20解 (1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点,≧y ′=4x ,≨直线l 1的斜率k =-4,≨直线l1的方程为y -2=-4(x +1),即4x +y +2=0.(2)点A 的坐标为(-1,2),由条件可得点B 的坐标为(a ,2a 2),点D 的坐标为(a ,-4a -2),≨△ABD 的面积S 1为S 1=21×|2a 2-(-4a -2)|×|-1-a | =|(a +1)3|=-(a +1)3.(3)直线l 1的方程可化为y =-4x -2,S 2=1-⎰a [2x 2-(-4x -2)]d x =1-⎰a (2x 2+4x +2)d x =[2(31x 3+x 2+x )]|1-a =-32-2(31a 3+a 2+a ) =-32a 3-2a 2-2a -32.21. 解 设P (x 0,y 0),则y 0=,212x , ≨过点P 的切线斜率k =x 0,当x 0=0时不合题意,≨x 0≠0.≨直线l 的斜率k l =-011x -=k ,≨直线l 的方程为y -)(1210020x x x x --=. 此式与y =221x 联立消去y 得 x 2+.022200=--x x x 设Q (x 1,y 1),M (x ,y ).≧M 是PQ 的中点, ≨⎪⎪⎩⎪⎪⎨⎧++=+---=-=+=12121)1(112202020000010x x x x x x y x x x x 消去x 0,得y =x 2+221x +1 (x ≠0)就是所求的轨迹方程.由x ≠0知x 2>0,≨y =x 2+221x +1≥2.12121·22+=+xx 上式等号仅当x 2=221x ,即x =±421时成立, 所以点M 到x 轴的最短距离是2+1. 22.解 (1)≧)(x f '=2(1+x )-12+x a =2·,1122x a x x +-++ 依题意f (x )在(-2,-1)上是增函数,在(-≦,-2)上为减函数.≨x =-2时,f (x )有极小值,≨)2(-'f =0. 代入方程解得a =1,故f (x )=(1+x )2-ln(1+x )2.(2)由于)(x f '=2(1+x )-x x x x ++=+1)2(212,令)(x f '=0,得x 1=0,x 2=-2.(由于x ∈[e1-1,e -1],故x 2=-2舍去), 易证函数在[e1-1,0]上单调递减, 在[0,e-1]上单调递增,且f (e 1-1)=2e 1+2,f (e-1)=e 2-2>2e 1+2,故当x ∈[e1-1,e-1]时,f (x )max =e 2-2, 因此若使原不等式恒成立只需m >e 2-2即可.(3)若存在实数b 使得条件成立,方程f (x )=x 2+x +b即为x -b +1-ln(1+x )2=0,令g (x )=x -b +1-ln(1+x )2,则)(x g '=1-1112+-=+x x x , 令)(x g '>0,得x <-1或x >1,令)(x g '<0,得-1<x <1,故g (x )在[0,1]上单调递减,在[1,2]上单调递增,要使方程f (x )=x 2+x +b 在 区间[0,2]上恰好有两个相异的实根,只需g (x )=0在区间[0,1]和[1,2]上各有一个实根,于是有⎪⎩⎪⎨⎧≥-≤<-⇒<≥0)2(,3ln 232ln 220)1(0)0(g b g g故存在这样的实数b ,当2-2ln2<b ≤3-2ln3时满足条件.。

