专升本高数真题.doc
(完整)安徽普高专升本统考《高等数学》试题答案解析
(完整)安徽普高专升本统考《高等数学》试题答案解析一、选择题1. 设函数f(x) = x^3 - 3x,则f(x)在x = 0处的极值为()A. 0B. -3C. 3D. 无极值解析:首先求导数f'(x) = 3x^2 - 3。
令f'(x) = 0,得x = ±1。
然后求二阶导数f''(x) = 6x,可知f''(0) = 0,f''(±1) = ±6。
因为f''(0) = 0,不能判断极值类型;而f''(1) > 0,f''(-1) < 0,所以f(x)在x = 0处取得极小值,且极小值为f(0) = 0。
故选A。
二、填空题1. 设函数f(x) = x^3 - 3x + 1,求f(x)的驻点。
解析:求导数f'(x) = 3x^2 - 3。
令f'(x) = 0,得x =±1。
所以f(x)的驻点为x = ±1。
三、解答题1. 设函数f(x) = x^2 + 2x + 3,求f(x)的单调区间。
解析:首先求导数f'(x) = 2x + 2。
令f'(x) > 0,得x > -1;令f'(x) < 0,得x < -1。
因此,f(x)在区间(-∞, -1)上单调递减,在区间(-1, +∞)上单调递增。
2. 设函数f(x) = x^3 - 3x^2 + 4,求f(x)在x = 0处的泰勒展开式。
解析:首先求导数f'(x) = 3x^2 - 6x,f''(x) = 6x - 6,f'''(x) = 6。
所以f(0) = 4,f'(0) = 0,f''(0) = -6,f'''(0) = 6。
专升本高等数学一考试真题及参考答案.doc
专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。
江苏专升本数学2024真题及答案
江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。
专升本高等数学(含答案)
高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
2023河南专升本高数试卷
1、下列哪个选项表示的是函数y=x2在x=1处的导数的几何意义?A. 曲线y=x2在点(1,1)处的切线斜率B. 曲线y=x2在点(1,1)处的切线长度C. 曲线y=x2在点(1,1)处的法线斜率D. 曲线y=x2在点(1,1)处的曲率解析:函数y=x2的导数为y'=2x,在x=1处的导数值为2,这表示曲线y=x2在点(1,1)处的切线斜率。
因此,(答案:A)2、设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f((a+b)/2)>0,则下列哪个选项一定正确?A. f'(x)在(a,b)内至少有一个零点B. f'(x)在(a,b)内至少有两个零点C. f'(x)在(a,b)内没有零点D. f'(x)在(a,(a+b)/2)内至少有一个零点解析:由罗尔定理,如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一个c∈(a,b),使得f'(c)=0。
但题目中给出f((a+b)/2)>0,结合f(a)=f(b)=0,可以推断出f'(x)在(a,(a+b)/2)和((a+b)/2,b)这两个区间内至少各有一个零点,所以f'(x)在(a,b)内至少有两个零点。
(答案:B)3、下列哪个选项是函数y=ln(1+x)的导数?A. 1/(1+x)B. 1/(1-x)C. x/(1+x)D. 1/x解析:利用对数函数的求导法则,y=ln(1+x)的导数为y'=1/(1+x)。
(答案:A)4、设函数f(x)=x3-3x2+2x-1,则f'(x)的零点个数为?A. 0B. 1C. 2D. 3解析:首先求导得到f'(x)=3x2-6x+2,然后令f'(x)=0,解得x=1±√3/3,所以f'(x)有两个零点。
(答案:C)5、下列哪个选项是函数y=ex的泰勒级数展开式的前三项?A. 1+x+x2/2!B. 1+x+x2/3!C. 1+x2/2!+x3/3!D. 1+x+x3/3!解析:函数y=ex的泰勒级数展开式为ex=1+x+x2/2!+x3/3!+...,所以前三项为1+x+x2/2!。
高等数学专升本试卷(含答案)
高等数学专升本试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1函数1arccos2x y +=的定义域是 ( ) .A 1x < .B ()3,1-.C {}{}131x x x <⋂-≤≤ .D 31x -≤≤.2.极限sin 3limx xx→∞等于 ( ).A 0 .B 13.C 3 .D 1.3.下列函数中,微分等于1ln dx x x的是 ( ) .A ln x x c + .B ()ln ln y x c =+ .C 21ln 2x c + .D ln xc x+.4.()1cos d x -=⎰( ).A 1cos x - .B cos x c -+.C sin x x c -+ .D sin x c +.5.方程2222x y z a b=+表示的二次曲面是(超纲,去掉) ( ).A 椭球面.B 圆锥面.C 椭圆抛物面 .D 柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.2226lim _______________.4x x x x →+-=-2.设函数(),,x e f x a x ⎧=⎨+⎩00x x ≤>在点0x =处连续,则________________a =.3.设函数xy xe =,则()''0__________________y =.4.