拉格朗日插值运算
拉格朗日插值法解题步骤
拉格朗日插值法解题步骤:
拉格朗日插值法是一种数学方法,用于通过已知的离散数据点来构造一个多项式,这个多项式可以用来估计或逼近其他未知的数据点。
以下是拉格朗日插值法的解题步骤:
1.确定已知数据点:首先,你需要有一组已知的数据点。
这些数据点是你用来进行插值的已知信息。
2.构造拉格朗日多项式:对于每一个数据点 (xi, yi),构造一个拉格朗日基函数。
3. 计算拉格朗日多项式的值:将每个已知数据点的横坐标xi 代入拉格朗日多项式L(x),得到对应的yi 值。
这样,你就可以得到一个新的数据点集,这些点的坐标是(xi, L(xi))。
4. 使用插值多项式进行预测:对于你想要预测的x 值,代入拉格朗日多项式L(x),即可得到对应的y 值。
这就是拉格朗日插值法的基本步骤。
需要注意的是,这种方法只适用于已知的数据点是离散的情况。
如果数据点是连续变化的,你可能需要使用其他方法,如样条插值等。
插值算法之:拉格朗日插值
插值算法之:拉格朗日插值插值算法之:拉格朗日插值记一下拉格朗日插值公式的推导和一些要点【这里说的都是二维插值,多维上的以此类推】1、插值问题:在做实验的过程中,往往得到一堆离散的数据,现在想用数学公式模拟这堆离散数据。
怎么办,数学家们提出了插值问题。
插值问题的提法是这样的给定一堆数据点(x0, y0), (x1, y1), (x2, y2)...(xn, yn),要求一个函数 y = f(x) ,要求该函数经过上面所有的数据点。
2、多项式插值及其唯一性:在所有的函数中,多项式函数是最简单的函数,所以只要是人就会想到用多项式函数来作为插值函数,好,以上给定了n+1个点,现在要求一个n次多项式y = an * x^n + ... a1 * x + a0, 使它们经过这n+1个点;通过范德蒙行列式和克莱姆法则,可以判定如果这n+1个点的x值各不相同,那么这个多项式是唯一的。
结果唯一,但是用直接法很不好求。
现在用别的办法来求之。
这就是:拉格朗日多项式3、拉格朗日多项式的构造,以四个点为例子进行说明由于函数经过4个点(x0, y0),(x1, y1),(x2, y2),(x3, y3),所以可以设函数为:f(x) = b0(x) * y0 + b1(x) * y1 + b2(x) * y2 + b3(x) * y3注意:b0(x),...,b3(x)都是x的3次多项式,称之为拉格朗日插值基函数。
由于要求当x为x0时候,f(x) = y0, 所以最简单的做法就是让b0(x0) = 1, b1(x0) = b2(x0) = b3(x0) = 0;同理可知,在x1,x2,x3点上,插值基函数的值构造如下:b0(x) b1(x) b2(x) b3(x)x=x0 1 0 0 0x=x1 0 1 0 0x=x2 0 0 1 0x=x3 0 0 0 1问题1、根据这些值来确定b0(x)的表达式,由于b0(x1) = b0(x2) = b0(x3) = 0,所以x1, x2, x3是b0(x)的零点,由于b0(x)是三次多项式,所以设b0(x) = c0 * (x-x1) * (x-x2) * (x-x3)由于b0(x0) = 1,所以 1 = c0 * (x0-x1) * (x0-x2) * (x0-x3) 得到c0 = 1/[(x0-x1)(x0-x2)(x0-x3)]所以:b0(x) = (x-x1)*(x-x2)*(x-x3)/[(x0-x1)*(x0-x2)*(x0-x3)]同理可求b1(x)、b2(x),略问题2、根据上面的表格说明插值基函数的一个性质:无论x取和值,它们的和都为1.