导数测试题及详解

导数测试题及详解

导数及其应用一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011·烟台调研)三次函数f(x)=mx 3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤1[答案] A[解析] f′(x)=3mx 2-1,由条件知f′(x)≤0在(-∞,+∞)上恒成立,∴⎩⎪⎨⎪⎧m<0Δ=12m≤0,∴m<0,故选A.2.(文)(2011·山东淄博一中期末)曲线y =13x 3+x 在点⎝ ⎛⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为( )A .1 B.19 C.13 D.23[答案] B[解析] ∵y′=x 2+1,∴曲线y =13x 3+x 在点(1,43)处的切线斜率k =y′|x =1=1+1=2,∴k =2,切线方程为y -43=2(x -1),即6x -3y -2=0,令x =0得y =-23,令y =0得x =13,∴S =12×13×23=19.(理)(2011·辽宁沈阳二中检测)由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为( )A.329B .2-ln3C .4+ln3D .4-ln3[答案] D[解析] 如图,平面图形的面积为⎠⎛13⎝ ⎛⎭⎪⎫y -1y dy =[12y 2-lny]|31=4-ln3.[点评] 本题考查定积分求曲边形的面积,关键是根据定积分的几何意义把求解的面积归结为函数在区间上的定积分,再根据微积分基本定理求解.在把曲边形面积转化为定积分时,可以以x 为积分变量、也可以以y 为积分变量,如果是以x 为积分变量,则被积函数是以x 为自变量的函数,如果是以y 为积分变量,则被积函数是以y 为自变量的函数.本题如果是以x 为积分变量,则曲边形ABC 的面积是不如以y 为积分变量简明.3.(文)(2011·陕西咸阳模拟)已知函数f(x)=ax 2-1的图像在点A(1,f(1))处的切线l 与直线8x -y +2=0平行,若数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和为S n ,则S 2010的值为( ) A.20102011 B.10052011 C.40204021D.20104021[答案] D[解析] ∵f′(x)=2ax ,∴f(x)在点A 处的切线斜率为f′(1)=2a ,由条件知2a =8,∴a =4,∴f(x)=4x 2-1,∴1f n =14n 2-1=12n -1·12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1∴数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和S n =1f 1+1f 2+…+1f n =12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1,∴S 2010=20104021. (理)(2011·辽宁丹东四校联考)设函数f(x)=ax 2+b(a≠0),若⎠⎛03f(x)dx =3f(x 0),则x 0=( )A .±1 B. 2 C .± 3 D .2[答案] C[解析] ⎠⎛03f(x)dx =⎠⎛03(ax 2+b)dx=⎪⎪⎪⎝ ⎛⎭⎪⎫13ax 3+bx 30=9a +3b. 由⎠⎛03f(x)dx =3f(x 0)得,9a +3b =3ax 20+3b , ∴x 20=3,∴x 0=± 3.4.(文)(2011·山西太原调研)曲线y =x 3-3x 2+1在点(-1,-3)处的切线与坐标轴所围成的封闭图形的面积为( )A .2B .3C .4D .5[答案] A[解析] y′|x =-1=(3x 2-6x)|x =-1=9,∴切线方程为y +3=9(x +1),即9x -y +6=0,令x =0得y =6,令y =0得x =-23,∴所求面积S =12×6×23=2,故选A.(理)(2011·宁夏银川一中检测)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x)dxB .S =⎠⎛01(x -x 2)dxC .S =⎠⎛01(y 2-y)dy D .S =⎠⎛01(y -y)dy[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数.[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)dx.5.(2011·福州市期末、河北冀州期末)已知实数a 、b 、c 、d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( )A .-1B .0C .1D .2[答案] A[分析] 利用导数可求b 、c ,由a 、b 、c 、d 成等比数列可得ad =bc.[解析] y′=1x +2-1,令y′=0得x =-1,当-2<x<-1时,y′>0,当x>-1时,y′<0,∴b =-1,c =ln(-1+2)-(-1)=1,∴ad =bc =-1,故选A.6.(2011·黄冈市期末)设a ∈R ,函数f(x)=e x+a·e -x的导函数是f′(x),且f′(x)是奇函数,若曲线y =f(x)的一条切线的斜率是32,则切点的横坐标为( )A .-ln22B .-ln2C .ln2 D.ln22[答案] C[解析] ∵f′(x)=e x-ae -x为奇函数,∴a =1,设切点为P(x 0,y 0),则f′(x 0)=ex 0-e -x 0=32,∴ex 0=2,∴x 0=ln2.7.(2011·日照调研)下列图象中,有一个是函数f(x)=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a≠0)的导数f′(x)的图象,则f(-1)的值为( )A.13 B .-13C.73 D .-13或53[答案] B[解析] f′(x)=x 2+2ax +a 2-1,其图象为开口向上的抛物线,故不是第一个图;第二个图中,a =0,f ′(x)=x 2-1,但已知a≠0,故f′(x)的图象为第三个图,∴f′(0)=0,∴a =±1,又其对称轴在y 轴右边,∴a =-1,∴f(x)=13x 3-x 2+1,∴f(-1)=-13,故选B.8.(2011·潍坊一中期末)设f′(x)是函数f(x)的导函数,将y =f(x)和y =f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f(x)为二次函数时,f′(x)为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f(x)的单调性为增、减、增,故f′(x)的值应为正负正,因此D 一定是错误的.9.(2011·北京学普教育中心)若函数f(x)=2x 2-lnx 在其定义域内的一个子区间(k -1,k +1)内不是..单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,32)C .[1,2)D .[32,2)[答案] B[解析] 因为f(x)定义域为(0,+∞),f′(x)=4x -1x ,由f′(x)=0,得x =12.据题意,⎩⎪⎨⎪⎧k -1<12<k +1k -1≥0,解得1≤k<32,选B.10.(2011·江西吉安质检)已知曲线方程f(x)=sin 2x +2ax(a ∈R),若对任意实数m ,直线l :x +y +m =0都不是曲线y =f(x)的切线,则a 的取值范围是( )A .(-∞,-1)∪(-1,0)B .(-∞,-1)∪(0,+∞)C .(-1,0)∪(0,+∞)D .a ∈R 且a≠0,a≠-1[答案] B[解析] 若存在实数m ,使直线l 是曲线y =f(x)的切线,∵f′(x)=2sinxcosx +2a =sin2x +2a ,∴方程sin2x +2a =-1有解,∴-1≤a≤0,故所求a 的取值范围是(-∞,-1)∪(0,+∞),选B.11.(2011·彭州中学月考)若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7][答案] B[解析] 令f(x)=x 3-3x 2-9x +2,则f ′(x)=3x 2-6x -9,令f ′(x)=0得x =-1或x =3(舍去).∵f(-1)=7,f(-2)=0,f(2)=-20. ∴f(x)的最小值为f(2)=-20, 故m≤-20,综上可知应选B.12.(2011·蚌埠二中质检)定义在R 上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y =f′(x)的图象如图所示.若两正数a ,b 满足f(2a +b)<1,则b +2a +2的取值范围是( )A.⎝ ⎛⎭⎪⎫13,12B.⎝⎛⎭⎪⎫-∞,12∪(3,+∞) C.⎝ ⎛⎭⎪⎫12,3 D .(-∞,-3)[答案] C[解析] 由y =f′(x)的图象知,x>0时,f′(x)>0,x<0时,f′(x)<0,∴y =f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∵两正数a ,b 满足f(2a +b)<1且f(4)=1,∴2a +b<4,如图,b +2a +2表示点A(-2,-2)与线段BC 上的点连线的斜率,其中B(2,0),C(0,4),∵k AB =12,k AC =3,a>0,b>0,∴12<b +2a +2<3.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·四川广元诊断)曲线y =xe x+2x +1在点(0,1)处的切线方程为________. [答案] y =3x +1[解析] y′=e x+xe x+2,y′|x =0=3,∴切线方程为y -1=3(x -0),即y =3x +1. 14.(文)(2011·广东省高州长坡中学期末)函数f(x)=1+log 2x ,f(x)的反函数为g(x),则g′(2)=________.[答案] 2ln2[解析] 由y =1+log 2x 得x =2y -1,∴f(x)的反函数为g(x)=2x -1,∴g′(x)=2x -1ln2,∴g′(2)=2ln2.(理)(2011·辽宁沈阳二中检测)如图,函数y =f(x)的图象在点P 处的切线方程是y =-x +8,则f(5)+f′(5)=________.[答案] 2[解析] f(5)+f′(5)=(-5+8)+(-1)=2.15.(文)函数y =13x 3-ax 2+x -2a 在R 上不是单调函数,,则a 的取值范围是________.[答案] (-∞,-1)∪(1,+∞)[解析] y′=x 2-2ax +1,若函数在R 上单调,应有y′≥0恒成立,∴4a 2-4≤0,∴a 2≤1,∴-1≤a≤1,因此所求a 的取值范围是(-∞,-1)∪(1,+∞).(理)(2011·安徽巢湖质检)定积分⎠⎛12|3-2x|dx =________[答案] 12[解析] ⎠⎛12|3-2x|dx =2⎠⎛21.5(2x -3)dx =2(x 2-3x)|21.5=2×14=12.16.(2011·湖南长沙一中期末)对于三次函数f(x)=ax 3+bx 2+cx +d(a≠0),定义:设f″(x)是函数y =f(x)的导数y =f′(x)的导数,若方程f″(x)=0有实数解x 0,则称点(x 0,f(x 0))为函数y =f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求(1)函数f(x)=x 3-3x 2+3x 对称中心为________.(2)若函数g(x)=13x 3-12x 2+3x -512+1x -12,则g ⎝ ⎛⎭⎪⎫12011+g ⎝ ⎛⎭⎪⎫22011+g ⎝ ⎛⎭⎪⎫32011+g ⎝ ⎛⎭⎪⎫42011+…+g ⎝⎛⎭⎪⎫20102011=________.[答案] (1)(1,1) (2)2010[解析] (1)f′(x)=3x 2-6x +3,f″(x)=6x -6,令6x -6=0得x =1,f(1)=1,∴f(x)的对称中心为(1,1).