函数sin y x x =-在区间[]0,π上的最大值是_____________________.5.sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰6.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰7.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x aF x +→=8.设32, 2a i j k b i j k =--=+-,则____________________.a b ⋅=9.设()2,yz x y =+则()0,1____________________________.zx ∂=∂(超纲,去掉) 10.设(){},01,11,D x y x y =≤≤-≤≤则_____________________.Ddxdy =⎰⎰(超纲,去掉)三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算0lim.x xx e e x-→-2.设函数y =求.dy3.计算1xxe dx e +⎰.4.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx5.计算 2 .22dxx x +∞-∞++⎰6. 设曲线()y f x =在原点与曲线sin y x =相切,求n7.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫= ⎪⎝⎭的特解. .8.设(),z z x y =是由方程2224x y z z ++=所确定的隐函数,求.zx∂∂(超纲,去掉) 9.求D⎰⎰ ,其中区域(){}2222,4D x y x y ππ=≤+≤ .(超纲,去掉)10.求幂级数21113n n n x ∞-=∑的收敛域.四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间.(本题14分)2.设()f x 在[]0,1上可导,()()00,11f f ==,且()f x 不恒等于x ,求证:存在()0,1ξ∈使得()' 1.f ξ> (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . (超纲,去掉) 二. 填空题(每小题4分,共40分) 1.54 , 2.1 , 3.2 , 4.0 , 5.sin 14x c π⎛⎫++ ⎪⎝⎭ ,6.0 ,7.()af a ,8.3 ,9.2 , (超纲,去掉) 10.2 . (超纲,去掉) 三. 计算题(每小题6分,共60分)1. 解.00lim lim 1x x xxx x e e e e x --→→-+=5分2.=6分2.解.()3221',1y x ==+ 5分故()3221+dxdy x =.6分3.解.原式=()11x xde e++⎰3分()ln 1.x e c =++6分4.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dyt dx=- 6分 5.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分 =.π6分6.解.由条件推得()()'00,1 1.f f ==2分于是()1220lim 220n n f f n n →∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分(第1页,共3页)==6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到cot ,3dyxdx y=-+2分积分得到ln 3ln sin y x c +=-+或 ()3 .sin cy c x =-∈4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为33.sin y x=-6分解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x x x ==-,得到 ()3 .sin c y c x=-∈4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=-6分8.解.方程两边对x 求偏导数,得到(超纲,去掉)224,z zx z x x∂∂+=∂∂4分故.2z x x z∂=∂-6分9(超纲,去掉)解原式 2 2 0 sin d r rdrπππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰5分=26.π-6分10.解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为级数均发散,故该级数的收敛域为( .6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞,()34232',",x x y y x x++=-= 令'0,y =得驻点12x =- ,5分令"0,y =得23x =- ,610分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞在2x =-处,有极小值14-. 其图形的凹区间为)0,3(-及()0,+∞,凸区间为(),3.-∞-14分2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠2分如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 10)0()()('f 000=>--=x x x f x f ξ ,5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()000011'111f f x x f x x ξ--=>=--.8分注:在“2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧PB所围成.4分该区域绕x 旋转生成的旋转体的体积 () 02218292330V xx dx πππ-=--++=⎰ .8分注:若计算由直线PA 与AC 及曲线弧PC 所围成,从而() 222 081362315V x x dx πππ=+-++=⎰者得6分.。
