专升本高等数学真题试卷

合集下载

2024广东专升本数学试卷

2024广东专升本数学试卷

2024广东专升本数学试卷一、等差数列的首项为2,公差为3,则其第5项为?A. 11B. 12C. 13D. 14(答案:D)二、若数列{an}满足an+1 = an + 2,且a1 = 1,则该数列的前10项和为?A. 90B. 100C. 110D. 120(答案:C)三、等比数列的首项为1,公比为2,则其前n项和公式为?A. 2n - 1B. 2(n+1) - 1C. 2nD. 2(n-1)(答案:A)四、数列{an}中,若an = n2,则该数列是?A. 等差数列B. 等比数列C. 既不是等差也不是等比数列D. 无法确定(答案:A)五、等差数列{an}中,若a3 + a7 = 20,则该数列的前9项和为?A. 60B. 90C. 120D. 180(答案:B)六、等比数列的首项为-1,公比为-2,则其第6项为?A. -32B. 32C. -64D. 64(答案:A)七、数列{an}满足an+1 = 2an,且a1 = 1,则该数列是?A. 等差数列B. 等比数列C. 既不是等差也不是等比数列D. 无法确定(答案:B)八、等差数列{an}中,若a1 = 1,d = 2,则该数列的前n项和公式为?A. n2B. n2 + 1C. (n2 + n)/2D. (n2 - n)/2 + 1(答案:A)九、等比数列{an}中,若a2 = 4,a5 = 32,则该数列的公比为?A. 2B. 4C. 8D. 16(答案:A)十、数列{an}中,若an = (-1)n * n,则该数列的前10项和为?A. -5B. 5C. -6D. 6(答案:A)。