(2)令h(x)=13x 3-12x 2+3x -512,k(x)=1x -12,h′(x)=x 2-x +3,h″(x)=2x -1,由2x -1=0得x =12,h ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1,∴h(x)的对称中心为⎝ ⎛⎭⎪⎫12,1,∴h(x)+h(1-x)=2,x =12011,22011,…,20102011.又k(x)的对称中心为⎝ ⎛⎭⎪⎫12,0, ∴k(x)+k(1-x)=0,x =12011,22011,…,20102011.∴g ⎝ ⎛⎭⎪⎫12011+g ⎝ ⎛⎭⎪⎫22011+…+g ⎝ ⎛⎭⎪⎫20102011=h ⎝ ⎛⎭⎪⎫12011+h ⎝ ⎛⎭⎪⎫22011+…+h ⎝ ⎛⎭⎪⎫20102011+k ⎝ ⎛⎭⎪⎫12011+k ⎝⎛⎭⎪⎫22011+…+k ⎝ ⎛⎭⎪⎫20102011=2010. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(文)(2011·山西太原调研)已知函数f(x)=13x 3-ax 2+(a 2-1)x+b(a ,b ∈R),其图象在点(1,f(1))处的切线方程为x +y -3=0.(1)求a ,b 的值;(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值. [解析] (1)f′(x)=x 2-2ax +a 2-1, ∵(1,f(1))在x +y -3=0上,∴f(1)=2, ∵(1,2)在y =f(x)上,∴2=13-a +a 2-1+b ,又f′(1)=-1,∴a 2-2a +1=0, 解得a =1,b =83.(2)∵f(x)=13x 3-x 2+83,∴f′(x)=x 2-2x ,由f′(x)=0可知x =0和x =2是f(x)的极值点,所以有,+∞),单调递减区间是(0,2)∵f(0)=83,f(2)=43,f(-2)=-4,f(4)=8,∴在区间[-2,4]上的最大值为8.(理)(2011·淄博期末)定义在R 上的函数f(x)=ax 3+bx 2+cx +3同时满足以下条件:①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;②f′(x)是偶函数;③f(x)在x =0处的切线与直线y =x +2垂直.(1)求函数y =f(x)的解析式;(2)设g(x)=lnx -mx ,若存在实数x ∈[1,e],使g(x)<f′(x),求实数m 的取值范围.[解析] (1)f′(x)=3ax 2+2bx +c ,∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴f′(1)=3a +2b +c =0① 由f′(x)是偶函数得:b =0②又f(x)在x =0处的切线与直线y =x +2垂直,f′(0)=c =-1③ 由①②③得:a =13,b =0,c =-1,即f(x)=13x 3-x +3.(2)由已知得:存在实数x ∈[1,e],使lnx -m x <x 2-1即存在x ∈[1,e],使m>xlnx -x 3+x设M(x)=xlnx -x 3+x x ∈[1,e],则M′(x)=lnx -3x 2+2设H(x)=lnx -3x 2+2,则H′(x)=1x -6x =1-6x2x∵x ∈[1,e],∴H′(x)<0,即H(x)在[1,e]上递减 于是,H(x)≤H(1),即H(x)≤-1<0,即M′(x)<0 ∴M(x)在[1,e]上递减,∴M(x)≥M(e)=2e -e 3于是有m>2e -e 3为所求.18.(本小题满分12分)(2011·四川资阳模拟)函数f(x)=ax 3-6ax 2+3bx +b ,其图象在x =2处的切线方程为3x +y -11=0.(1)求函数f(x)的解析式;(2)若函数y =f(x)的图象与y =13f′(x)+5x +m 的图象有三个不同的交点,求实数m的取值范围;(3)是否存在点P ,使得过点P 的直线若能与曲线y =f(x)围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P 点的坐标;若不存在,说明理由.[解析] (1)由题意得f′(x)=3ax 2-12ax +3b , ∵f′(2)=-3且f(2)=5,∴⎩⎪⎨⎪⎧12a -24a +3b =-3,8a -24a +6b +b =5,即⎩⎪⎨⎪⎧4a -b =1,-16a +7b =5,解得a =1,b =3,∴f(x)=x 3-6x2+9x +3.(2)由f(x)=x 3-6x 2+9x +3可得,f′(x)=3x 2-12x +9,13f′(x)+5x +m =13(3x 2-12x+9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根, 即g(x)=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点,g′(x)=3x 2-14x +8=(3x -2)(x -4),则g(x),g′(x)的变化情况如下表.则函数f(x)的极大值为g ⎝ ⎭⎪⎫3=27-m ,极小值为g(4)=-16-m.y =f(x)的图象与y =13f′(x)+5x +m 的图象有三个不同交点,则有⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫23=6827-m>0,g 4=-16-m<0,解得-16<m<6827.(3)存在点P 满足条件.∵f(x)=x 3-6x 2+9x +3,∴f′(x)=3x 2-12x +9=3(x -1)(x -3),由f′(x)=0,得x 1=1,x 2=3.当x<1时,f′(x)>0;当1<x<3时,f′(x)<0;当x>3时,f′(x)>0.可知极值点为A(1,7),B(3,3),线段AB 中点P(2,5)在曲线y =f(x)上,且该曲线关于点P(2,5)成中心对称.证明如下:∵f(x)=x 3-6x 2+9x +3,∴f(4-x)=(4-x)3-6(4-x)2+9(4-x)+3 =-x 3+6x 2-9x +7,∴f(x)+f(4-x)=10,上式表明,若点A(x ,y)为曲线y =f(x)上任一点,其关于P(2,5)的对称点A(4-x,10-y)也在曲线y =f(x)上,曲线y =f(x)关于点P(2,5)对称.故存在点P(2,5),使得过该点的直线若能与曲线y =f(x)围成两个封闭图形,则这两个封闭图形的面积相等.19.(本小题满分12分)(2011·烟台调研)已知函数f(x)=ax 3+bx 2的图象经过点M(1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直,(1)求实数a 、b 的值;(2)若函数f(x)在区间[m ,m +1]上单调递增,求m 的取值范围. [解析] (1)∵f(x)=ax 3+bx 2的图象经过点M(1,4), ∴a +b =4.①f′(x)=3ax 2+2bx ,则f′(1)=3a +2b , 由条件f′(1)·(-19)=-1,即3a +2b =9,②由①②式解得a =1,b =3.(2)f(x)=x 3+3x 2,f′(x)=3x 2+6x , 令f′(x)=3x 2+6x≥0得x≥0或x≤-2,∴f(x)的单调递增区间为(-∞,-2]和[0,+∞)由条件知m≥0或m +1≤-2, ∴m≥0或m≤-3.20.(本小题满分12分)(2011·厦门期末)已知函数f(x)=1+alnxx ,(a ∈R).(1)若函数f(x)在x =1处取得极值,求实数a 的值;(2)在(1)条件下,若直线y =kx 与函数y =f(x)的图象相切,求实数k 的值. [解析] (1)∵f(x)=1+alnxx,∴f′(x)=ax ·x-1+alnx x 2=a -1-alnxx 2, ∵函数f(x)在x =1处取得极值,∴f′(1)=a -1=0, ∴a =1经检验,a =1时,函数f(x)在x =1处取得极值.(2)由(1)可知,a =1,∴f(x)=1+lnx x ,∴f′(x)=-lnxx ,设切点A ⎝ ⎛⎭⎪⎫x 0,1+lnx 0x 0,∴k =f′(x 0)=-lnx 0x 20 又k =k OA =1+lnx 0x 20,∴1+lnx 0x 20=-lnx 0x 20, ∴lnx 0=-12,∴x 0=e -12,∴k =e2.21.(本小题满分12分)(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知函数f(x)=x 3+ax 2+b 的图象在点P(1,0)处的切线与直线3x +y =0平行.(1)求常数a ,b 的值;(2)求函数f(x)在区间[0,m]上的最小值和最大值(m>0). [解析] (1)f′(x)=3x 2+2ax f′(1)=3+2a =-3,∴a =-3 f(1)=a +b +1=0,∴b =2.(2)f(x)=x 3-3x 2+2,f′(x)=3x 2-6x令f′(x)=0得,x 1=0,x 2=2,当x<0或x>2时,f′(x)>0,当0<x<2时,f′(x)<0, ∴f(x)增区间为(-∞,0)和(2,+∞),减区间为(0,2), f(0)=2,令f(x)=x 3-3x 2+2=2得x =0或x =3. ∴f(0)=f(3)=2, ①当0≤m≤2时f(x)min =f(m)=m 3-3m 2+2 f(x)max =f(0)=2 ②当2<m≤3时 f(x)min =f(2)=-2 f(x)max =f(0)=2 ③当m>3时 f(x)min =f(2)=-2 f(x)max =f(m)=m 3-3m 2+2.22.(本小题满分12分)(文)已知函数f(x)=x 3-3ax 2-3a 2+a(a>0). (1)求函数f(x)的单调区间;(2)若曲线y =f(x)上有两点A(m ,f(m))、B(n ,f(n))处的切线都与y 轴垂直,且函数y =f(x)在区间[m ,n]上存在零点,求实数a 的取值范围.[解析] (1)f′(x)=3x 2-6ax =3x(x -2a).令f′(x)=0,得x 1=0,x 2=2a 列表如下:由上表可知,函数的单调递增区间为(-∞,(0,2a).(2)由(1)可知,m =0,n =2a 且在x =0,x =2a 处分别取得极值. f(0)=-3a 2+a ,f(2a)=-4a 3-3a 2+a. 由已知得函数y =f(x)在区间[0,2a]上存在零点, ∴f(0)×f(2a)≤0即(-3a 2+a)(-4a 3-3a 2+a)≤0 ∴a 2(3a -1)(4a -1)(a +1)≤0 ∵a>0∴(3a -1)(4a -1)≤0,解得14≤a≤13故实数a 的取值范围是[14,13].(理)(2011·北京学普教育中心联考版)已知函数f(x)=x 2+ax -lnx ,a ∈R ; (1)若函数f(x)在[1,2]上是减函数,求实数a 的取值范围;(2)令g(x)=f(x)-x 2,是否存在实数a ,当x ∈(0,e](e 是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a 的值;若不存在,说明理由.[解析] f′(x)=2x +a -1x =2x 2+ax -1x ≤0在[1,2]上恒成立令h(x)=2x 2+ax -1,x ∈[1,2],∴h(x)≤0在[1,2]上恒成立∴⎩⎪⎨⎪⎧h 1=1+a≤0h 2=7+2a≤0得⎩⎪⎨⎪⎧a≤-1a≤-72,∴a≤-72.(2)假设存在实数a ,使g(x)=f(x)-x 2,x ∈(0,e]有最小值3 g(x)=ax -lnx ,x ∈(0,e],g′(x)=a -1x =ax -1x①当a≤0时,g′(x)<0,g(x)在(0,e]上单调递减 ∴g(x)min =g(e)=ae -1=3,∴a =4e(舍去)②当0<1a <e 即a>1e 时,在(0,1a )上,g′(x)<0;在(1a,e]上,g′(x)>0∴g(x)在(0,1a ]上单调递减,在(1a,e]上单调递增∴g(x)min =g ⎝ ⎛⎭⎪⎫1a =1+lna =3,∴a =e 2满足条件③当1a ≥e 即0<a≤1e 时,g′(x)<0,g(x)在(0,e]上单调递减g(x)min =g(e)=ae -1=3 ∴a =4e >1e(舍去)综上所述,存在a =e 2使得当x ∈(0,e]时,g(x)有最小值3.。