高数专升本试题(卷)与答案解析
高数专升本试题(卷)与答案解析普通专科教育考试《数学(二)》一、单项选择题(本大题共10小题,每小题2分,共20题。
在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。
)1.极限=+--+→232lim 221x x x x x ( ) A.—3 B. —2 C.1 D.22.若函数()>=<+=?0,1sin 0,00,sin 1x x x x x a x x x 在0=x 处连续,则=a ()A.2B.0C.1D.—13.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( )A.()x f B.()x f C.()()x f x f -+ D.()()x f x f --4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线()A.不存在B.只有一条C.至少有一条D.有两条以上5.已知某产品的总成本函数 C 与产量x 的函数关系为C (),2000102.02++=x x x C 则当产量10=x ,其边际成本是() A.—14 B.14 C.—20 D.20 6.设二元函数,xyy e x z +=则=??xz() A. xy y e yx+-1B.xy y ye yx +-1C.xy y e x x +lnD.xy y ye x x +ln7.微分方程y x e dxdy-=2的通解为() A.C e ey x=-2 B.C e e y x =-212 C.C e e y x =-221D.C e e y x =+28.下列级数中收敛发散的是()A.∑∞=1!1n n B.∑∞=123n n n C.∑∞=+11n n nD.∑∞=13sin n n π9.设函数()x f 连续,且()()dx x f x x f ?+=122,则()x f =()A.2xB.322-x C.322+x D.22+x 10.设A,B,C 均为n 阶方阵,则下列叙述正确的是()A.()()BC A C AB =B.若,AC AB =则C B =C.若AB=0,则0=A 或0=BD.若,2A A =则E A =或0=A二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在答题纸的相应位置上,填写在其他位置上无效) 11.微分方程x e x y dxdysin cos -=+的通解为 12.?-=++112231sin dx x x x 13.设参数方程==tt y t x cos 2,则=dx dy14.已知三及行列式022321111=a,则=a三、计算题(本大题共6小题,每小题7分,共42分,将答题过程、步骤和答案填写在答题纸的相应位置上,填写在其他位置上无效)15.求极限()3cos 1lim x dt t xx ?-→16.设二元函数()y x z z ,=由方程()xyz z y x sin =++所确定,求xz。
数学专升本考试试题(含答案解析)
数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。
2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。
又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。
联立两个方程,得到d = 2,故选A。
3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。
4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。
完整版专升本高数真题
2008年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学试卷一.单项选择题(每题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其 代码写在题干后面的括号内•不选、错选或多选者,该题不得分.1. 函数 f(x) ln(1 x),x 2的定义域为( )A. [2, 1]B. [ 2,1]C.[2,1)D.(2,1)2.1 2cosx lim( )X3sin x —3A.1B. 0C.1.2D.,33. 点x 0是函数y3x 1 —的()3x1A . 连续点 B. 跳跃间断点C.可去间断点D. 第二类间断点4. 下列极限存在的为()A.lim e xB.xsin2xC.lim cos 1XxD.lim x 22lim X 0 xxx 35. 当 x 0 时,ln(1x )是比1cosx 的()A .'低阶无穷小B .高阶无穷小C.等阶无穷小D. 同阶但不等价无穷小1 (x1)sin 1,x 1x 1 6.设 函 数f(x) 1,1x 0 , 则f(x)arcta nx,x 0( )A.在X 1处连续,在x 0处不连续 B .在 x 0处连续,在x 1处不连C.