【这个叫做调和函数】以3次为例子说明:将上述表格的每一行分别相加,得到的事函数:g(x) = b0(x) + b1(x) + b2(x) + b3(x)在x0, x1, x2, x3的值,都为1.b0(x) + b1(x) + b2(x) + b3(x)x=x0 1+0+0+0 = 1x=x1 0+1+0+0 = 1x=x2 0+0+1+0 = 1x=x3 0+0+0+1 = 1所以:方程g(x) - 1 = 0,应该有4个根x0, x1, x2, x3;但是,由于b0(x)、b1(x)、b2(x)、b3(x)都是3次多项式,所以,g(x)最多也是3次多项式,至多只有3个根,所以等式:g(x) = 1 应该是恒等式。
计算方法拉格朗日插值
计算方法拉格朗日插值拉格朗日插值是一种用于在给定数据点间进行插值的方法,它基于拉格朗日多项式的性质来进行计算。
拉格朗日插值可以用于任何数量的数据点,无论是线性插值还是高阶插值。
拉格朗日插值的基本思想是,使用多个插值点的拉格朗日多项式来逼近给定数据点。
具体而言,对于给定的插值点(x0, y0),(x1, y1),...,(xn, yn),我们需要找到一个多项式P(x)来满足以下条件:P(xi) = yi,其中 i = 0, 1, ..., n。
假设我们要计算的插值点为x,那么根据拉格朗日插值的公式,多项式P(x)可以写为:P(x) = Σyi * Li(x),其中 i = 0, 1, ..., n。
在上述公式中,Li(x)是拉格朗日基函数,可以用以下公式表示:Li(x) = Π(x - xj) / Π(xi - xj),其中j ≠ i,i, j = 0,1, ..., n。
现在我们可以根据上述公式进行计算,以下是拉格朗日插值的详细步骤:1. 输入数据点的坐标 (x0, y0),(x1, y1),...,(xn, yn) 和待插值点的坐标 x。
2. 对于每个插值点(xi, yi),计算拉格朗日基函数Li(x)。
3. 对于每个插值点(xi, yi),计算插值多项式中对应的项 yi *Li(x)。
4.将所有项相加,得到插值多项式P(x)。
5.根据插值多项式P(x),计算插值点x的函数值,即P(x)=y。
拉格朗日插值的优点是简单易懂,计算过程相对简单,但它也存在一些缺点。
拉格朗日插值的计算复杂度为O(n^2),这意味着当数据点的数量较多时,计算会变得非常耗时。
此外,拉格朗日插值在边界点附近的插值结果可能会出现较大的误差。
为了减小计算量和提高插值的准确性,还有其他更高效的插值方法,如牛顿插值和样条插值。
这些方法在实际应用中经常被使用,具有更好的性能和更准确的插值结果。
【学习笔记】拉格朗日插值
【学习笔记】拉格朗⽇插值学习多项式的第⼀步。
参考资料:1.拉格朗⽇插值法的简介问题:解法1:⾼斯消元显然deg⩾n的多项式有⽆穷个,因为根据⾼斯消元,⼀定会出现⾃由元。
直接把这n个点列出⽅程组,⽤⾼斯消元求解。
求出多项式后再求出f(k)即可。
时间复杂度O(n3).解法2:拉格朗⽇插值法给出⼀个关于点(x i,y i)的基函数:g(k)=1⩽j⩽n∏j≠ik−x jx i−x j容易发现:∀j≠i,g(x j)=0.因为累乘中总有k=x j,使得k−x j=x j−x j=0,g(x j)=0.对于j=i,g(x j)=1.因为累乘中每⼀项均为x i−x jx i−x j=1,g(xj)=1.于是我们的多项式就可以表⽰为:f(k)=n∑i=1y i×1⩽j⩽n∏j≠ik−x jx i−x j这样∀(x i,y i),f(x i)=y i,也可以据此求出f(k).