导数与函数的单调性测试题(含答案)

导数与函数的单调性测试题(含答案)

导数与函数的单调性测试题一、单项选择题(本大题共10小题,共50分) 1. 函数y =12x 2−lnx 的单调递减区间为( )A. (−1,1]B. (0,1]C. [1,+∞)D. (0,+∞)2. 设函数f(x)的图象如图所示,则导函数f′(x)的图象可能为( )A. B.C. D.3. 函数y =(x −3)e x 的单调增区间是( )A.B. (0,3)C. (1,4)D.4. 已知函数f(x)=32x 2−4x +lnx ,则函数f(x)的单调递减区间是( )A. (0,13),(1,+∞)B. (0,1),(3,+∞)C. (0,13),(3,+∞)D. (13,1)5. 已知函数f(x)的导数为f′(x),且满足f(x)=x 2+3xf′(3),则f′(3)=( )A. −1B. −2C. −3D. −46. 函数f(x)=xlnx( )A. 在(0,5)上单调递增B. 在(0,5)上单调递减C. 在(0,1e )上单调递减,在(1e ,5)上单调递增 D. 在(0,1e )上单调递增,在(1e ,5)上单调递减7. 若函数f(x)=x 3−ax 2−x +6在(0,1)内单调递减,则实数a 的取值范围是( )A. a ≥1B. a =1C. a ≤1D. 0<a <18. 函数f(x)=x 3+ax +b 在区间(−1,1)上是减函数,在(1,+∞)上是增函数,则( )A. a =1,b =1B. a =1,b ∈RC. a =−3,b =3D. a =−3,b ∈R9. 已知函数f(x)=x 3+mlnx 在区间[2 , 3]上不是单调函数,则m 的取值范围是( )A. (−∞,−81)B. (−24,+∞)C. (−81,−24)D. (−81,+∞)10.函数f(x)=x3+ax−2在区间(1,+∞)内是增函数,则实数a的取值范围是()A. [3,+∞)B. [−3,+∞)C. (−3,+∞)D. (−∞,−3)二、填空题(本大题共2小题,共10分)11.若函数f(x)=e x(x2+ax+3)在R上单调递增,则实数a的取值范围为______ .12.函数f(x)=x的单调递减区间为_______________.lnx三、解答题(本大题共4小题,共40分)−1.13.已知函数f(x)=lnxx(1)求函数在点(1,f(1))处的切线方程.(2)试判断函数f(x)的单调性;14.已知函数f(x)=x2−ax+lnx+b(a,b∈R),(1)若函数f(x)在x=1处的切线方程为x+y+2=0,求实数a,b的值;(2)若f(x)在其定义域内单调递增,求a的取值范围.15.已知函数f(x)=x3+ax2+(2a−3)x−1.(1)若f(x)的单调递减区间为(−1,1),求实数a的值;(2)若f(x)在区间(−1,1)内单调递减,求实数a的取值范围.16.已知函数f(x)=x3+ax2−a2x+2.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若a>0,求函数f(x)的单调区间.答案和解析1.解:令f(x)=12x2−ln x定义域为(0,+∞),∴f′(x)=x−1x=(x+1)(x−1)x≤0,得0<x≤1,函数的单调递减区间为(0,1],2.解:由f(x)的图象知当x∈(−∞,1)时,f(x)单调递减,f′(x)<0当x∈(1,4)时,f(x)单调递增,f′(x)>0当x∈(4,+∞)时,f(x)单调递减,f′(x)<03.解:∵y=(x−3)e x,∴y′=e x+(x−3)e x=(x−2)e x,由y′>0得x−2>0,解得x>2,∴函数y=(x−3)e x的单调增区间是(2,+∞).4.解:函数的定义域为(0,+∞),函数的导数f′(x)=3x−4+1x =3x2−4x+1x,由f′(x)<0得3x2−4x+1x<0,得3x2−4x+1<0,得(x−1)(3x−1)<0,得13<x<1,即函数的单调递减区间为(13,1),5.解:∵f(x)=x2+3xf′(3),∴f′(x)=2x+3f′(3),令x=3,则f′(3)=2×3+3f′(3),解得:f′(3)=−3,6.解:∵y=xlnx,∴y′=lnx+1,由y′=lnx+1=0,得极值点x=1e,∵x∈(0,5),∴当x∈(0,1e)时,f′(x)<0,函数是单调递减函数.当x∈(1e,5)时,f′(x)>0,函数是单调递增函数.7.解:f′(x)=3x2−2ax−1,导函数为二次函数,∵f(x)在(0,1)内单调递减,∴结合导函数的性质可得不等式3x2−2ax−1<0在(0,1)内恒成立.∴f′(0)≤0,f′(1)≤0,∴a≥1.8.解:∵f(x)=x3+ax+b,∴f′(x)=3x2+a.∵f(x)在(−1,1)上为减函数,在(1,+∞)上为增函数,∴f′(1)=3+a=0.∴a=−3,b∈R.9.解:f′(x)=3x2+mx =3x3+mx,若f(x)在[2,3]不单调,则3x3+m=0在[2,3]有解,且在解的两边正负号不同,即y=m和y=−3x3在(2,3)有交点,而x∈(2,3)时,函数y=−3x3单调递减,y∈(−81,−24),故m的取值范围为(−81,−24).10.解:f′(x)=3x 2+a ,因为函数f(x)=x 3+ax −2在区间(1,+∞)内是增函数,所以f′(x)≥0在(1,+∞)上恒成立,即a ≥−3x 2在(1,+∞)上恒成立, 易知函数y =−3x 2在(1,+∞)上单调递减,所以y <−3,所以a ≥−3. 即实数a 的取值范围是[−3,+∞).11.解:由题知f′(x)=e x [x 2+(a +2)x +a +3]≥0恒成立,即x 2+(a +2)x +a +3≥0恒成立,∴△=(a +2)2−4(a +3)≤0, 即−2√2≤a ≤2√2,故答案为:[−2√2,2√2].12.解:因为函数,其定义域为(0,1)∪(1,+∞).f ′(x )=lnx−x·1x(lnx )2=lnx−1(lnx )2, 令f ′(x )<0,则lnx <1,解得0<x <1或1<x <e .所以函数f(x)=xlnx 的单调减区间为(0,1),(1,e).故答案为(0,1),(1,e).13.解:(1)由题可知:f′(x)=1−lnx x 2;所以:f′(1)=1,f(1)=−1;∴函数在点(1,f(1))处的切线方程为:y −(−1)=x −1即:y =x −2. (2)因为函数的定义域(0,+∞)且f′(x)=1−lnx x 2;令f′(x)=1−lnx x >0得0<x <e ,f′(x)=1−lnx x <0得x >e ,因此函数单调增区间是(0,e),单调减区间是(e,+∞).14.解:∵f(x)=x 2−ax +lnx +b ,∴f ′(x)=2x −a +1x ,∴f(1)=1−a +b ,f′(1)=3−a ,(1)∵函数f(x)在x =1处的切线方程为x +y +2=0∴{k =f ′(1)=3−a =−11+f(1)+2=0,解得:a =4,b =0;(2)f(x)=x 2−ax +lnx +b 的定义域为{x|x >0}∵f(x)在其定义域内单调递增 ∴f ′(x)=2x −a +1x ≥0在x ∈(0,+∞)恒成立(允许个别点处取到等号) ∵2x −a +1x ≥0(x >0)即a ⩽2x +1x (x >0)(允许个别值处取到等号)令g(x)=2x +1x (x >0),则a ≤g(x)min ,因为g(x)=2x +1x≥2√2x ⋅1x=2√2,当且仅当2x =1x 即x =√22时取到等号.所以 g(x)min =2√2,所以a ≤2√2.15.解:(1)∵f(x)=x 3+ax 2+(2a −3)x −1,∴f′(x)=3x 2+2ax +2a −3=3(x +1)(x +2a−33)由于f(x)的单调减区间为(−1,1),∴−1和1是方程f′(x)=0的两根,∴2a−33=−1,解得a =0;(2)由(1)可知,f′(x)=3(x+1)(x+2a−33),∵f(x)在区间(−1,1)内单调递减,∴f′(x)≤0在(−1,1)内恒成立,又函数y=f′(x)为二次函数,且图象开口向上,方程f′(x)=0的一个根为−1,又方程f′(x)=0的另一个根为3−2a3,∴3−2a3≥1,∴a≤0,∴实数a的取值范围为(−∞,0].16.解(1)∵a=1,∴f(x)=x3+x2−x+2,∴f′(x)=3x2+2x−1,∴f′(1)=4.又f(1)=3,∴切点坐标为(1,3),∴所求切线方程为y−3=4(x−1),即4x−y−1=0.(2)f(x)的定义域为R,f′(x)=3x2+2ax−a2=(x+a)(3x−a),由f′(x)=0得x=−a或x=a3.又a>0,由f′(x)<0,得−a<x<a3,由f′(x)>0,得x<−a或x>a3,故f(x)的单调递减区间为(−a,a3),单调递增区间为(−∞,−a)和(a3,+∞).。