在x 1, 0 ,处均连续D.在x 1 , 0 ,处均不连续7. 过曲线 y arctan x e x上的()A .2x y 1 0B.C .2x y 1D.8.设函数f(x) 在: x 0处可导, f(x)f (0)A ..-1 B.1C. -3D .39.若 •函数■f(x) (ln x) x (x 1),则f (x)点(0,1) 处的法线方程为x 2y 2 0x 2y 2 0f (0) 3x(x)且 lim - (x)0,则x 0x()( )|x 1|既有水平渐进线又有垂直渐进线 既无水平渐进线又无垂直渐进线A. (ln x)x 1B. (ln x)x1 (In x)x ln(ln x)C. (In x)xln(ln x)D. x(ln x)x 10.设函数y y(x)由参数方程 3 .COS t 确定,则 ■ 3sin td 2ydx 2A.-2B.-1C. 11.下列函数中, 在区间[-1,1]4,2 3上满足罗尔中值定理条件的是12.A. 13. A. y e x 曲线 曲线B.In |x| C.y 1 x 2x 3 5x2的拐点是 B.(0, 2)C. 无拐点D.D.D.4,2 30,y14.如果f(x)的一个原函数是 xln x ,那么x 2f (x)dxA. ln x CB.x 2 CA.只有水平渐进线 C.只有垂直渐进线B. D.15』—x 4x 3A . ^ln2f (x)C. x 3ln x CD.17. 下列广义积分收敛的是( )Ax 3dxB.In x 月 Cdx C.i -------VxdxD.e x dx11x118.33|1 x|dx( )313A.20|1 x|dxB.3(x 1)dx1(1 x)dx1 313C.3(1 x)dx1(x 1)dxD.3 (1 x) dx1(x 1)dx19. 若f (x)可导函数,f(x) 0 ,且满足f 2(x) In 2 22 :f (t)sintdt ,A . 0 I0 II 1C.D.41 cost则12 I 1 1 B.12A. ln(1 cosx)B. ln(1 cosx)C. ln(1 cosx)D.ln(1 cosx)20.若函数f (x)满足 f (x)11 f(x)dx ,则 f (x)人 1A. xB. 3 e32°x 3f(x 2)dx 则 I21.若 IC.D.B.1ln 2C. ln(x 3)ln(x 1)D.ln(x1) ln(x 3)16.设 I 0; 1dx的取值范围为e2 e A0 xf(x)dxB1 e2C xf(x)dx D2 022.直线x 2 y 4一与平面4x 5 9 1A. 直线与平面斜交B.C. 直线在平面内D.2 223. lim x yy 0 - x2xf(x)dx 01 e2 0xf(x)dxA. 2B.324.曲面z xA. 2x 4yC. x 2y25.设函数zA. 6xy26.如果区域f(x, y)dxdy D2A. 5B.3y 7z 5的位置关系为直线与平面垂直直线与平面平行y211C. 14zB.D. 不存在在点(1,2, 5)处切平面方程(xy3,则3x2.4x.2x2y4y2z23y C. 6xy D.D被分成两个子区域D1和D2且f (x, y)dxdy1,则D27.如果L是摆线D if (x, y)dxdyC. 6D.13y2tS从点A(2 ,0)到点B(0,0)的一段弧, costL (x2y 3xe x)dx ,1 3(3x ysin y)dyA. e2 (1 2B. 2[e2 (1 1]C.3[e2 (1 2 ) 1]D. 4[e2 (1 1] 28.以通解为y Ce x(C为任意常数)的微分方程为( ) 3x2A . y yC. yy 132.函数y x sinx 在区间(0,2 )单调,其曲线在区间 0— 内的,2凹凸性为 __________ 的.2 2 233.设方程3x 2y z a(a 为常数)所确定的隐函数z f(x,y),则36.在空间直角坐标系中,以A(0, 4,1), B( 1, 3,1), C(2, 4,0)为顶点的ABC 的面积为 .3 338.函数f (x, y) x y 3xy 的驻点为 .29.微分方程yxe x 的特解形式应设为 yA . x(ax b)eB.ax bC.(ax b)eD.2 ‘x (axb)e x30.下列四个级数中, A.丄 B.n 1n!发散的级数是2n 3n 11000nC.n n 12nD.(1~2 n 1n得分 评卷人填空题(每题2分,共 30分)31. lim f(x) A 的x x_____________ 条件是lim f(x)Xxlim f(x)XxA .B. D.35.dxcosx2 2xy 37.方程 94x21在空间直角坐标下的图形为3241. 直角坐标系下的二重积分f(x,y)dxdy (其中D 为环域1x 2 y 2 9)化D为极坐标形式为 ______________________________ .42. 以y C i e 3x C 2xe 3x 为通解的二阶常系数线性齐次微分方程 为 、计算题(每小题5分,共40分)46 •求 limx x 2 5x 2 2 丁 x 2 34x X t 31 t 2dt50.求函数z e x cos(x y)的全微分.51 •计算-^2 d ,其中D 是由y 2, y x, xy 1所围成的闭区域D y52•求微分方程y ycosx e 满足初始条件y(0)1的特解.39.若 z40.4 cosy x_Tdy ____________43.等比级数n aq n (a 0),当 0时级数收敛,当时级数发散.44.函数 f (x)丁」 展开为x 的幕级数为x x 245.n 1n的敛散性为的级数.47.48. 已知yln sin(1 2x),求矽dx49. 计算不定积分 x arcta nxdx .53.求级数 3n n 1 x n的收敛半径及收敛区间 (考虑区间端点). 得分 评卷人四、应用题(每题7分,共计14分) 54.过曲线y x 2上一点M (1,1)作切线L ,D 是由曲线y x 2,切线L 及x 轴所围成的平面图形,求 (1) 平面图形D 的面积; (2) 该平面图形 D 绕x 轴旋转一周所成的旋转体的体积. 55. 一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽 (如下图),要使梯形的面积 A 最大,求腰长x 和它对底边的倾斜角.五、证明题(6分) 56.证明方程ln x — e3cos2xdx 在区间(e,e )内仅有一个实根。