⼤概因为要求逆元,所以时间复杂度为O(n2+n log n)=O(n2). code:#include <bits/stdc++.h>#define ll long longusing namespace std;int n;const ll mod = 998244353;ll x[2011], y[2011], k, ans;ll ksm(ll s1, ll s2) {if(!s2) return 1;if(s2 & 1) return s1 * ksm(s1, s2 - 1) % mod;ll ret = ksm(s1, s2 / 2);return ret * ret % mod;}int main() {scanf("%d%lld", &n, &k);for(int i = 1; i <= n; i++) scanf("%lld%lld", &x[i], &y[i]);for(int i = 1; i <= n; i++) {ll sum = 1, mul = 1;for(int j = 1; j <= n; j++) {if(i == j) continue;sum *= (k - x[j]); sum %= mod; sum += mod; sum %= mod;mul *= (x[i] - x[j]); mul %= mod; mul += mod; mul %= mod;}sum *= ksm(mul, mod-2); sum %= mod;ans += (sum * y[i]) % mod; ans %= mod;}printf("%lld\n", ans);return 0;}2.拉格朗⽇插值法的拓展问题:同上,加⼊x i的值连续的限制。
拉格朗日(Lagrange)插值
Rn ( x ) = K ( Rn(x) 至少有 n+1 个根 ( x ) 充分光滑,x( x 0 )(= ( x)1 ) = 0 ,则 充分光滑, ) Π x xi Rolle’s Theorem: 若 i =0 ) 存在 ξ ∈ (x 0≠, x 1 )(i使得 ′(ξ), = 0 。 ( t ) = R ( t ) K ( x ) n ( t x ) …, n 任意固定 x xi = 0, 求导 考察 注意这里是对 t Π n i = ξ 0 ∈ ( x0 , x1 ), ξ1 ∈i ( 0 1 , x2 ) x 推广: 推广:若 ( x0 ) = ( x1 ) = ( x2 ) = 0 1) (x)有 n+2 个不同的根ξx0) …0xn x ξ ∈ (ξ , ( n)+使得 = ′′(,ξ )ξ= 0 ( a , b ) 有 使得 ′(ξ ) = ′( = (ξ x ) 0 x ∈ 0 ξ1 0 1
外插 的实际误差 ≈ 0.01001 利用 x1 = π , x2 = π 4 3 内插 的实际误差 ≈ 0.00596
~ 0.00538 < R1 5π < 0.00660 sin 50° ≈ 0.76008, ° 18
n=2
( x π )( x π ) 1 ( x π )( x π ) 1 ( x π )( x π ) 4 6 6 L2 ( x ) = π π π π3 × + π π π π3 × + π π π π4 × 3 ( 6 4 )( 6 3 ) 2 ( 4 6 )( 4 3 ) 2 ( 3 6 )( 3 4 ) 2
n 求 n 次多项式 Pn ( x ) = a0 + a1 x + L + a n x 使得
拉格朗日插值计算
拉格朗日插值计算
拉格朗日插值法是一种用于给定一些点的函数值的方法,通过该
方法可以构建出一个多项式,从而得到一个对于任意自变量值都有良
好表现的函数。
下面是拉格朗日插值计算的步骤:
1. 确定给定数据点中的n个点,其中n为奇数。
2. 根据给定数据点中的自变量x值,构造拉格朗日基函数,并
定义L_i(x)为第i个点在x处的基函数。
3. 定义拉格朗日插值多项式为L(x),它是n个基函数的线性组合,并通过将每个基函数的因子乘以相应的函数值来计算每个基函数。
4. 计算插值多项式L(x)。
具体来说,L(x)的表达式如下:
L(x)=∑(i=0~n-1){y_i×L_i(x)}/∑(i=0~n-
1){L_i(x)×∏(j=0~n-1, j≠i){(x-x_j)/(x_i-x_j)}}
其中x_i为给定数据点中自变量的第i个值,y_i为给定数据点
中因变量的第i个值。
通过以上步骤,可以得到任意自变量值处的插值函数的值,从而
可以用拉格朗日插值法求解各种问题。
拉格朗日(Lagrange)插值
p2(7) =
(1–4)(1–9)
*1 + (4–1)(4–9)
*2
(7–1)(7–4)
+ (9–1)(9–4) * 3
= 2.7
例5.4 已知函数y=f(x)在节点上满足
x x0 x1 x2
y y0 y1 y2
求二次多项式 p(x) = a0 + a1x + a2x2
使之满足 p(xi) = yi
li (x的) 插值
lk (x0 ) 0,,lk (xk1) 0,lk (xk ) 1,lk (xk1 ) 0,,lk (xn ) 0
即
lk
(xi )
ki
1 0
(i k) (i k)
由条件 lk (xi ) 0 ( i k)知, x0 , x1,, xk1, xk1,, xn
都是n次 lk (x) 的零点,故可设
l0 (x)
再由另一条件 l0 (x0
c(x
) 1
x1 )( x x2
确定系数
)
c
(x0
1 x1)( x0
x2
)
从而导出
l0 (x)
(x (x0
x1)( x x2 ) x1 )( x0 x2 )
类似地可以构造出满足条件: l1(x1) 1, l1(x0 ) 0,
的插值多项式
l1 ( x)
lk (x)
j0 jk
n
x xj
n
(xk x j )
j0 xk x j
jk
j0 jk
称 lk (x) 为关于基点 xi 的n次插值基函数(i=0,1,…,n)
以n+1个n次基本插值多项式 lk (x)(k 0,1,, n) 为基础,就能直接写出满足插值条件
《拉格朗日插值法》课件
根据已知的插值点和插值函数的性质 ,确定多项式的阶数。
求解插值多项式的系数
求系数
通过已知的插值点和构造的插值多项式,求解出多项式的系数。
验证解的正确性
通过已知的插值点和求解出的系数,验证解的正确性。
04
拉格朗日插值法的应用实例
在数值分析中的应用
数值积分
拉格朗日插值法可用于数值积分,通过插值多项式对被积函数进行近似,进而求得积分的近似值。
全局插值能力较弱
拉格朗日插值法主要适用于局部插值,对于全局插值问题可能不太 适用。
06
拉格朗日插值法的改进与发
展
改进方法
提高精度
通过增加插值基函数的数量, 可以更精确地逼近函数,从而
提高插值的精度。
处理异常值
引入稳健性估计方法,对异常 值进行识别和处理,以提高插 值的稳定性。
优化算法
改进算法以提高计算效率,减 少计算量,使得插值过程更加 快速和高效。
图像处理
在图像处理中,可以使用拉格朗日插值法对图像进行放大、缩小或旋转等变换,保持图 像的清晰度和连贯性。
三维模型重建
在三维模型重建中,可以使用拉格朗日插值法对点云数据进行插值,得到连续光滑的三 维模型表面。
05
拉格朗日插值法的优缺点
优点
01
02
03
简单易行
拉格朗日插值法是一种直 观且易于理解的方法,不 需要复杂的数学工具即可 实现。
工程
用于解决各种实际问题,如机 械振动、流体动力学和电路分 析等。
物理学
用于模拟和预测各种物理现象 ,如力学、电磁学和量子力学 等。
02
拉格朗日插值法的基本概念
拉格朗日插值法的定义
拉格朗日插值计算例子
拉格朗日插值计算例子
以下是 7 条关于拉格朗日插值计算例子的内容:
1. 嘿,你知道吗?拉格朗日插值计算就像是在数字世界里搭积木一样神奇!比如说,给定几个点(1,2),(3,4),(5,6),就能通过拉格朗日插值法神
奇地找到它们之间的关系呀!这多有意思啊!