导数的测试题及答案

导数的测试题及答案

导数的测试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 2D. x答案:A2. 函数g(x)=sin(x)的导数是:A. cos(x)B. sin(x)C. xD. 1答案:A3. 函数h(x)=e^x的导数是:A. e^xB. e^(-x)C. xD. 1答案:A4. 函数k(x)=ln(x)的导数是:A. xB. 1/xC. ln(x)D. e^x答案:B二、填空题(每题5分,共20分)1. 函数f(x)=3x^2+2x-5的导数是______。

答案:6x+22. 函数g(x)=x^3-4x^2+7的导数是______。

答案:3x^2-8x3. 函数h(x)=1/x的导数是______。

答案:-1/x^24. 函数k(x)=sqrt(x)的导数是______。

答案:1/(2*sqrt(x))三、计算题(每题10分,共40分)1. 求函数f(x)=x^4-2x^3+3x^2-4x+5的导数。

答案:4x^3-6x^2+6x-42. 求函数g(x)=x^5+3x^4-2x^3+x^2-5的导数。

答案:5x^4+12x^3-6x^2+2x3. 求函数h(x)=e^(2x)-3e^x+2的导数。

答案:2e^(2x)-3e^x4. 求函数k(x)=ln(x^2)-2ln(x)+3的导数。

答案:2/x-2/x结束语:以上是导数的测试题及答案,希望同学们通过这些题目能够更好地理解和掌握导数的概念和计算方法。

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

高二数学选修1-1《导数及其应用》单元测试卷班级: 姓名: 座号: 成绩:一、选择题(共7个小题,每小题6分)1、一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( )A .5米/秒B .6米/秒C .7米/秒D .8米/秒2、函数()3f x x x =+的单调递增区间是 ( )A .()0,+∞B .(),1-∞C .(),-∞+∞D .()1,+∞3、已知()3232f x ax x =++且()14f '-=,则实数a 的值等于 ( )A .193B .163C .133D .1034、函数()()22f x x π=的导数是 ( )A .()4f x x π'=B .()24f x x π'=C .()28f x x π'=D .()16f x x π'=5、“函数()00f x '=”是“可导函数()f x 在点0x x =处取到极值”的 条件。

( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要6、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .47、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,,()()1n n f x f x +'=,n ∈N ,则()2005f x = ( )A .sin xB .sin x -C .cos xD .cos x -二、填空题(共3个小题,每小题6分)8、曲线31y x x =++在点()1,3处的切线方程是 .9、已知直线10x y --=与抛物线2y ax =相切,则a = .10、三次函数()3f x ax x =+在(),-∞+∞内是增函数,则a 的取值范围是 .三、解答题(共2个小题,每题20分)11、已知函数()32f x x ax bx c =+++,当1x =-时,取得极大值7;当3x =时,取得极小值.试求a 、b 、c 的值及这个极小值.12、设函数3()3(0)f x x ax b a =-+>.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.高二数学选修1-1《导数及其应用》单元测试卷参考答案1-5 ACDCB 6-7 AC 8. 410x y --= 9. 1410. 0a > 11、解:()32f x x ax bx c =+++,∴()232f x x ax b '=++由题意知,1-和3是方程2320x ax b ++=的两个实数根 ∴2133133a b ⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得:39a b =-⎧⎨=-⎩()17f -=∴()()()()3211319157f c c -=--⨯--⨯-+=+=∴2c =∴极小值()32333393225f =-⨯-⨯+=-12、(Ⅰ)()'233f x x a =-,∵曲线()y f x =在点(2,())f x 处与直线8y =相切,∴()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩(Ⅱ)∵3()3(0)f x x ax b a =-+>,由()'0f x x =⇒=当(,x ∈-∞时,()'0f x >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.知识改变命运。

高中数学几个常用的函数的导数综合测试卷(附解析)

高中数学几个常用的函数的导数综合测试卷(附解析)

高中数学几个常用的函数的导数综合测试卷(附解析)选修2-2 1.2 第1课时几个常用的函数的导数一、选择题1.下列结论不正确的是()A.若y=0,则y=0B.若y=5x,则y=5C.若y=x-1,则y=-x-2[答案]D2.若函数f(x)=x,则f(1)等于()A.0 B.-12C.2 D.12[答案]D[解析]f(x)=(x)=12x,因此f(1)=121=12,故应选D.3.抛物线y=14x2在点(2,1)处的切线方程是()A.x-y-1=0 B.x+y-3=0C.x-y+1=0 D.x+y-1=0[答案]A[解析]∵f(x)=14x2,f(2)=limx0 f(2+x)-f(2)x=limx0 1+14x=1.切线方程为y-1=x-2.即x-y-1=0.4.已知f(x)=x3,则f(2)=()A.0 B.3x2C.8 D.12[答案]D[解析]f(2)=limx0 (2+x)3-23x=limx0 6x2+12xx=limx0 (6x+12)=12,故选D.5.已知f(x)=x,若f(-1)=-2,则的值等于()A.2 B.-2C.3 D.-3[答案]A[解析]若=2,则f(x)=x2,f(x)=2x,f(-1)=2(-1)=-2适合条件.故应选A.6.函数y=(x+1)2(x-1)在x=1处的导数等于()A.1 B.2C.3 D.4[答案]D[解析]∵y=x3+x2-x-1yx=(1+x)3+(1+x)2-(1+x)-1x=4+4x+(x)2,y|x=1=limx0 yx=limx0[4+4x+(x)2]=4.故应选D.7.曲线y=x2在点P处切线斜率为k,当k=2时的P点坐标为() A.(-2,-8) B.(-1,-1)C.(1,1) D.-12,-18[答案]C[解析]设点P的坐标为(x0,y0),∵y=x2,y=2x.k==2x0=2,x0=1,y0=x20=1,即P(1,1),故应选C.8.已知f(x)=f(1)x2,则f(0)等于()A.0 B.1C.2 D.3[答案]A[解析]∵f(x)=f(1)x2,f(x)=2f(1)x,f(0)=2f(1)0=0.故应选A. 9.曲线y=3x上的点P(0,0)的切线方程为()A.y=-x B.x=0C.y=0 D.不存在[解析]∵y=3xy=3x+x-3x=x+x-x(3x+x)2+3x(x+x)+(3x)2=x(3x+x)2+3x(x+x)+(3x)2yx=1(3x+x)2+3x(x+x)+(3x)2曲线在P(0,0)处切线的斜率不存在,切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是()A.14433B.14334C.12334D.13443[答案]A[解析]s=4t+t-4t=t+t-t4t+t+4t=t+t-t(4t+t+4t)(t+t+t)=t(4t+t+4t)(t+t+t)limt0 st=124t2t=144t3,s(3)=14433 .故应选A.二、填空题11.若y=x表示路程关于时刻的函数,则y=1能够说明为________.[答案]某物体做瞬时速度为1的匀速运动[解析]由导数的物理意义可知:y=1能够表示某物体做瞬时速度为1的匀速运动.12.若曲线y=x2的某一切线与直线y=4x+6平行,则切点坐标是__ ______.[答案](2,4)[解析]设切点坐标为(x0,x20),因为y=2x,因此切线的斜率k=2x0,又切线与y=4x+6平行,因此2x0=4,解得x0=2,故切点为(2,4).13.过抛物线y=15x2上点A2,45的切线的斜率为______________.[解析]∵y=15x2,y=25xk=252=45.14.(2021江苏,8)函数y=x2(x0)的图像在点(ak,a2k)处的切线与x 轴的交点的横坐标为ak+1,其中kN*,若a1=16,则a1+a3+a5的值是_ _______.[答案]21[解析]∵y=2x,过点(ak,a2k)的切线方程为y-a2k=2ak(x-ak),又该切线与x轴的交点为(ak+1,0),因此ak+1=12ak,即数列{ak}是等比数列,首项a1=16,其公比q=12,a3=4,a5=1,a1+a3+a5=21.三、解答题15.过点P(-2,0)作曲线y=x的切线,求切线方程.[解析]因为点P不在曲线y=x上,故设切点为Q(x0,x0),∵y=12x,过点Q的切线斜率为:12x0=x0x0+2,x0=2,切线方程为:y-2=122(x-2),即:x-22y+2=0.16.质点的运动方程为s=1t2,求质点在第几秒的速度为-264.[解析]∵s=1t2,s=1(t+t)2-1t2=t2-(t+t)2t2(t+t)2=-2tt-(t)2t2(t+t)2limt0 st=-2tt2t2=-2t3.-2t3=-264,t=4.即质点在第4秒的速度为-264.17.已知曲线y=1x.(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点Q(1,0)处的切线方程;(3)求满足斜率为-13的曲线的切线方程.[解析]∵y=1x,y=-1x2.(1)明显P(1,1)是曲线上的点.因此P为切点,所求切线斜率为函数y=1x在P(1,1)点导数.即k=f(1)=-1.因此曲线在P(1,1)处的切线方程为y-1=-(x-1),即为y=-x+2.(2)明显Q(1,0)不在曲线y=1x上.则可设过该点的切线的切点为Aa,1a,那么该切线斜率为k=f(a)=-1a2.则切线方程为y-1a=-1a2(x-a).①将Q(1,0)坐标代入方程:0-1a=-1a2(1-a).解得a=12,代回方程①整理可得:切线方程为y=-4x+4.(3)设切点坐标为Aa,1a,则切线斜率为k=-1a2=-13,解得a=3,那么A3,33,A-3,3-3.代入点斜式方程得y-33=-13(x-3)或y+33=-13(x+3).整理得切线方程为y=-13x+233或y=-13x-233.18.求曲线y=1x与y=x2在它们交点处的两条切线与x轴所围成的三角形的面积.[解析]两曲线方程联立得y=1x,y=x2,解得x=1y=1.y=-1x2,k1=-1,k2=2x|x=1=2,与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试卷(包含答案解析)