专升本湖南高数真题试卷

专升本湖南高数真题试卷

专升本湖南高数真题试卷一、选择题(本题共10小题,每小题4分,共40分)1. 函数f(x)=x^2-2x+1在区间[0,2]上的最大值是()。

A. 0B. 1C. 3D. 42. 设函数f(x)在R上连续,且f(0)=1,f'(0)=2,f''(0)=3,则f(x)的泰勒展开式在x=0处的前三项是()。

A. 1+2x+3x^2B. 1+x+2x^2C. 1+2xD. 1+3x^23. 已知曲线y=x^3-3x^2+2x在点(1,0)处的切线方程是()。

A. 3x-y-3=0B. x-y-1=0C. x-y+1=0D. y=04. 若f(x)=\frac{1}{x},则f'(x)=()。

A. -\frac{1}{x^2}B. \frac{1}{x^2}C. -\frac{x}{x^3}D.\frac{x}{x^3}5. 曲线y=\ln(x)在点(1,0)处的切线斜率是()。

A. 0B. 1C. -1D. e6. 设f(x)=\sin(x)+\cos(x),则f'(x)=()。

A. \cos(x)-\sin(x)B. \sin(x)-\cos(x)C. \sin(x)+\cos(x)D. -\sin(x)-\cos(x)7. 函数f(x)=\sqrt{x}在定义域内是()。

A. 单调递增函数B. 单调递减函数C. 有增有减D. 常数函数8. 函数f(x)=\frac{1}{x}在x=1处的导数是()。

A. 0B. 1C. -1D. 不存在9. 若f(x)=x^2+2x+1,则f(x)的最小值是()。

A. 0B. 1C. 2D. 310. 曲线y=x^3在x=1处的切线方程是()。

A. 3x-y-3=0B. 3x-y-2=0C. y=3x-2D. y=x^3-1二、填空题(本题共5小题,每小题4分,共20分)1. 若函数f(x)=2x^3-x^2+x-5,则f'(x)=______。

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

江苏专升本数学2024真题及答案

江苏专升本数学2024真题及答案

江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3在区间[0,6]上的最大值是()。

A. 3B. 4C. 6D. 92. 极限lim(x→0) (sin(x)/x) 的值是()。

A. 0B. 1C. 2D. 无穷大3. 设f(x)是定义在R上的函数,若f(0)=-1,f'(0)=2,则f'(π)的值是()。

A. 2B. -2C. π^2D. 无法确定4. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是()。

A. 0B. 1C. -1D. 25. 已知数列{an}满足a1=2,an+1=an+n,数列{an}的前n项和Sn=()。

A. n^2+nB. n^2C. n(n+1)/2D. n^3/3二、填空题(每题2分,共10分)6. 微分方程dy/dx + y = x的通解是 y = ________。

7. 若曲线y=x^2上一点P(x0,y0)处的切线方程为y=2x-1,则x0=_______。

8. 函数f(x)=x^3-6x^2+9x+2在x=2处的导数f'(2)=_______。

9. 已知级数∑n=1^∞ (1/n^2)是收敛的,其和为π^2/6,则∑n=1^∞ (1/n^3)的和为_______。

10. 若函数f(x)=sin(x)+cos(x),则f''(π/4)=_______。

三、计算题(每题10分,共30分)11. 求函数f(x)=2x^3-x^2+1在区间[-1,2]上的最大值和最小值。

12. 求曲线y=x^2-4x+3与直线y=6的交点坐标。

13. 求函数f(x)=ln(x)+1/x在区间(0,1)上的单调性。

四、证明题(每题15分,共30分)14. 证明:对于任意正整数n,有1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。

15. 证明:函数f(x)=e^x - x在区间(0, +∞)上是单调递增的。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1函数1arccos2x y +=的定义域是 ( ) .A 1x < .B ()3,1-.C {}{}131x x x <⋂-≤≤ .D 31x -≤≤.2.极限sin 3limx xx→∞等于 ( ).A 0 .B 13.C 3 .D 1.3.下列函数中,微分等于1ln dx x x的是 ( ) .A ln x x c + .B ()ln ln y x c =+ .C 21ln 2x c + .D ln xc x+.4.()1cos d x -=⎰( ).A 1cos x - .B cos x c -+.C sin x x c -+ .D sin x c +.5.方程2222x y z a b=+表示的二次曲面是(超纲,去掉) ( ).A 椭球面.B 圆锥面.C 椭圆抛物面 .D 柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.2226lim _______________.4x x x x →+-=-2.设函数(),,x e f x a x ⎧=⎨+⎩00x x ≤>在点0x =处连续,则________________a =.3.设函数xy xe =,则()''0__________________y =.4.函数sin y x x =-在区间[]0,π上的最大值是_____________________.5.sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰6.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰7.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x aF x +→=8.设32, 2a i j k b i j k =--=+-,则____________________.a b ⋅=9.设()2,yz x y =+则()0,1____________________________.zx ∂=∂(超纲,去掉) 10.设(){},01,11,D x y x y =≤≤-≤≤则_____________________.Ddxdy =⎰⎰(超纲,去掉)三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算0lim.x xx e e x-→-2.设函数y =求.dy3.计算1xxe dx e +⎰.4.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx5.计算 2 .22dxx x +∞-∞++⎰6. 设曲线()y f x =在原点与曲线sin y x =相切,求n7.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫= ⎪⎝⎭的特解. .8.设(),z z x y =是由方程2224x y z z ++=所确定的隐函数,求.zx∂∂(超纲,去掉) 9.求D⎰⎰ ,其中区域(){}2222,4D x y x y ππ=≤+≤ .(超纲,去掉)10.求幂级数21113n n n x ∞-=∑的收敛域.四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间.(本题14分)2.设()f x 在[]0,1上可导,()()00,11f f ==,且()f x 不恒等于x ,求证:存在()0,1ξ∈使得()' 1.f ξ> (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . (超纲,去掉) 二. 填空题(每小题4分,共40分) 1.54 , 2.1 , 3.2 , 4.0 , 5.sin 14x c π⎛⎫++ ⎪⎝⎭ ,6.0 ,7.()af a ,8.3 ,9.2 , (超纲,去掉) 10.2 . (超纲,去掉) 三. 计算题(每小题6分,共60分)1. 解.00lim lim 1x x xxx x e e e e x --→→-+=5分2.=6分2.解.()3221',1y x ==+ 5分故()3221+dxdy x =.6分3.解.原式=()11x xde e++⎰3分()ln 1.x e c =++6分4.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dyt dx=- 6分 5.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分 =.π6分6.解.由条件推得()()'00,1 1.f f ==2分于是()1220lim 220n n f f n n →∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分(第1页,共3页)==6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到cot ,3dyxdx y=-+2分积分得到ln 3ln sin y x c +=-+或 ()3 .sin cy c x =-∈4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为33.sin y x=-6分解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x x x ==-,得到 ()3 .sin c y c x=-∈4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=-6分8.解.方程两边对x 求偏导数,得到(超纲,去掉)224,z zx z x x∂∂+=∂∂4分故.2z x x z∂=∂-6分9(超纲,去掉)解原式 2 2 0 sin d r rdrπππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰5分=26.π-6分10.解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为级数均发散,故该级数的收敛域为( .6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞,()34232',",x x y y x x++=-= 令'0,y =得驻点12x =- ,5分令"0,y =得23x =- ,610分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞在2x =-处,有极小值14-. 其图形的凹区间为)0,3(-及()0,+∞,凸区间为(),3.-∞-14分2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠2分如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 10)0()()('f 000=>--=x x x f x f ξ ,5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()000011'111f f x x f x x ξ--=>=--.8分注:在“2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧PB所围成.4分该区域绕x 旋转生成的旋转体的体积 () 02218292330V xx dx πππ-=--++=⎰ .8分注:若计算由直线PA 与AC 及曲线弧PC 所围成,从而() 222 081362315V x x dx πππ=+-++=⎰者得6分.。