2. 哇塞,想象一下,拉格朗日插值计算就好像是给数字编故事呢!像有这样一组点(2,3),(4,5),(6,7),用它就能巧妙地“拼凑”出中间那些未知的精彩,不是很令人惊叹吗?
3. 嘿呀,拉格朗日插值计算简直就是数学魔法呀!好比已知点(3,5),(4,7),(7,10),这不就能用这个魔法算出其他地方的数值了嘛,神奇不神奇?
4. 哎呀,拉格朗日插值计算不就是在数字迷宫里找到出路嘛!随便给几个点,像(5,8),(7,11),(9,14),就能通过它搞清楚它们之间的联系,这是多么酷
的事情啊!
5. 嘿,你想想,拉格朗日插值计算就跟解谜一样刺激!例如那几个点(2,4),(3,6),(5,10),用它来解开数字背后隐藏的规律,是不是超有趣?
6. 哇哦,拉格朗日插值计算不就像是在数字海洋里航行嘛!就拿这些点(4,9),(6,13),(8,17)来说,靠它就能顺利找到航行的方向啦,多棒啊!
7. 嘿,拉格朗日插值计算简直是一把打开数字宝藏的钥匙!好比给了几个点(3,7),(5,12),(7,17),它就能让我们发现宝藏中的秘密,难道不值得我们
去深入探索吗?
我的观点结论是:拉格朗日插值计算是一个非常神奇且有用的数学工具,能让我们从离散的数据中找到有趣的规律和关系,大家都应该好好去了解它呀!。
插值法(拉格朗日插值)
数解).:因为11.75更接近12,故应取11,12,13三点作二次
插值.先作插值基函数.
已知x0=11,y0=2.397 9,x1=12,y0=2.484 9 ,x2=13,y2=2.564 9
l0
(x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
(x
12)(x 2
13)
l1 ( x)
)
CN插i 次jn值i拉(x多格项x朗j )式日
li (xi ) 1
Ci
ji
( xi
1 xj)
j0
li ( x)
n ji
(x xj) (xi x j )
j0
n
Ln ( x) li ( x) yi i0
➢ 插值余项 /* Remainder */
用简单的插值函数L n(x)代替原复杂函数f(x),其 精度取决于截断误差,即插值余项.
(n 1)!
(
x
x0
)(
x
x1
)(
x
x2
)(
x
xn
)
其中 [a,b]
——拉格朗日余项定理
注: 通常不能确定 , 而是估计 f (n1)( x) Mn,1x(a,b)
将
M n1 (n 1)!
n
| x xi
i0
|
作为误差估计上限。
当 f(x) 为任一个次数 n 的多项式时, f (n1)( x) 0,
cos x
3 2
0.00044
R2
5
18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值
拉格朗日插值法1
拉格朗日插值法1拉格朗日抛物线插值法1、定义若多项式Ij (j=0,1,2...n )在n+1个节点X 0<X 1<...<X n 上 满足条件0, j i 31, j i (jO'1'"就称这n+1个n 次多项式l 0(x),l 1(x),....l n (x)为节点x 0,x 1,….x n 上的勺、n 次插值基函数)L (x X i 1)( X Xi 1)L (X X n )1 i ( X )、’ X i 1)L (X i X n )、’ ’X X j X i X j称之为拉格朗日多项式,都是n 次多项式 2、Matlab 文件 M 文件 Lagrage.m Fun cti on yi=lagrage(x,y,xi) n=len gth(x);X o )L (X iX i i )(X i(i 0,1丄,n)(X iS=0;10 +1112For k=1: nt=1; for(j=1: n)if j 〜二kt=t*(xi-yi)/x(k)-x(j); end end S=t*y(k)+s;end; yi=s; 3、例题 1)计算VH5(X X 1)(x X 2) L2(x)=(X 0 X 1)(X O X 2) y ° +(x x o )(x X 2) y 1(X 0 X 1)(x o X 2)(x x o )(x X 1)(X 0 X 1)(X O X 2)y 2(x 121)(x 144)21 ( 44)(x 100)(x 144)21 ( 23)(x 100)(x 144)44 2310 +1112〜10.7228在Matlab 窗口输入 >>x=[100 121 144]; y=[10 11 12]; y2=lagrage(x,y,115); 输出 y2=10.7228 2)计算sin 29解:一-—694X 6 4 3y0.50.707 0.866(x x 1)(xx 20201L(x)1 20.50 20.7071- (X 。