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试卷(包含答案解析)

一、选择题1.已知函数(),0,,0.lnx x f x kx x >⎧=⎨≤⎩,若0x R ∃∈使得()()00 f x f x -=成立,则实数k 的取值范围是( ) A .(],1-∞B .1,e⎛⎤-∞ ⎥⎝⎦C .[)1,-+∞D .1,e ⎡⎫-+∞⎪⎢⎣⎭2.已知奇函数()f x 在(),-∞+∞上单调递减,且()11f =-,则“1x >-”是“()1xf x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件.3.已知函数2()85f x x x =---,()x e exg x ex+=,实数m ,n 满足0m n <<,若1x ∀∈[],m n ,2x ∃∈()0,∞+,使得()()12f x g x =成立,则n m -的最大值为( )A .7B .6C .D .4.已知函数()2ln f x ax x x -=-有两个零点,则实数a 的取值范围是( ) A .(),1-∞B .()0,1C .21,e e +⎛⎫-∞ ⎪⎝⎭D .210,e e +⎛⎫⎪⎝⎭5.已知a R ∈,0b ≠,若x b =是函数()()()2f x x b x ax b =-++的极小值点,则实数b 的取值范围为( )A .1b <且0b ≠B .1b >C .2b <且0b ≠D .2b >6.设()f x 是定义在()(),00,-∞⋃+∞上的函数,()f x '为其导函数,已知()()1221f x f x -=-,()20f -=,当0x >时,()()xf x f x '-<,则使得()0f x >成立的x 的取值范围是( ) A .()()2,00,2- B .()(),22,-∞-+∞C .()(),20,2-∞-D .()()0,22,+∞7.已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π4a ⎛⎫= ⎪⎝⎭,π33b f ⎛⎫=-- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<8.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+⋅的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()3f -和极小值()2fB .函数()f x 有极大值()1f -和极小值()2fC .函数()f x 在()3,2x ∈--单调递增D .函数()f x 在()1,2x ∈单调递增9.若函数()33=-f x x x 在区间()5,21a a -+上有最小值,则实数a 的取值范围是( ) A .(]1,4- B .()1,4- C .11,2⎛⎤- ⎥⎝⎦D .11,2⎛⎫- ⎪⎝⎭10.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣411.已知()f x 的定义域为(0,)+∞,fx 为()f x 的导函数,且满足()()'f x xf x <-,则不等式(1)(1)f x x +>-()21f x -的解集是( )A .0,1B .2,C .1,2D .1,12.已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=(其中e 为自然对数的底数)的单调递减区间为( )A .()4,1,,43⎛⎫-∞ ⎪⎝⎭B .()()0,1,4,+∞C .40,3⎛⎫ ⎪⎝⎭D .(0,4)二、填空题13.为了评估某种治疗肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度c 与时间t 的关系为()c f t =,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如下图所示.给出下列四个结论:① 在1t 时刻,甲、乙两人血管中的药物浓度相同;② 在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率相同;③ 在23[,]t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同; ④ 在12[,]t t ,23[,]t t 两个时间段内,甲血管中药物浓度的平均变化率不相同. 其中所有正确结论的序号是_____.14.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '-<,其中()f x '是函数()f x 的导函数.若()()()2202020202f m m f ->-,则实数m 的取值范围为______.15.已知()f x '是函数()()322113f x mx m x n x =-+-+的导函数,若函数()x y f f '=⎡⎤⎣⎦在区间[],1m m +上单调递减,则实数m 的范围是______.16.若点()()()112212,,,A x y B x y x x <是函数1,1()ln ,1x e x f x x x ⎧-+=⎨>⎩的图象上任意两点,且函数()f x 分别在点A 和点B 处的切线互相垂直,则12x x 的最小值为______. 17.已知函数()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立,则实数m 的取值范围是________. 18.若()()21ln 22f x x b x =-++在()1,-+∞上是减函数,则b 的取值范围是________. 19.已知函数(a ≤0),函数,若不存在,使,则实数的取值范围为___.20.已知函数()()221f x x xf '=+,则()1f 的值为__________.三、解答题21.已知函数1()(2)ln 2f x a x ax x=-++, (1)当2a =时,求函数()f x 的极值; (2)当0a <时,讨论函数()f x 的单调性;(3)若对a ∀∈(-3,-2),12,x x ∈[1,3] ,不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.22.已知函数()2()2xx f x xe a x a R ⎛⎫=-+∈ ⎪⎝⎭. (1)当1a =时,求函数()f x 的极值; (2)讨论函数()f x 的单调性.23.已知函数32()f x x ax bx c =+++在0x 处取得极小值32-,其导函数为()'f x .当x 变化时,()'f x 变化情况如下表:(1)求0x 的值; (2)求,,a b c 的值.24.设函数32()23(1)6f x x a x ax b =-+++,其中,a b ∈R .(1)若曲线()y f x =在(1,(1))f --的切线方程为123y x =+,求a ,b 的值; (2)若()f x 在3x =处取得极值,求a 的值; (3)若()f x 在(,0)-∞上为增函数,求a 的取值范围. 25.已知函数()(0)x xf x x e=>. (1)求函数()f x 的最大值;(2)若函数()()g x f x m =-有两个零点,求实数m 的取值范围;(3)若不等式2()()0f x af x ->仅有一个整数解,求实数a 的取值范围.26.已知函数211()ln (,0)22f x x a x a R a =--∈≠. (1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x -'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.2.B解析:B 【分析】根据奇函数的定义和单调性可确定()f x 和()f x '的符号,由奇偶性定义可知()g x 为偶函数,利用导数可确定()g x 单调性;根据()()111g g =-=,利用单调性可求得()1xf x <的解集,根据推出关系可确定结论. 【详解】()f x 为(),-∞+∞上的奇函数,∴()00f =,又()f x 单调递减,∴当0x <时,()0f x >;当0x >时,()0f x <,且()0f x '≤, 令()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为偶函数, 当0x ≥时,()0xf x ≤;当0x <时,()0xf x <;()()g x xf x ∴=-,()()()()()g x f x xf x f x xf x '''∴=--=-+⎡⎤⎣⎦当0x ≥时,()0f x ≤,()0g x '∴≥,()g x ∴在[)0,+∞上单调递增, 由偶函数对称性知:()g x 在(],0-∞上单调递减;()()()1111g g f =-=-=,∴由()()1g x xf x =<得:11x -<<,()()1,11,≠-⊂-+∞,∴“1x >-”是“()1xf x <”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分条件与必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对应的集合与p 对应集合互不包含.3.B解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exg x ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象, 如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.4.B解析:B 【分析】函数()2()ln 0f x ax x x x =-->有两个零点,即方程2ln x xa x +=有两个根,设()2ln x xg x x+=,求出()g x ',研究出函数()g x 的单调性,由()g x 的图象与y a =有两个交点,得出a 参数的范围,即得结果. 【详解】 函数()2()ln 0f x ax x x x =-->有两个零点,由题意得方程2ln x x a x +=有两个根,设()2ln x xg x x+=,则y a =与()y g x =有两个不同的交点,又()2431(1)(ln (2)12ln )x x x x x x x g x x x +-+--'==, 设()12ln h x x x =--,则()210h x x'=--<所以()12ln h x x x =--在()0,∞+上单调递减,又(1)0h = 当()()(0,1),0,0x h x g x '∈>>,所以()g x 在(0,1)上单调递增,当()()(1,),0,0x h x g x '∈+∞<<,所以()g x 在(1,)+∞上单调递减,又(1)1g =,22111()01e g e e e e -==-<⎛⎫ ⎪⎝⎭,当(1,)x ∈+∞时,ln 0x x +>,则()0g x >,即()g x 在(1,)+∞上单调递减,但恒正. 作出函数()y g x =的大致图象如下:要使()y g x =的图象与y a =有两个交点, 所以实数a 的取值范围是()0,1. 故选:B. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.B解析:B 【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围. 【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B . 【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.6.B解析:B 【分析】由已知条件得函数()f x 为偶函数,引入()()g x xf x =,利用导数可得(0,)+∞上()g x 为增函数,结合(2)0=g 可解不等式()0>g x ,从而得()0f x >在(0,)+∞上的解,再由偶函数得出结论. 【详解】由()()1221f x f x -=-,可知()f x 为偶函数,构造新函数()()g x xf x =,则()()()g x xf x f x ''=+,当0x >时()0g x '>. 所以()()g x xf x =在()0,∞+上单调递增,又()20f =,即()20g =. 所以由()()0g x xf x =>可得2x >,此时()0f x >.又()f x 为偶函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为()(),22,-∞-+∞.故选:B . 【点睛】本题考查的奇偶性与单调性,考查由导数确定函数的单调性,具有奇偶性的函数的不等式求解时,如果是偶函数,可利用单调性求出(0,)+∞上的解,然后再利用奇偶性得出{|0}x x ≠上的解集,如果是奇函数可由奇函数定义得出函数在R 上的单调性,然后由单调性解不等式.7.D解析:D 【分析】 首先设函数()()sin f x g x x=,判断函数的单调性,和奇偶性,利用函数的性质比较大小. 【详解】 设()()sin f x g x x=,()()()()()()sin sin sin f x f x f x g x g x x x x---====--,即()()g x g x -=,所以函数()g x 是偶函数, 并且()()()2sin cos 0sin f x x f x xg x x'-'=<,所以函数()g x 在()0,π单调递减,444sin 4f ag ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,33333sin 3f b f g g πππππ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=--==-= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭,222sin 2f c fg ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,因为0432ππππ<<<<,所以432g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即a b c >>. 故选:D 【点睛】本题考查导数与函数性质的综合应用,重点考查构造函数,利用函数的性质比较大小,属于中档题型.8.A解析:A 【分析】根据图象判断出导函数()f x '的符号,由此求得()f x 的单调区间、极大值、极小值. 【详解】当3x <-时,()()()10010x f x f x x ⎧+<⇒>⎨+<'⎩',()f x 递增; 当31x -<<-时,()()()10010x f x f x x ⎧+>⇒<⎨+<'⎩',()f x 递减; 当12x -<<时,()()()10010x f x f x x ⎧+<⇒<⎨+>'⎩';当2x >时()()()10010x f x f x x ⎧+>⇒>⎨+>'⎩',()f x 递增;综上:函数()f x 有极大值()3f -和极小值()2f . 故选:A 【点睛】本小题主要考查利用图象判断函数的单调性和极值,属于中档题.9.C解析:C 【分析】对函数()f x 进行求导,可得函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,可得()f x 的图像,由函数在区间()5,21a a -+上有最小值,数形结合可得关于a的不等式,计算可得答案. 【详解】解:由3()3f x x x =-,可得()2333(1)(1)f x x x x '=-+=--+,当11x -<<,()0f x '>,当1x <-或1x >时,()0f x '<,所以函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,则()f x 的图像如图所示,因为函数在区间()5,21a a -+上有最小值,故51212a a -<-<+, 解得:112a -<, 故选:C. 【点睛】本题主要考查利用导数研究含参函数的最值问题,体现了数形结合的数学思想,考查学生的计算能力,属于中档题.10.A解析:A 【解析】()()()(),'1'f x x g x f x g x =-∴=-,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A . 11.B解析:B 【分析】构造函数()()F x xf x =,再根据单调性解不等式,即得结果. 【详解】令()()F x xf x =,则()()()0F x f x xf x ''=+<,所以()F x 在(0,)+∞上单调递减(1)(1)f x x +>-()21f x -,2(1)(1)(1)x f x x ∴++>-()21f x -,2(1)(1)F x F x ∴+>-, 2011,2x x x ∴<+<-∴>,故选:B 【点睛】本题考查利用导数解不等式,考查基本分析求解能力,属中档题.12.B解析:B 【分析】结合函数图象比较()f x 与()f x '的大小,求出()()0f x f x -<′成立的x 的范围,求出()g x 的导数,判断其与0的关系即可.【详解】结合图象:()01x ∈,和()4x ∈+∞,时,()()f x f x '<,即()()0f x f x -<′, 而()()()0xf x f xg x e -=<′′,故()g x 在()0,1,()4,+∞递减,故选B . 【点睛】本题主要考查了数形结合思想,考查函数的单调性与导数的关系,判断()f x 与()f x '的大小是解题的关键,属于中档题.二、填空题13.①③④【分析】理解平均变化率和瞬时变换率的意义结合图象判断选项【详解】①在时刻为两图象的交点即此时甲乙两人血管中的药物浓度相同故①正确;②甲乙两人在时刻的切线的斜率不相等即两人的不相同所以甲乙两人血解析:①③④ 【分析】理解平均变化率和瞬时变换率的意义,结合图象,判断选项. 【详解】①在1t 时刻,为两图象的交点,即此时甲、乙两人血管中的药物浓度相同,故①正确;②甲、乙两人在2t 时刻的切线的斜率不相等,即两人的()2f t '不相同,所以甲、乙两人血管中药物浓度的瞬时变化率不相同,故②不正确;③根据平均变换率公式可知,甲、乙两人的平均变化率都是()()3232f t f t t t --,故③正确;④在[]12,t t 时间段,甲的平均变化率是()()2121f t f t t t --,在[]23,t t 时间段,甲的平均变化率是()()3232f t f t t t --,显然不相等,故④正确.故答案为:①③④ 【点睛】思路点睛:本题是一道识图的实际应用问题,判断的关键是理解两个概念,瞬时变化率和平均变化率,结合导数的几何意义可知瞬时变化率就是在此点处切线的斜率,平均变化率是()()f t t f t t+-.14.【分析】令求得函数的导数根据函数的单调性把题设中的不等式转化为即可求解【详解】令则因为所以所以函数在为单调递减函数又由所以即所以即所以解得综上可得实数的取值范围为故答案为:【点睛】本题主要考查了利用 解析:()2020,2022【分析】令()(),(0,)f x h x x x=∈+∞,求得函数的导数,根据函数的单调性,把题设中的不等式转化为(2020)(2)h m h ->,即可求解.【详解】令()(),(0,)f x h x x x =∈+∞,则()()2()xf x f x h x x '-=, 因为()()0xf x f x '-<,所以()0h x '<,所以函数()h x 在(0,)+∞为单调递减函数, 又由()()()2202020202f m m f ->-, 所以20200m ->,即2020m >,所以()()2020220202f m f m ->-, 即(2020)(2)h m h ->,所以20202m -<,解得2022m <, 综上可得,实数m 的取值范围为()2020,2022.