2024年专升本高数试题

2024年专升本高数试题

2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。

高数专升本试题(卷)与答案解析

高数专升本试题(卷)与答案解析

高数专升本试题(卷)与答案解析普通专科教育考试《数学(二)》一、单项选择题(本大题共10小题,每小题2分,共20题。

在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。

)1.极限=+--+→232lim 221x x x x x ( ) A.—3 B. —2 C.1 D.22.若函数()>=<+=?0,1sin 0,00,sin 1x x x x x a x x x 在0=x 处连续,则=a ()A.2B.0C.1D.—13.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( )A.()x f B.()x f C.()()x f x f -+ D.()()x f x f --4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线()A.不存在B.只有一条C.至少有一条D.有两条以上5.已知某产品的总成本函数 C 与产量x 的函数关系为C (),2000102.02++=x x x C 则当产量10=x ,其边际成本是() A.—14 B.14 C.—20 D.20 6.设二元函数,xyy e x z +=则=??xz() A. xy y e yx+-1B.xy y ye yx +-1C.xy y e x x +lnD.xy y ye x x +ln7.微分方程y x e dxdy-=2的通解为() A.C e ey x=-2 B.C e e y x =-212 C.C e e y x =-221D.C e e y x =+28.下列级数中收敛发散的是()A.∑∞=1!1n n B.∑∞=123n n n C.∑∞=+11n n nD.∑∞=13sin n n π9.设函数()x f 连续,且()()dx x f x x f ?+=122,则()x f =()A.2xB.322-x C.322+x D.22+x 10.设A,B,C 均为n 阶方阵,则下列叙述正确的是()A.()()BC A C AB =B.若,AC AB =则C B =C.若AB=0,则0=A 或0=BD.若,2A A =则E A =或0=A二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在答题纸的相应位置上,填写在其他位置上无效) 11.微分方程x e x y dxdysin cos -=+的通解为 12.?-=++112231sin dx x x x 13.设参数方程==tt y t x cos 2,则=dx dy14.已知三及行列式022321111=a,则=a三、计算题(本大题共6小题,每小题7分,共42分,将答题过程、步骤和答案填写在答题纸的相应位置上,填写在其他位置上无效)15.求极限()3cos 1lim x dt t xx ?-→16.设二元函数()y x z z ,=由方程()xyz z y x sin =++所确定,求xz。