山东专升本试题及高数答案
山东专升本试题及高数答案试题及答案:一、选择题(每题2分,共20分)1. 函数f(x) = x^2 + 3x + 2在区间(-∞, -1)上是:A. 增函数B. 减函数C. 常数函数D. 无法确定答案:B2. 极限lim(x→0) (sin(x)/x) 的值为:A. 0B. 1C. ∞D. -∞答案:B3. 以下哪个是微分方程dy/dx + y = x的解:A. y = x - 1B. y = x^2C. y = e^xD. y = x + C答案:D4. 曲线y = x^3 - 2x^2 + x在点(1,0)处的切线斜率为:A. 0B. 1C. -1D. 2答案:B5. 定积分∫[0,1] x^2 dx的值为:A. 1/3B. 1/4C. 1/2D. 1答案:B6. 函数f(x) = sin(x) + cos(x)的周期为:A. πB. 2πC. π/2D. π/4答案:B7. 以下哪个是二阶常系数线性微分方程:A. y'' + 2y' + y = 0B. y'' + y' + y = x^2C. y'' + 2y = 0D. y'' = 0答案:A8. 函数f(x) = ln(x)在区间(0, 1)上是:A. 增函数B. 减函数C. 常数函数D. 无法确定答案:B9. 以下哪个是泰勒级数展开:A. e^x = 1 + x + x^2/2! + ...B. sin(x) = x - x^3/3! + x^5/5!C. cos(x) = 1 - x^2/2! + x^4/4!D. 所有选项答案:D10. 以下哪个是拉格朗日中值定理的应用:A. 证明函数f(x) = x^2在区间[0,1]上的平均变化率B. 证明函数f(x) = x^3在区间[-1,1]上的中值存在C. 证明函数f(x) = sin(x)在区间[0,π]上的中值存在D. 证明函数f(x) = e^x在区间[1,e]上的中值存在答案:D二、填空题(每题2分,共20分)11. 若函数f(x) = x^3 + ax^2 + bx + c在x=1处取得极小值,则a = _______,b = _______。
专升本统一考试数学卷+答案 (6)
普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知函数)(x f y =的图像关于点(-1,0)对称,且当∈x (0,+∞)时,x x f 1)(=,则当∈x (-∞,-2)时)(x f 的解析式为()A .x1-B .21+x C .21+-x D .x-212.已知θ是第三象限角,m =|cos |θ,且02cos 2sin>+θθ,则2cos θ等于()A .21m +B .21m +-C .21m -D .21m--3.已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点()A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)4.过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于()A .4pB .5pC .6pD .8p5、设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为()A.pB.2(1)p p - C.(1)p p -- D.(1)p p -6、下列级数中发散的是()A .∑∞=021n nB .∑∞=+131n n n C .1)1(1+-∑∞=n nn nD .nn n1)1(1∑∞=-7、已知AA A A A A n A 表示的行列式,表示,且阶方阵,为**)(42==的伴随矩阵),则=n ()A .2B .3C .4D .58、已知向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=110,000,121321a a a ,则()A .1a 线性相关B .21,a a 线性相关C .21,a a 线性无关D .321,,a a a 线性相关9、学习小组有10名同学,其中6名男生,4名女生,从中随机选取4人参加社会实践活动,则这4人全为男生的概率是()A .141B .143C .74D .7110、已知=+===)(,8.0)|(,4.0)(,3.0)(B A P A B P B P A P 则()A .0.7B .0.46C .0.38D .0.2411.全集设为U ,P 、S 、T 均为U 的子集,若 P (TU)=(TU)S 则()A .SS T P = B .P =T =SC .T =UD .P SU=T 12.设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是()A .m <2B .m ≥2B .C .m ≤2D .m ≤2或m ≤-4二、填空题(共4小题,每小题5分;共计20分)1.在二项式9)x +的展开式中,常数项是___________,系数为有理数的项的个数是___________.2.