故答案为:()2020,2022. 【点睛】本题主要考查了利用导数求解函数的单调性,以及函数的单调性的应用,着重考查了构造、转化思想,以及推理与运算能力,属于中档试题.15.【分析】求出函数的导函数利用导函数研究原函数的单调区间再二次求导得从而得到的单调区间由导函数在区间上单调递增求出其值域将函数的单调性把问题转化为即可列出不等式即可求出的范围【详解】解:由函数得由得或 解析:[]1,0-【分析】求出函数()f x 的导函数,利用导函数研究原函数的单调区间,再二次求导得()22f x x m ''=-,从而得到()f x '的单调区间,由导函数在区间[m ,1]m +上单调递增求出其值域[]1,0-,将函数的单调性把问题转化为[][]1,01,1m m -⊆-+,即可列出不等式即可求出m 的范围. 【详解】解:由函数3221()(1)3f x x mx m x n =-+-+,得222()21()1f x x mx m x m '=-+-=--, 由2()10x m -->,得1x m <-或1x m >+,∴函数()f x 的增区间为(,1)m -∞-,(1,)m ++∞,由2(1)0x m --<,得11m x m -<<+,∴函数()f x 单调减区间为[]1,1m m -+,由()22f x x m ''=-,则()0f x ''>时,x m >;()0f x ''<时,x m <,得()'f x 的单调增区间为[),m +∞,单调减区间为(],m -∞,函数()f x '在[],1m m +上单调递增,∴函数()f x '在[],1m m +上的值域为[]1,0-, 又函数[()]y f f x '=在区间[],1m m +上单调递减, 也就是函数()y f x =在区间[]1,0-上单调递减,因此要满足条件[][]1,01,1m m -⊆-+,即1110m m -≤-⎧⎨+≥⎩,解得:10m -≤≤, ∴实数m 的范围是[]1,0-.故答案为:[]1,0-. 【点睛】本题考查利用导数研究函数的单调性以及根据复合函数的单调性求参数取值范围,考查转化思想和运算能力,属中档题.16.【分析】先判定再根据切线相互垂直可得的关系利用该关系式把转化为一元函数利用导数可求其最小值【详解】当时当时因为故所以即其中又令则当时;当时故故答案为:【点睛】本题考查导数的几何意义以及导数在函数最值解析:1e-【分析】先判定()()12,1,1,x x ∈-∞∈+∞,再根据切线相互垂直可得12,x x 的关系,利用该关系式把12x x 转化为一元函数,利用导数可求其最小值.【详解】当1x <时,()0xf x e '=-<,当1x >时,()10f x x'=>, 因为()()121f x f x ''=-,故()()12,1,1,x x ∈-∞∈+∞,所以1211x e x -⨯=-即12x x e =,其中11<x . 又1121xx x x e =,令(),1tg t te t =<,则()()1,1tg t t e t '=+<,当1t <-时,()0g t '<;当11t -<<时,()0g t '>, 故()()min 11g t g e=-=-, 故答案为:1e-. 【点睛】本题考查导数的几何意义以及导数在函数最值中的应用,注意根据导数的性质确定切点的位置,而多元函数的最值问题一般可转化为一元函数的最值问题,后者可利用导数来处理.17.【分析】由题意可得利用导数求出函数在区间上的最大值即可得出实数的取值范围【详解】存在使得成立等价为令得当时函数是增函数;当时函数是减函数当时函数在处取得最大值所以因此实数的取值范围是故答案为:【点睛解析:1,2e ⎛⎤-∞+ ⎥⎝⎦【分析】由题意可得()max m f x ≤,利用导数求出函数()y f x =在区间(]0,4上的最大值,即可得出实数m 的取值范围. 【详解】()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立等价为()max f x m ≥.()ln 1f x x '=--,令()0f x '=,得1x e=. 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()ln 2f x x x =-+是增函数;当1,4x e⎛⎤∈ ⎥⎝⎦时,()0f x '<,函数()ln 2f x x x =-+是减函数,当(]0,4x ∈时,函数()ln 2f x x x =-+在1x e =处取得最大值12e +,所以12m e≤+. 因此,实数m 的取值范围是1,2e ⎛⎤-∞+ ⎥⎝⎦. 故答案为:1,2e ⎛⎤-∞+ ⎥⎝⎦. 【点睛】本题考查利用导数研究不等式能成立问题,结合题意转化为与函数最值相等的不等式问题是解答的关键,考查计算能力,属于中等题.18.【分析】由题意得出对任意的恒成立利用参变量分离法得出求出二次函数在区间上的值域即可得出实数的取值范围【详解】由于函数在上是减函数则对任意的恒成立即得二次函数在区间上为增函数则因此实数的取值范围是故答 解析:(],1-∞-【分析】由题意得出()0f x '≤对任意的()1,x ∈-+∞恒成立,利用参变量分离法得出22b x x ≤+,求出二次函数22y x x =+在区间()1,-+∞上的值域,即可得出实数b 的取值范围.【详解】()()21ln 22f x x b x =-++,()2bf x x x '∴=-++,由于函数()()21ln 22f x x b x =-++在()1,-+∞上是减函数, 则()0f x '≤对任意的()1,x ∈-+∞恒成立,即2bx x ≤+,得()222b x x x x ≤+=+, 二次函数22y x x =+在区间()1,-+∞上为增函数,则()()21211y >-+⨯-=-,1b ∴≤-.因此,实数b 的取值范围是(],1-∞-. 故答案为:(],1-∞-. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,利用参变量分离法求解是一种常用的方法,考查化归与转化思想的应用,属于中等题.19.-10【解析】【分析】先求导分别求出导函数的最值再根据不存在x1x2∈R使得f′(x1)=g′(x2)得到关于a 的不等式解得即可【详解】∵函数f (x )=ex ﹣ax 函数g (x )=﹣x3﹣ax2∴f′( 解析:【解析】 【分析】先求导,分别求出导函数的最值,再根据不存在x 1,x 2∈R ,使得f ′(x 1)=g ′(x 2),得到关于a 的不等式解得即可. 【详解】∵函数f (x )=e x ﹣ax ,函数g (x )=﹣x 3﹣ax 2, ∴f ′(x )=e x ﹣a >﹣a ,g ′(x )=﹣x 2﹣2ax =﹣(x )2,∵不存在x 1,x 2∈R ,使得f ′(x 1)=g ′(x 2), ∴,解得-1≤a ≤0,故答案为.【点睛】本题考查了导数的运算法则和函数的最值问题,以及不等式的解法,属于中档题.20.-3【解析】由函数则令所以解得即所以解析:-3 【解析】由函数()()221f x x xf =+',则()()221f x x f +''=,令1x =,所以()()1221f f =+'',解得()12f '=-,即()24f x x x =-,所以()211413f =-⨯=-.三、解答题21.(1)极小值为4,无极大值(2)答案见解析(3)133m ≤- 【分析】(1)利用导数可求得结果; (2)求导后,令()0f x '=得1x a =-或12x =,对1a -与12的大小分类讨论可求得结果;(3)转化为12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-,根据(2)中的单调性求出1max ()f x 和2min ()f x 代入后得2(4)03m a +->对a ∀∈(-3,-2)恒成立,列式23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩可解得结果. 【详解】(1)当2a =时,1()4f x x x =+(0)x >,222141()4x f x x x-'=-=, 当102x <<时,()0f x '<,当12x >时,()0f x '>,所以()f x 在1(0,)2上递减,在1(,)2+∞上递增, 所以()f x 在12x =处取得极小值1()42f =,无极大值.(2)当0a <时,1()(2)ln 2f x a x ax x=-++,定义域为(0,)+∞, 221()2a f x a x x -=-+'222(2)1ax a x x +--=2(1)(21)ax x x +-=,令()0f x '=得1x a =-或12x =, 当112a ->,即20a -<<时,由()0f x '<得102x <<或1x a >-,由()0f x '>得112x a<<-, 所以()f x 在1(0,)2和1(,)a -+∞上单调递减,在11(,)2a-上单调递增, 当112a -=,即2a =-时,22(21)()x f x x--'=0≤,所以()f x 在(0,)+∞上单调递减, 当112a -<,即2a <-时,由()0f x '<得10x a<<-或12x >,由()0f x '>得112x a -<<, 所以()f x 在1(0,)a -和1(,)2+∞上单调递减,在11(,)2a -上单调递增, (3)由(2)可知对a ∀∈(-3,-2),()f x 在[1,3]上单调递减, 因为不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,等价于12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-, 而1max ()(1)12f x f a ==+,2min 1()(3)(2)ln 363f x f a a ==-++,所以1(ln 3)2ln 312(2)ln 363m a a a a +->+----, 即2(4)03m a +->对a ∀∈(-3,-2)恒成立, 所以23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩,解得133m ≤-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 22.(1)极大值112e-,极小值0;(2)答案见解析. 【分析】(1)当1a =时,2()2xx f x xe x ⎛⎫=-+ ⎪⎝⎭,求导,令()0f x '=可得极值点和极值; (2)()()(1)xf x x e a '=+-,对a 分类讨论,利用导数研究其单调性即可得出. 【详解】(1)当1a =时,2()2xx f x xe x ⎛⎫=-+ ⎪⎝⎭,()()(1)(1)1x x x f x e xe x e x '=+-+=+-, 令()0f x '=,得1x =-或0x =.∴1x =-时,()f x 有极大值()12f e-=-, 0x =时,()f x 有极小值()00f =;(2)()()(1)(1)xxxf x a e e xe x x a '=+-+=+-,当0a ≤时,0x e a ->,由()0f x '>得1x >-, 即函数()f x 在()1,-+∞上单调递增,由()0f x '<得1x <-,即函数()f x 在(),1-∞-上单调递减; 当0a >时,令()0f x '=得1x =-或ln x a =.①当ln 1a =-,即1a e -=时,无论1x >-或1x <-,均有()0f x '>, 又()10f '-=,即在R 上()0f x '≥,从而函数()f x 在R 上单调递增; ②当ln 1a <-,即10ae 时,由()()(1)01xe f x x a x '=+->⇒>-或ln x a <时, 函数()f x 在()1,-+∞和(),ln a -∞上单调递增;由()()(1)0ln 1xf x x a a e x '=+-<⇒<<-时,函数()f x 在()ln ,1a -上单调递减; ③当ln 1a >-,即1a e ->时,由()()(1)0ln xf x x e a x a '=+->⇒>或1x <-时, 函数()f x 在()ln ,a +∞和(),1-∞-上单调递增; 由()()(1)01ln xf x x a x a e '=+-<⇒-<<时, 函数()f x 在()1,ln a -上单调递减.综上,当0a ≤时, ()f x 单调递增区间是()1,-+∞上, 单调递减区间是(),1-∞-上; 当10ae 时,()f x 单调递增区间是(),ln a -∞,()1,-+∞,单调递减区间是()ln ,1a -;当1a e -=时,()f x 单调递增区间为(,)-∞+∞;当1a e ->时,()f x 单调递增区间是(),1-∞-,()ln ,a +∞, 单调递减区间是()1,ln a -. 【点睛】关键点点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)在研究函数单调性的过程中,要准确判断导数的符号,当()f x '含参时,要依据参数取值对不等式解集的影响进行分类讨论. 23.(1)01x =;(2)1,2,02a b c =-=-=. 【分析】(1)由表可得出1x =是极小值点;(2)由题可得()01f '=,3(1)2f =-,2()03f '-=,由此可求出. 【详解】解:(1)由题意可知,2()32f x x ax b '=++ 当2(,1)3x ∈-时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 在区间2(,1)3-上单调递减,在区间(1,)+∞上单调递增. 故1x =时,函数()f x 有极小值,所以01x =.(2)由(1)知1x =为函数()f x 的极小值点,得()01f '=,即320a b ++=.①因为函数()f x 的极小值为32-,所以3(1)2f =-, 即312a b c +++=-,整理得:52a b c ++=-.② 由题可知23x =-为函数()f x 的极大值点,所以2()03f '-=, 即44033a b -+=.③ 联立①②③得:1,2,02a b c =-=-=.【点睛】关键点睛:本题考查函数的导数与极值的关系,解题得关键是知道函数在极值点处的函数值为0.24.(1)0a =,4b =-;(2)3a =;(3)[0,)a ∈+∞.【分析】(1)利用导数的几何意义,可得(1)12f '-=,(1)9f -=-,计算整理,即可求得a ,b 的值;(2)令'(3)0f =,即可求得a 的值,检验可得3x =为极值点,即可得答案;(3)令'()0f x =,解得1x a =,21x =,分别求得1a <和1a ≥时,()f x 的单调区间,结合题意,分析推理,即可得答案.【详解】(1)因为32()23(1)6f x x a x ax b =-+++,所以2()66(1)6f x x a x a '=-++,由题设可得(1)121212f a '-=+=,(1)959f a b -=-+-=-,解得0a =,4b =-.(2)因为()f x 在3x =取得极值,所以(3)12360f a '=-+=,解得3a =.当3a =时,'2()624186(1)(3)f x x x x x =-+=--,令'()0f x =,解得x=1或3,所以3x =为()f x 的极值点,故3a =满足题意.(3)令()6()(1)0f x x a x '=--=,得1x a =,21x =.当1a <时,若(,)(1,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,)a -∞和(1,)+∞上为增函数,故当01a ≤<时,()f x 在(,0)-∞上为增函数恒成立.当0a <时,()f x 在(,)a -∞上为增函数,不符合题意,当1a ≥时,若(,1)(,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,1)-∞和(,)a +∞上为增函数,从而()f x 在(,0)-∞上也为增函数,满足题意.综上所述,当[0,)a ∈+∞时,()f x 在(,0)-∞上为增函数.【点睛】本题考查导数的几何意义、利用导数求函数的单调区间和极值点问题,考查计算求值,分类讨论的能力,属中档题.25.(1)1e ;(2)10m e <<;(3)221,e e ⎡⎫⎪⎢⎣⎭. 【分析】(1)求导,利用导数可得函数的单调性,进而求得函数的最值;(2)函数()()g x f x m =-有两个零点,转化为函数()(0)x x f x x e =>的图象与直线y m =有两个交点.结合(1)中结论即可求得m 的取值范围;(3)由()0f x >,可得()f x a >只有一个整数解,由()f x 的极大值为()11f e =,012<<, ()222f e=,可得a 的取值范围. 【详解】(1)函数()(0)x x f x x e =>, 则1()x x f x e-'=,当(0,1)x ∈时,()0f x '>,函数()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,函数()f x 单调递减,所以当1x =时,函数()f x 取得极大值,也是最大值为()11f e=.(2)函数()()g x f x m =-有两个零点,相当于函数()(0)x x f x x e =>的图象与直线y m =有两个交点.当0x =时,(0)0f =,x →+∞时,()0f x →,结合(1)中结论,可得10m e<<. (3)因为()0f x >,所以不等式2()()0f x af x ->仅有一个整数解, 即()f x a >只有一个整数解,因为()f x 的极大值为()11f e =,012<<,()222f e =, 所以当221,a e e ⎡⎫∈⎪⎢⎣⎭时,()f x a >只有一个整数解1x =, 即当221,a e e ⎡⎫∈⎪⎢⎣⎭时,不等式2()()0f x af x ->仅有一个整数解1x =. 所以实数a 的取值范围是221,e e ⎡⎫⎪⎢⎣⎭ 【点睛】本题主要考查利用导数研究函数的单调性和最值,考查函数与方程思想,属于中档题. 26.(1)10x y +-=;(2)答案见解析;(3)()(],00,1-∞. 【分析】(1)当2a =时,求出函数的导数,利用导数的几何意义即可求曲线()y f x =在点()1,()f x 处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数()f x 的单调区间; (3)根据函数的单调性求出函数的最小值即可实数a 的取值范围.【详解】解:(1)2a =时,211()2ln 22f x x x =--,(1)0f =, 2'()f x x x=- ,'(1)1f =- 曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(2)2'()(0)a x a f x x x x x -=-=>①当0a <时,2'()0x a f x x-=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为 (3)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥ ①当0a <时,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥而11(1)ln1022f a =--= 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以01a <≤满足题意;③当1a >1>,()f x 在上是减函数,)+∞上是增函数,所以只需0f ≥即可 而(1)0f f <= 从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】 本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用,属于中档题.。