2024年山东成人高考专升本高等数学(一)真题及答案

2024年山东成人高考专升本高等数学(一)真题及答案

2024年山东成人高考专升本高等数学(一)真题及答案1. 【选择题】当x→0时,ln(1+x2)为x的( )A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量正确答案:A参考解析:2. 【选择题】A.B.C.D.正确答案:C参考解析:3. 【选择题】设y(n-2)=sinx,则y(n)=A. cosxB. -cosxC. sinxD. -sinx正确答案:D参考解析:4. 【选择题】设函数f(x)=3x3+ax+7在x=1处取得极值,则a=A. 9B. 3C. -3D. -9正确答案:D参考解析:函数f(x)在x=1处取得极值,而f'(x)=9x2+a,故f'(1)=9+a=0,解得a=-9.5. 【选择题】A.B.C.D.正确答案:B参考解析:6. 【选择题】A. sin2xB. sin2xC. cos2xD. -sin2x正确答案:B参考解析:7. 【选择题】A.B.C.D.正确答案:D参考解析:8. 【选择题】函数f(x,y)=x2+y2-2x+2y+1的驻点是A. (0,0)B. (-1,1)C. (1,-1)D. (1,1)正确答案:C参考解析:由题干可求得f x(x,y)=2x-2,f y(x,y)=2y+2,令f x(x,y)=0,f y(z,y)=0,解得x=1,y=-1,即函数的驻点为(1,-1).9. 【选择题】下列四个点中,在平面x+y-z+2=0上的是A. (-2,1,1)B. (0,1,1)C. (1,0,1)D. (1,1,0)正确答案:A参考解析:把选项中的几个点带入平面方程,只有选项A满足方程,故选项A是平面上的点.10. 【选择题】A.B.C.D.正确答案:B 参考解析:11. 【填空题】参考解析:12. 【填空题】参考解析:13. 【填空题】参考解析:14. 【填空题】参考解析:15. 【填空题】参考解析:16. 【填空题】参考解析:17. 【填空题】参考解析:18. 【填空题】参考解析:19. 【填空题】参考解析:20. 【填空题】过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为____.参考解析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,即3x-y-z-4=0.21. 【解答题】参考解析:22. 【解答题】参考解析:23. 【解答题】求函数f(x)=x3-x2-x+2的单调区间.参考解析:24. 【解答题】求曲线y=x2在点(1,1)处的切线方程.参考解析:25. 【解答题】参考解析:26. 【解答题】参考解析:27. 【解答题】参考解析:28. 【解答题】证明:当x>0时,e x>1+x.参考解析:设f(x)=e x-1-x,则f'(x)=e x-1.当x>0时,f'(x)>0,故f(x)在(0,+∞)单调递增.又因为f(x)在x=0处连续,且f(0)=0,所以当x>0时,f(x)>0.因此当x>0时,e x-1-x>0,即e x>1+x.。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

2023专升本数学试卷

2023专升本数学试卷

2023专升本数学试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(√(x - 1))的定义域是()A. (1,+∞)B. [1,+∞)C. (-∞,1)D. (-∞,1]2. 已知f(x)=3x + 5,则f(2)=()A. 11.B. 1.C. -1.D. 10.3. 下列函数中为奇函数的是()A. y = x^2+1B. y = sin xC. y=ln xD. y = e^x4. 若lim_x→1frac{x^2-1}{x - 1}=()A. 2.C. 0.D. 不存在。

5. 函数y = sin 2x的导数是()A. y'=2cos 2xB. y'=cos 2xC. y' = 2sin 2xD. y'=sin 2x6. 设y = ∫_0^xt^2dt,则y'等于()A. x^2B. (1)/(3)x^3C. 0D. 17. 方程x^2+y^2=1表示的图形是()A. 抛物线。

B. 双曲线。

C. 椭圆。

D. 圆。

8. 已知向量→a=(1,2),→b=(2,-1),则→a·→b=()A. 0.C. 4.D. - 1.9. 若等差数列{a_n}的首项a_1=1,公差d = 2,则a_5=()A. 9.B. 10.C. 11.D. 12.10. 在ABC中,若a = 3,b = 4,C = 60^∘,则c^2=()A. 25 - 12√(3)B. 25 - 12C. 25D. 25+12√(3)二、填空题(每题3分,共15分)1. 函数y = log_2(x + 1)的反函数是y=_2^x-1。