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=___________.3.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.4.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120F B F B ⋅=,则C 的离心率为____________.三、大题:(满分70分)1、已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2、一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A 1B 1C 1D 1?如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A 1B 1C 1D 1的棱CC 1的中点为E,求平面AB 1E 与平面ABC 所成二面角的余弦值.3.设数列{an}的前n 项和为Sn ,且满足Sn=2-an ,n=1,2,3,….(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an ,求数列{bn}的通项公式;(Ⅲ)设cn=n(3-bn),求数列{cn}的前n 项和Tn.4.如图,在三棱柱ABC-A1B1C1中,AA1C1C 是边长为4的正方形.平面ABC ⊥平面AA1C1C ,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC ;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D ,使得AD ⊥A1B ,并求1BDBC 的值.5.设正项数列{an}的前n 项和为Sn ,已知Sn ,an+1,4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,设bn 的前n 项和为Tn ,求证:Tn.6.某工厂对A 、B 两种型号的产品进行质量检测,从检测的数据中随机抽取6次,记录数据如下:A :8.3,8.4,8.4,8.5,8.5,8.9B :7.5,8.2,8.5,8.5,8.8,9.5(注:数值越大表示产品质量越好)正视图侧视图俯视图(Ⅰ)若要从A 、B 中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品合适?简单说明理由;(Ⅱ)若将频率视为概率,对产品A 今后的4次检测数据进行预测,记这4次数据中不低于8.5分的次数为ξ,求ξ的分布列及期望E ξ.参考答案:一、选择题:1-5题答案:BDCAD 6-10题答案:BBBAB 11-12题答案:AD 二、填空题:1、2、12272,5103.0.184.2三、大题:1、【解析】(1)不妨设20(4,)A y y ,则200(4,)A y y -,则23000124442AOB S y y y ∆=== ,解得01y =,∴(4,1)A ,将其代入双曲线222:1(0)x C y a a -=>得222411a -=,解得a =,∴双曲线C 的方程为2218x y -=;(2)由(1)可知29c =,∴3c =,∴1(3,0)F -,2(3,0)F ,设2(4,)P t t ,则21(34,)PF t t =--- ,22(34,)PF t t =-- ,∴224222121577(34,)(34,)169(4)864PF PF t t t t t t t ⋅=-----=+-=+-,又2[0,)t ∈+∞,∴212min 1577()()9864PF PF ⋅=-=- ,即当0t =时,12PF PF ⋅ 取得最小值,且最小值为9-.【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出A ,B 两点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大.2、解:(Ⅰ)该几何体的直观图是有一条侧棱垂直于底面的四棱锥.如右图中的四棱锥C1-ABCD 。
高等数学专升本试卷(含答案)
高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。
x<1B。
(-3,1)C。
{x|x<1} ∩ {-3≤x≤1}D。
-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。
0B。
3C。
1D。
不存在3.下列函数中,微分等于ln(2x)+c的是() A。
xlnx+cB。
y=ln(lnx)+cC。
3D。
14.d(1-cosx)=()∫(1-cosx)dxA。
1-cosxB。
-cosx+cC。
x-sinx+cD。
sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。
椭球面B。
圆锥面C。
椭圆抛物面D。
柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。
x>a+x。
x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
2023专升本高等数学试卷