高中数学选修2第五章 一元函数的导数及其应用 单元测试(含解析)

高中数学选修2第五章 一元函数的导数及其应用 单元测试(含解析)

高中数学选修2第五章一、单选题1.现有一球形气球,在吹气球时,气球的体积V (单位:L )与直径d (单位:dm )的关系式为V =πd 36,当d =2dm 时,气球体积的瞬时变化率为( )A .2πB .πC .π2D .π42.若点P 是曲线y =lnx ―x 2上任意一点,则点P 到直线l :x +y ―6=0的距离的最小值为( )A .22B .32C .522D .9223.函数f (x )=13a x 3+12a x 2―2ax +2a +1的图象经过四个象限的一个充分必要条件是( )A .―43<a <―13B .―1<a <―12C .―2<a <0D .―65<a <―3164.根据公式sin3α=3sin α―4sin 3α,sin10°的值所在的区间是( )A .(17,16)B .(16,15)C .(15,14)D .(14,13)5.已知函数f (x )=ax +ln a ,g (x )=x +e x ―ln x ,若关于x 的不等式f (x )>g (x )在区间(0,+∞)内有且只有两个整数解,则实数a 的取值范围为( )A .(e ,e 2]B .(e ,e 22]C .(e 2,e 3]D .(e 22,e 33]6.设函数 f (x )=e xx―t (ln x +x +2x ) 恰有两个极值点,则实数 t 的取值范围是( )A .(―∞,12]B .(12,+∞)C .(12,e 3)∪(e3,+∞)D .(―∞,12]∪(e3,+∞)7.已知 f (x ) 是定义在 R 上的奇函数, f (―1)=0 ,当 x <0 时, x f ′(x )+f (x )<0 ,则使得 f (x)>0 成立的 x 的取值范围是( ) A .(―∞,―1)∪(0,1)B .(―1,0)∪(1,+∞)C .(―∞,―1)∪(―1,0)D .(0,1)∪(1,+∞)8.函数 f (x )=|x |ex ,方程 [f (x )]2―(m +1)f (x )+1―m =0 有4个不相等实根,则 m 的取值范围是( )A .(e 2―e e 2+e,1)B .(e 2―e +1e 2+e ,+∞)C .(e 2―e +1e 2+e ,1)D .(e 2―e e 2+e,+∞)二、多选题9.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充分不必要条件是( )A.0≤a≤21B.1≤a≤20C.a<0D.a=21 10.已知函数f(x)=e xx2―x+1,则下列结论正确的是( )A.函数f(x)存在极大值和极小值B.函数f(x)不存在最小值与最大值C.当x∈[0,3]时,函数f(x)最大值为eD.当x∈[12,e]时,函数f(x)最小值为e2311.已知函数f(x)=14x 4+12a x2+ax,则下面说法正确的是( )A.存在实数a,使f(x)有最小值且最小值小于0B.对任意实数a,f(x)有最小值且最小值不小于0C.存在正实数a和实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增D.对任意负实数a,存在实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增12.若f(x)图象上存在两点A,B关于原点对称,则点对[A,B]称为函数f(x)的“友情点对”(点对[A,B]与[B,A]视为同一个“友情点对”)若f(x)={x3e x,x≥0ax2,x<0恰有两个“友情点对”,则实数a的值可以是( )A.0B.―12018C.―1eD.―12021三、填空题13.函数f(x)=12x―x3在区间[―3,3]的最小值是 .14.设曲线y=e ax+sine在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .15.关于x的方程kx―lnxx =2在区间[1e,e]上有两个实根,则实数k的最小值是 .16.已知函数f(x)=x3―a e x,若函数f(x)有三个极值点x1,x2,x3(x1<x2<x3),若x3≥3x2,则实数a的取值范围是 .四、解答题17.求下列函数的导数:(1)f(x)=(1+sin x)(1―4x);(2)f(x)=xx+1―2x.18.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.19.已知函数f (x )=x 3+a x 2+x (a ∈R )(1)若函数f (x )存在两个极值点,求a 的取值范围;(2)若f (x )≥xlnx +x 在(0,+∞)恒成立,求a 的最小值.20.设f n (x )=x+x 2+…+x n ﹣1,x≥0,n ∈N ,n≥2.(Ⅰ)求f n ′(2);(Ⅱ)证明:f n (x )在(0,23)内有且仅有一个零点(记为a n ),且0<a n ﹣12<13(23)n .21.已知函数f (x )=lnx+a (x 2﹣3x+2),其中a 为参数.(1)当a=0时,求函数f (x )在x=1处的切线方程; (2)讨论函数f (x )极值点的个数,并说明理由;(3)若对任意x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.22.设函数 f (x )=1x ―eex ,g (x )=a (x 2―1)―lnx ( a ∈R , e 为自然对数的底数).(1)证明:当 x >1 时, f (x )>0 ; (2)讨论 g (x ) 的单调性;(3)若不等式 f (x )<g (x ) 对 x ∈(1,+∞) 恒成立,求实数 a 的取值范围.参考答案1.A2.B解:已知函数y=lnx―x2,可得y′=1x―2x,(x>0),直线l:x+y―6=0的斜率为-1,令y′=―1,即1x―2x=―1,可得(x―1)(2x+1)=0,因为x>0,可得x=1,则y=―1,即平行于直线l:x+y―6=0且与曲线y=lnx―x2相切的切点坐标为P(1,―1),由点到直线的距离公式,可得点P到直线l的距离为d=|1―1―6|2=32.3.D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数测试卷一、选择题1.设()ln f x x x =,若0'()2f x =,则0x =( ) A . 2e B . ln 2C .ln 22D . e2.已知函数()d cx bx ax x f +++=23的图象如图所示,则 ( )A . ()0,∞-∈bB . ()1,0∈bC . ()2,1∈bD . ()+∞∈,2b3.方程2log 2=+x x 和2log 3=+x x 的根分别是α、β A . α<β B . α>β C . α=β D . 无法确定α与β的大小4.已知a >0且a ≠1,若函数f (x )= log a (ax 2–x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞C .11[,)(1,)84+∞D .11[,)64 5.已知函数()f x 满足(1)()f x f x +=-,且()f x 是偶函数,当[0,1]x ∈时,2()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是( ) A .(0,)+∞ B . 1(0,]2 C . 1(0,]4 D . 11[,]43二、填空题6.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,且关于x 的方程0)(=-+a x x f 有且只有一个实根,则实数a 的范围是 . 7.若函数())4(log -+=xax x f a (a >0且a ≠1)的值域为R ,则实数a 的取值范围是________________.8.13)(3+-=x ax x f 对于[]1,1-∈x 总有0)(≥x f 成立,则a = .9.已知函数3()(1).1axf x a a -=≠- (1)若a >0,则()f x 的定义域是 ;(2)若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是 .10.已知函数()f x 的定义域为[]15,-,部分对应值如下表, ()f x 的导函数()y f x '=的图象如图所示. 下列关于()f x 的命题:①函数()f x 的极大值点为0,4; ②函数()f x 在[]02,上是减函数;③如果当[]1x ,t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-有4个零点; ⑤函数()y f x a =-的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 .三、解答题11.已知函数)(21)1ln()(2R m x x m x f ∈-+=,满足.1)0(='f (1)求函数)(x f 的单调区间; (2)若关于x 的方程c x x x f ++-=243)(在[0,2]恰有两个不同的实根,求实数c 的取值范围。

12.已知函数()1ln ()f x ax x a R =--∈. (1)讨论函数()f x 在定义域内的极值点的个数;(2)若函数()f x 在1x =处取得极值,对(0,),()2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围.13.设函数323()(1)1,32a f x x x a x a =-+++其中为实数。

(1)已知函数()f x 在1x =处取得极值,求a 的值;(2)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

14.已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-.(1)求函数()f x 的另一个极值点;(2)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围.15.已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (1)当103a =-时,讨论函数()f x 的单调性; (2)若函数()f x 仅在0x =处有极值,求a 的取值范围;(3)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围. 答案: 1-5 DAAAC6.),(∞+17.04a <≤或1a ≠8. 49.(1)3,a⎛⎤-∞ ⎥⎝⎦;(2) ()(],01,3-∞⋃10. ①②⑤11.解:(1)()1mf x x x'=-+,∵(0)1f '=,∴1m =. ∴21()1x x f x x --'=+,令11()022f x x x -+--'===得。

当1x 12-+∈(-,)时,()0f x '>, ∴()f x在112-+(-,上是增函数;当1x 2-+∈∞(+)时,()0f x '<, ∴()f x在12-∞(+)上是减函数. (2)方程23()4f x x x c =-++即为方程2213ln(1)24x x x x c +-=-++ 即为方程21ln(1)04x x x c ++--=,设21()ln(1)4x x x x c φ=++--,11()112x x x φ'=+-+22(1x xx -=+)当(1,0)x ∈-时,()0x φ'>,则()x φ在(1,0)-上单调递增; 当0,1x ∈()时,()0x φ'<,则()x φ在(0,1)上单调递减; 当(1,)x ∈+∞时,()0x φ'>,则()x φ在(1,)+∞上单调递增; 而(0)c φ=-,3(1)ln 24c φ=--,(2)ln 31c φ=-- 23()4f x x x c =-++在[0,2]恰有两个不同的实根等价于(0)03(1)ln 204(2)ln 310.c c c φφφ=-≥⎧⎪⎪=--<⎨⎪=--≥⎪⎩,,∴实数c 的取值范围 3ln 204c -<≤.12.解:(Ⅰ)xax x a x f 11)(-=-=', 当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减,∴)(x f 在),0(+∞上没有极值点; 当 0>a 时,()0f x '<得10x a<<,()0f x '>得1x a >,∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点(Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b xx x bx x f ≥-+⇔-≥ln 112)(, 令xxx x g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增, ∴22min 11)()(ee g x g -==,即211b e ≤-.13.解: (1) '2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以'(1)0f =, 即 310,1a a a -++==∴(2) 方法一由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 220x x --≥,20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤ 方法二由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x xx +≤+ 20x -≤≤∴于是x 的取值范围是}{|20x x -≤≤14.解:(Ⅰ)222222()2(1)2()()()k x c x kx kx x ckf x x c x c +-+--+'==++,由题意知()0f c '-=, 即得220c k c ck --=,(*)0c ≠,0k ∴≠.由()0f x '=得220kx x ck --+=,由韦达定理知另一个极值点为1x =(或2x c k=-). (Ⅱ)由(*)式得21k c =-,即21c k=+. 当1c >时,0k >;当01c <<时,2k <-.(i )当0k >时,()f x 在()c -∞-,和(1)+∞,内是减函数,在(1)c -,内是增函数.1(1)012k kM f c +∴===>+, 221()02(2)kc k m f c c c k -+-=-==<++,由2122(2)k k M m k -=++≥及0k >,解得k (ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数.2()02(2)k M f c k -∴=-=>+,(1)02k m f ==<22(1)1112(2)22k k k M m k k -++-=-=-++≥恒成立.综上可知,所求k 的取值范围为(2)[2)-∞-+∞,,.15.(Ⅰ)解:322()434(434)f x x ax x x x ax '=++=++.当103a =-时,2()(4104)2(21)(2)f x x x x x x x '=-+=--. 令()0f x '=,解得10x =,212x =,32x =.当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在(0,)2,(2,)+∞内是增函数,在(,0)-∞,(,2)2内是减函数.(Ⅱ)解:2()(434)f x x x ax '=++,显然0x =不是方程24340x ax ++=的根.为使()f x 仅在0x =处有极值,必须24403x ax +≥+成立,即有29640a ∆=-≤.解些不等式,得3838a -≤≤.这时,(0)f b =是唯一极值. 因此满足条件的a 的取值范围是88[,]33-.(Ⅲ)解:由条件[2,2]a ∈-,可知29640a ∆=-<,从而24340x ax ++>恒成立. 当0x <时,()0f x '<;当0x >时,()0f x '>.因此函数()f x 在[1,1]-上的最大值是(1)f 与(1)f -两者中的较大者.为使对任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,当且仅当111))1((f f ≤-≤⎧⎨⎩,即22b a b a≤--≤-+⎧⎨⎩,在[2,2]a ∈-上恒成立. 所以4b ≤-,因此满足条件的b 的取值范围是(,4]-∞-.。

相关文档
最新文档