2. ∫_-1^1x^3dx=_0。

3. 直线y = 2x+1的斜率是_2。

4. 二项式(a + b)^5展开式中a^3b^2的系数是_10。

5. 若sinα=(3)/(5),α∈(0,(π)/(2)),则cosα=_(4)/(5)。

三、计算题(每题10分,共40分)1. 计算lim_x→0(sin 3x)/(x)。

2024年专升本高数试卷

2024年专升本高数试卷

2024年专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 当x→0时,xsin(1)/(x)是()A. 无穷小量。

B. 无穷大量。

C. 有界变量,但不是无穷小量。

D. 无界变量,但不是无穷大量。

3. 设y = f(x)在点x = x_0处可导,则limlimits_Δ x→0frac{f(x_0-Δ x)-f(x_0)}{Δ x}=()A. f^′(x_0)B. -f^′(x_0)C. 0D. 不存在。

4. 设y = x^3ln x,则y^′=()A. 3x^2ln x + x^2B. 3x^2ln xC. x^2D. 3x^2ln x - x^25. 函数y = (1)/(3)x^3-x^2-3x + 1的单调递减区间是()A. (-1,3)B. (-∞,-1)∪(3,+∞)C. (-∞,-1)D. (3,+∞)6. ∫ xcos xdx=()A. xsin x + cos x + CB. xsin x-cos x + CC. -xsin x + cos x + CD. -xsin x-cos x + C7. 设f(x)在[a,b]上连续,则∫_a^bf(x)dx-∫_a^bf(t)dt=()A. 0B. 1C. f(b)-f(a)D. 无法确定。

8. 下列广义积分收敛的是()A. ∫_1^+∞(1)/(x)dxB. ∫_1^+∞(1)/(x^2)dxC. ∫_0^1(1)/(√(x))dxD. ∫_0^1(1)/(x^2)dx9. 由曲线y = x^2与y = √(x)所围成的图形的面积为()A. (1)/(3)B. (2)/(3)C. 1D. (1)/(6)10. 二阶线性齐次微分方程y^′′+p(x)y^′+q(x)y = 0的两个解y_1(x),y_2(x),且y_1(x)≠0,则frac{y_2(x)}{y_1(x)}为()A. 常数。

2022年河南省专升本高等数学试卷及答案

2022年河南省专升本高等数学试卷及答案

河南省一般高等学校选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一. 单选题(每题2分,合计50分)在每题旳备选答案中选出一种对旳答案,并将其代码写在题干后 面旳括号内.不选、错选或多选者,该题无分.1.集合}5,4,3{旳所有子集共有 ( ) A. 5 B. 6 C. 7 D. 8 解:子集个数D n⇒==8223。

2.函数x x x f -+-=3)1arcsin()(旳定义域为 ( ) A. ]3,0[ B. ]2,0[ C. ]3,2[ D. ]3,1[解: B x x x ⇒≤≤⇒⎩⎨⎧≥-≤-≤-2003111。

3. 当0→x 时,与x 不等价旳无穷小量是 ( ) A.x 2 B.x sin C.1-xe D.)1ln(x + 解:根据常用等价关系知,只有x 2与x 比较不是等价旳。

应选A 。

4.当0=x 是函数xx f 1arctan)(= 旳 ( ) A.持续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点解:21arctanlim 0π=+→x x ;C x x ⇒π-=-→21arctan lim 0。

5. 设)(x f 在1=x 处可导,且1)1(='f ,则hh f h f h )1()21(lim+--→旳值为( )A.-1B. -2C. -3D.-4解:C f h f h f hh f h f h h ⇒-='-=+'--'-=+--→→3)1(3)1()21(2[lim )1()21(lim00。

6.若函数)(x f 在区间),(b a 内有0)(,0)(<''>'x f x f ,则在区间),(b a 内,)(x f 图形 ( )A .单调递减且为凸旳B .单调递增且为凸旳C .单调递减且为凹旳D .单调递增且为凹旳 解:⇒>'0)(x f 单调增长;⇒<''0)(x f 凸旳。