工程数学(线、概)(高本)复习思考题一一、单选题(共40题,每题1.5分)1.如果=M,则=( )1A. 8MB. 2MC. MD. 6M2.已知可逆方阵则A=( )2A. B. C. D.3. 如果n阶方阵A的行列式|A|=0则下列正确的是( )2A. A=OB. r(A)>0C. r(A)<nD. r(A)=04.设,则取值为( )2A. λ=0或λ=-1/3B. λ=3C. λ≠0且λ≠-3D. λ≠05.在下列矩阵中可逆的是( )2A. B. C. D.6. 若齐次线性方程组有非零解,则常数λ=( )3A. 1B. 4C. 2D. 17.n阶方阵A可对角化的充分条件是( )2A. A有n个不同的特征值B. A的不同特征值的个数小于nC. A有n个不同的特征向量D. A有n个线性相关的特征向量8.设二次型的标准形为,则二次型的正惯性指标为( )3A. 2B. -1C. 1D. 39.设A是4阶方阵,且|A|=2,则|-2A|=( )3A. 16B. -4C. -32D. 3210.行列式中元素k的余子式和代数余子式值分别为( )2A. 20,-20B. 20,20C. -20,20D. -20,-2011.已知矩阵A4×4的四个特征值为4,2,3,1,则=( )3A. 2B. 3C. 4D. 2412.n阶方阵A可对角化的充分必要条件是( )2A. A有n个不同的特征值B. A为实对称矩阵C. A有n个不同的特征向量D. A有n个线性无关的特征向量13.行列式中元素y的余子式和代数余子式值分别为( )3A. 2,-2B. –2,2C. 2,2D. -2,-214.矩阵的秩为( )3A. 1B. 3C. 2D. 415.n阶实方阵A的n个行向量构成一组标准正交向量组,则A是( )3A. 对称矩阵B. 正交矩阵C. 反对称矩阵D. |A|=n16.n阶矩阵A是可逆矩阵的充要条件是( )2A. A的秩小于nB. A的特征值至少有一个等于零C. A的特征值都等于零D. A的特征值都不等于零17.设二次型的标准形为,则二次型的秩为( )4A. 2B. -1C. 1D. 318.如果总体服从正态分布,总体的期望和方差未知,在对总体的期望进行检验时要采用的检验方法是( )检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷一. 单项选择题(每题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题不得分.1. 函数2)1ln()(++-=x x x f 的定义域为 ( ) A. ]1,2[-- B. ]1,2[- C. )1,2[- D. )1,2(-2. =⎪⎭⎫ ⎝⎛π--π→3sin cos 21lim3x xx ( ) A.1 B. 0 C. 2 D.33. 点0=x 是函数131311+-=xxy 的 ( )A.连续点B. 跳跃间断点C.可去间断点D. 第二类间断点 4.下列极限存在的为 ( )A.xx e +∞→lim B. x x x 2sin lim 0→ C.xx 1cos lim 0+→ D.32lim 2-++∞→x x x5. 当0→x 时,)1ln(2x +是比x cos 1-的( )A .低阶无穷小B .高阶无穷小C .等阶无穷小 D.同阶但不等价无穷小6.设函数⎪⎪⎩⎪⎪⎨⎧>≤≤--<+++=0,arctan 01,11,11sin )1(1)(x x x x x x x f ,则)(x f( )A .在1-=x 处连续,在0=x 处不连续B .在0=x 处连续,在1-=x 处不连续C .在1-=x ,0,处均连续D .在1-=x ,0,处均不连续 7.过曲线x e x y +=arctan 上的点(0,1)处的法线方程为( )A. 012=+-y xB. 022=+-y xC. 012=--y xD. 022=-+y x 8.设函数)(x f 在0=x 处可导,)(3)0()(x x f x f α+-=且0)(lim0=α→xx x ,则=')0(f( ) A. -1 B.1 C. -3 D. 39.若函数)1()(ln )(>=x x x f x,则=')(x f ( ) A. 1)(ln -x x B. )ln(ln )(ln )(ln 1x x x x x +-C. )ln(ln )(ln x x xD. xx x )(ln10.设函数)(x y y =由参数方程⎪⎩⎪⎨⎧==t y tx 33sin cos 确定,则=π=422x dx y d ( )A.-2B.-1C.234-D. 234 11.下列函数中,在区间[-1,1]上满足罗尔中值定理条件的是 ( )A.xe y = B.||ln x y = C.21x y -= D.21xy =12. 曲线253-+=x x y 的拐点是 ( ) A.0=x B.)2,0(- C.无拐点 D. 2,0-==y x 13. 曲线|1|1-=x y ( )A. 只有水平渐进线B. 既有水平渐进线又有垂直渐进线C. 只有垂直渐进线D. 既无水平渐进线又无垂直渐进线 14.如果)(x f 的一个原函数是x x ln ,那么=''⎰dx x f x )(2( ) A. C x +ln B. C x +2C. C x x +ln 3D. x C - 15=+-⎰342x x dx( )A .C x x +--13ln 21 B.C x x +--31ln 21 C. C x x +---)1ln()3ln( D. C x x +---)3ln()1ln( 16.设⎰+=1041x dxI ,则I 的取值范围为 ( )A .10≤≤I B.121≤≤I C. 40π≤≤I D.121<<I17. 下列广义积分收敛的是 ( ) A.dx x ⎰+∞13B. ⎰+∞1ln dx xxC.⎰+∞1dx xD. dx e x ⎰+∞-0 18.=-⎰-33|1|dx x ( )A.⎰-30|1|2dx x B.⎰⎰-+--3113)1()1(dx x dx xC.⎰⎰----3113)1()1(dx x dx x D. ⎰⎰-+--3113)1()1(dx x dx x19.