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。

A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。

A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。

A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。

A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。

A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。

A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。

8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。

9. 已知抛物线y=x^24x+3的顶点坐标为______。

10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。

三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。

12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。

13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。

四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。

五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。

x<1B。

(-3,1)C。

{x|x<1} ∩ {-3≤x≤1}D。

-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。

0B。

3C。

1D。

不存在3.下列函数中,微分等于ln(2x)+c的是() A。

xlnx+cB。

y=ln(lnx)+cC。

3D。

14.d(1-cosx)=()∫(1-cosx)dxA。

1-cosxB。

-cosx+cC。

x-sinx+cD。

sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。

椭球面B。

圆锥面C。

椭圆抛物面D。

柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。

x>a+x。

x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。

专升本数学试题及答案

专升本数学试题及答案

专升本数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(-x) = -f(x)D. f(x) = sin(x)答案:B2. 微分方程y'' - y = 0的通解是()A. y = C1 * cos(x) + C2 * sin(x)B. y = C1 * e^x + C2 * e^(-x)C. y = C1 * x + C2D. y = C1 * x^2 + C2 * x答案:A3. 函数f(x) = x^2 - 4x + 4的最小值是()A. 0B. 1C. 4D. -1答案:B4. 曲线y = x^3 + 3x^2 - 9x + 1在点(1, -5)处的切线斜率是()A. 1B. -1C. 5D. -5答案:C二、填空题(每题5分,共20分)1. 极限lim(x→0) (sin(x)/x) = ______答案:12. 定积分∫(0,π) sin(x)dx = ______答案:23. 函数y = ln(x)的导数dy/dx = ______答案:1/x4. 级数∑(1/n^2)(n从1到∞)是______答案:发散三、解答题(每题15分,共30分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6在区间[1,3]上的最大值和最小值。

答案:首先求导数f'(x) = 3x^2 - 12x + 11。

令f'(x) = 0,解得x = 1 或 x = 11/3。

在区间[1,3]上,f'(x) > 0时,x ∈ (11/3, 3);f'(x) < 0时,x ∈ [1, 11/3)。

因此,f(x)在x = 1处取得最小值f(1) = 0,在x = 11/3处取得最大值f(11/3) = 4/27。

2. 求由曲线y = x^2与直线y = 4x - 3所围成的面积。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本试题及答案高数

专升本试题及答案高数

专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^2-2x+3在区间[0,3]上的最大值是()。

A. 2B. 3C. 4D. 5答案:C2. 设函数f(x)=x^3-3x^2+2x+1,求f'(x)的值。

A. 3x^2-6x+2B. x^2-6x+1C. 3x^2-9x+2D. x^3-9x^2+2答案:C3. 曲线y=x^2与直线x=2所围成的图形的面积是()。

A. 2B. 4C. 8D. 16答案:C4. 已知等差数列{an}的前n项和为S_n=n^2,求a_1的值。

A. 0B. 1C. 2D. 3答案:A5. 极限lim (n→∞) (1+1/n)^n 的值是()。

A. eB. 1C. 2D. 3答案:A6. 函数y=sin(x)的周期是()。

A. πB. 2πC. π/2D. 4π答案:B7. 微分方程dy/dx + y = x的通解是()。

A. y = e^x - x/eB. y = e^x + xC. y = e^(-x) - x/eD. y =e^(-x) + x答案:D8. 曲线y=x^3-6x^2+11x-6在点(1,4)处的切线斜率是()。

A. -2B. 0C. 2D. 4答案:C9. 函数f(x)=x^3-3x^2+2x+1在x=1处的导数值是()。

A. -2B. 0C. 2D. 4答案:A10. 已知函数f(x)=x^2+2x+1,求f''(x)的值。

A. 2x+2B. 2x+4C. 4x+2D. 4x+4答案:B二、填空题(每题2分,共10分)1. 函数f(x)=x^2+1在x=-1处的导数值是____。

答案:22. 函数f(x)=ln(x)的原函数是____。

答案:xln(x)-x+C3. 曲线y=x^2与直线y=4x-5平行的切点坐标是____。

答案:(5,25)4. 函数y=x^3-6x^2+11x-6的极小值点是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题: 本大题共5小题,每小题4分,共 20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数1
x ()e f x =,则x=0是函数f(x)的( ).
(A )可去间断点 (B )连续点 (C )跳跃间断点 (D )第二类间断点
2.
设函数f(x)在[a,b]上连续,则下列说法正确的是
(A )b
a ()()()f x dx f
b a ζζ∈=-⎰必存在(a,b ),使得 (B )'()()f b a ζζ∈
-必存在(a,b ),使得f(b)-f(a)= (C )()0f ζξ∈
=必存在(a,b ),使得 (D )'()0f ζζ∈
=必存在(a,b ),使得 3 下列等式中,正确的是
(A )'()()f x dx f x =⎰ (B )()()df x f x =⎰(C )()()d f x dx f x dx
=⎰ (D )()()d f x dx f x =⎰ 4. 下列广义积分发散的是 (A )+
20
11+dx x ∞⎰ (B )10⎰ (C )+0ln x dx x ∞⎰ (D )+0x e dx ∞-⎰ 5. y -32sin ,x y y e x '''+=微分方程则其特解形式为
(A )sin x ae x (B )(cos sin )x xe a x b x +
(C )sin x xae x
(D )(cos sin )x e a x b x + 非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二.填空题: 本大题共10小题,每小题 4分,共40分。

6.()0,1),(2)___________________
x f x f 已知函数的定义域为(则函数的定义域为 7. 10
lim +kx 2,k=___________________x x →=已知(1)则 8. 20(3)(3)f (x)ln(1),lim _________________________.x f f h x h →--=+=若则 9. 0()0,|________________________y x y y x xy e dy ==+-==设函数由方程e 则
10.
5250________x x +-=方程的正根个数为 11. 1x
y ___________y x ==已知函数,求
12. -sin cos _____________x xdx ππ=⎰定积分 13. 20()()___________x d f x tf t dt dx
⎰设函数连续,则 14.. 123a
1231=(),()(),[()()](),2_______
b
S f x dx S f b b a S f a f b b a S S S =-=+-⎰设在区间[a,b]上f(x)>0,f'(x)<0,f''(x)>0,
令则,,的大小顺序
15.n n 1
a (1)x 3,=_____n x R ∞=-=-∑幂级数在条件收敛,则该级数的收敛半径 三、计算题:本题共有8小题,其中16-19 小题每小题7分,20-23 小题每小题8分,共 60分。

计算题必须写出必要的计算过程, 只写答案的不给分。

16.
30ln(1)lim sin x x x x →+-求极限 17. . 2222x 1-t dy d ,dx y y dx t t
⎧=⎪⎨=+⎪⎩已知求, 18. arcsin xdx ⎰
求不定积分 19. 2311,0(),(2),0
x x x f x f x dx e x ⎧+≤⎪=-⎨>⎪⎩⎰设函数求定积分 20. 2,1(),()1,1x x f x f x x ax b x ⎧≤==⎨+>⎩设函数为了使函数在处连续且可导,
a,b 应取什么值。

21. 1n 1n n X ∞-=∑求幂级数的收敛区间及函数
22. 12321,123:011
x y x x y z L -++==--==求过点(1,2,1)且与两直线L :平行的平面方程 23.
22
()x f x -=讨论函数的单调性、极限值、凹凸性、拐点、渐近线。

四、综合题: 本大题共3小题, 每小题10分, 共30分。

24.. 2122y 2,2=0y 2,0D x x a x y D x x a y ======设是由抛物线和直线及所围成的平面区域;是由抛物线和直线所围成的平面区域,其中0<a<2. 25.
已知某曲线经过点(1,1),他的切线在纵轴上的截距等于切点的横坐标,求它的方程。

26. ()[01](1)0.f '()()0f x f f ξξξξ=∈+=设函数在,上可导,且
证明:存在(0,1),使
感恩和爱是亲姐妹。

有感恩的地方就有爱,有爱的地方就有感恩。

一方在哪里,另一方迟早会出现。

你做一切都是为自己做,为存在而感恩。

“人要经历一个不幸的抑郁症的或自我崩溃阶段。

在本质上,这是一个昏暗的收缩点。

每一个文化创造者都要经历这个转折点,他要通过这一个关卡,才能到达安全的境地,从而相信自己,确信一个更内在、
更高贵的生活。


——黑格尔。

相关文档
最新文档