若)(x f 可导函数,0)(>x f ,且满足⎰+-=xdt ttt f x f 022cos 1sin )(22ln )(,则=)(x f( )A. )cos 1ln(x +B. C x ++-)cos 1ln(C. )cos 1ln(x +-D. C x ++)cos 1ln( 20. 若函数)(x f 满足⎰--+=11)(211)(dx x f x x f ,则=)(x f ( ) A. 31-x B. 21-x C. 21+x D. 31+x21. 若⎰=e dx x f x I 023)( 则=I ( )Adx x f )(0⎰2e x B dx xf )(0⎰exC dx x f )(210⎰2e xD dx x f )(210⎰ex22.直线19452zy x =+=+与平面5734=+-z y x 的位置关系为A. 直线与平面斜交B. 直线与平面垂直C. 直线在平面内D. 直线与平面平行 23.=-+++→→11lim222200y x y x y x ( )A. 2B.3C. 1D.不存在 24.曲面22y x z +=在点(1,2,5)处切平面方程( ) A .542=-+z y x B .524=-+z y x C .542=-+z y x D .542=+-z y x25.设函数33xy y x z -=,则=∂∂∂xy z2 ( )A. xy 6B. 2233y x -C. xy 6-D. 2233x y - 26.如果区域D 被分成两个子区域1D 和2D 且5),(1=⎰⎰dxdy y x f D ,1),(2=⎰⎰dxdy y x f D ,则=⎰⎰dxdy y x f D),( ( )A. 5B. 4C. 6D.1 27.如果L 是摆线⎩⎨⎧-=-=ty tt x cos 1sin 从点)0,2(πA 到点)0,0(B 的一段弧,则=-++⎰dy y y x dx xe y x xL)sin 31()3(32 ( ) A.1)21(2-π-πe B. ]1)21([22-π-πe C.]1)21([32-π-πe D. ]1)21([42-π-πe28.以通解为xCe y =(C 为任意常数)的微分方程为 ( )A. 0=+'y yB. 0=-'y yC. 1='y yD. 01=+'-y y 29. 微分方程xxe y y -='+''的特解形式应设为=*y ( )A .xeb ax x -+)( B.b ax + C.xe b ax -+)( D.xeb ax x -+)(230.下列四个级数中,发散的级数是 ( )A. ∑∞=1!1n n B. ∑∞=-1100032n n n C. ∑∞=12n n n D. ∑∞=121n n二、填空题(每题2分,共30分)31.A x f x x =→)(lim 0的____________条件是A x f x f x x x x ==-+→→)(lim )(lim 0.32. 函数x x y sin -=在区间)2,0(π单调 ,其曲线在区间⎪⎭⎫⎝⎛π2,0内的凹凸性为 的.33.设方程a a z y x (23222=++为常数)所确定的隐函数),(y x f z = ,则=∂∂xz_____. 34.=+⎰xdx 1 .35.⎰ππ⋅-=+33________cos 1dx x x. 36. 在空间直角坐标系中,以)042()131()140(,,,,,,,,----C B A 为顶点的ABC ∆的面积为__ .37. 方程⎪⎩⎪⎨⎧-==+214922x y x 在空间直角坐标下的图形为__________. 38.函数xy y x y x f 3),(33-+=的驻点为 .39.若x y xy ey x z xtan2312++=-,则=∂∂)0,1(xz .40.⎰⎰ππ=440___________cos xdy yydx 41.直角坐标系下的二重积分⎰⎰Ddxdy y x f ),((其中D 为环域9122≤+≤y x )化为极坐标形式为___________________________.42.以x xxe C e C y 3231--+=为通解的二阶常系数线性齐次微分方程为 .43.等比级数)0(0≠∑∞=a aqn n,当_______时级数收敛,当_______时级数发散.44.函数21)(2--=x x x f 展开为x 的幂级数为__________________45.∑∞=⎪⎭⎫ ⎝⎛-12n nn n 的敛散性为________的级数.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .47. 求⎰+→2032401lim x x dtt t x .48.已知)21sin(ln x y -=,求dxdy . 49. 计算不定积分⎰xdx x arctan . 50.求函数)cos(y x e z x+=的全微分. 51.计算⎰⎰σDd y x2,其中D 是由1,,2===xy x y y 所围成的闭区域. 52.求微分方程xe x y y sin cos -=+'满足初始条件1)0(-=y 的特解.53.求级数∑∞=+013n nn x n 的收敛半径及收敛区间(考虑区间端点).四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成的平面图形,求(1)平面图形D 的面积;(2)该平面图形D 绕x 轴旋转一周所成的旋转体的体积.55.一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽(如下图),要使梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.五、证明题(6分)56. 证明方程⎰π--=02cos 1ln dx x e x x 在区间),(3e e 内仅有一个实根.。