拉格朗日多项式插值
拉格朗日多项式插值法浅析摘要拉格朗日插值多项式是一种最常见的多项式插值法,也是一种最常用的逼近工具。
“学以致用 ”是每一门学科都致力追求的境界,数学自然也不例外。
下面,探讨拉格朗日插值法的基本原理、如何构造拉格朗日多项式、拉格朗日多项式的误差界,并用 MATLAB 程序来实现这一数学算法的自动化,为复杂的分析研究提供了一条数学算法的捷径。
【关键词】:拉格朗日多项式 算法实现 MATLAB在科学研究和实际的工程设计中,几乎所有的问题都可以用)(x f y =来表示其某种内在规律的数量关系。
但理想化的函数关系在实际工程应用中是很难寻找 的,对于那些没有明显解析式的函数关系表达式则只能通过实验观察的数据,利用多项式对某一函数的进行逼近,使得这个逼近函数能够反映)(x f 的特性,而且利用多项式就可以简便的计算相应的函数值。
例如我们不知道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满足某一多项式。
这样,利用已经测的数据,应用待定系数法便可以求得一个多项式函数f (x )。
应用此函数就可以计算或者说预测其他日期的气温值。
一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越 准确。
当然,构造组合多项式方法比较多,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的分段差分和系数表等等,这里只对拉格朗日多项式插值法进行深入探讨。
一、拉格朗日多项式插值算法基本原理函数)(x f y =在区间[a,b]上有定义,在是[ a,b]上取定的 N + 1个互异节点, 且在这些点处的函数值)(0x f , )(1x f ,…,)(n x f 为已知, 即 yi =f (xi ) , (N i ...1,0=),若存在一个和)(x f 近似的函数)(x P N ,满足)()(i i N x f x P = (N i ...1,0=) (1)则称 φ(x) 为 f (x) 的一个插值函数, 点i x 为插值节点,(1)称为插值条件, 区间[a,b]称为插值区间, 而误差函数)()(x P x f E N N -=称为插值余项。
拉格朗日(Lagrange)插值
( n 1) !
i0
( ( 1 0 (x Rolle’s f ( x ) Ln (若)至少个有 n+1根 ( x 0 ) Rnx)x )K ( x),则 xi ) R n ( x ) Theorem: x ( x ) 充分光滑, i 0 n 存在 ( x 0 , x 1 ) 使得 ( ) 0 。 任意固定 x xi (i = 0, 求导 考察 ( t ) Rn ( t ) K ( x ) ( t x i ) 注意这里是对 t …, n), 0 ( x 0 , x 1 ), 1 i ( 0 1 , x 2 ) x 推广:若 ( x 0 ) ( x 1 ) ( x 2 ) 0 (x)有 n+2 个不同的根x0) …0xn x ( , ( n) 1 ) ( x ) 0(, ) ( a , b ) x 0 使得 ( 0 ) ( 1 0 1 使得
于是 : L 2 ( x )
再利用 l 0 ( x 0 ) 1 C
1 ( x 0 x 1 )( x 0 x 2 )
( x x0 )( x x1 ) l2 ( x ) ( x2 x0 )( x2 x1 )
l ( x) y
i i0
2
i
l 0 ( x ) y 0 l1 ( x ) y1 l 2 ( x ) y 2
i0 n
[证明]上式的左端为插值基函数的线性组合,其组合 系数均为1。显然,函数f(x) 1在这n +1个节点取值 为1,即yi=f (xi) 1 (i=0,1,…,n), 它的n次Lagrange插值多项式为:
Ln ( x ) l i ( x ) y i l i ( x )
拉格朗日插值法
01
收敛性分析是研究拉格朗日插值法的一个重要方面,它涉及到该方法在何种条 件下能够准确地逼近未知函数。
02
在理论上,如果已知数据点足够多且分布均匀,那么拉格朗日插值多项式就能 够很好地逼近未知函数。
03
然而,在实际应用中,由于计算复杂度和数据可获取性的限制,我们通常只能 使用有限数量的数据点进行插值。因此,收敛性分析对于确定拉格朗日插值法 的精度和适用范围具有重要意义。
拉格朗日插值法的几何意义
从几何意义上讲,拉格朗日插值 法是通过在已知数据点上放置一 个多项式曲线,使得该曲线尽可
能接近原始数据点。
这意味着,拉格朗日插值多项式 在每个已知数据点上取值为零, 而在其他点上取值与原函数相近。
这种几何意义有助于我们更好地 理解拉格朗日插值法的原理和应
用。
拉格朗日插值法的收敛性分析
在实际应用方面,可以考虑如何 优化拉格朗日插值法的计算效率 和存储需求,以适应大规模数据 处理的需要。此外,可以探索拉 格朗日插值法在其他领域的应用, 例如金融、生物信息学和环境科 学等。
另外,随着人工智能和机器学习 技术的不断发展,可以考虑如何 利用这些技术来改进拉格朗日插 值法,例如通过神经网络或其他 机器学习方法来自动选择合适的 插值模型和参数。这将有助于提 高插值精度和泛化能力,并减少 人工干预和主观判断的误差。
03
拉格朗日插值法还有一些局限性,例如对于非线性数据的 插值效果较差,且容易受到数据异常值的影响。为了解决 这些问题,研究者们提出了许多改进的方法,如样条插值 、克里格插值和局部加权散点平滑插值等。
对未来研究的建议和展望
未来研究可以进一步探讨拉格朗 日插值法的理论性质,例如其收 敛性和稳定性等。此外,可以研 究如何将拉格朗日插值法与其他 数学方法或机器学习方法相结合, 以提高其预测精度和泛化能力。
拉格朗日插值法
Lagrange polynomial 维基百科,自由的百科全书
定义
对某个多项式函数,已知有给定的 个取值点:
其中 对应着自变量的位置,而 对应着函数在这个位置(每一个y值都不等于0)的取 值。 假设任意两个不同的 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗 日插值多项式为:
其中每个
几何性质
拉格朗日插值法中用到的拉格朗日基本多项式 (由某一组 确定)可以看做是由次数不超过 n 的多项式所组成的线性空 间: 的一组基底。首先,如果存在一组系数: 使得, , 那么,一方面多项式P是满足 的拉格 朗日插值多项式,另一方面P是零多项式,所以取值永远是0。所以 。 这证明了 是线性无关的。同时它一共包含 个多项式,恰好等于 的维数。所以 构成了 的一组基底。 拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是 n 次多项 式)。
重心拉格朗日插值法
重心拉格朗日插值法是拉格朗日插值法的一种改进。在拉格朗日插值法中,运用 多项式 可以将拉格朗日基本多项式重新写为:
定义重心权
上面的表达式可以简化为:
于是拉格朗日插值多项式变为:
即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式。它的优点 是当插值点的个数增加一个时,将每个 都除以 ,就可以得到新的重 心权 ,计算复杂度为 ,比重新计算每个基本多项式所需要的复杂度 降了一个量级。 将以上的拉格朗日插值多项式用来对函数 插值,可以得到:
优点与缺点
拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中, 当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整 个公式都会变化,非常繁琐。这时可以用重心拉格朗日插值法或牛顿插值法来代 替。此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因 此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在 附近却会和“实际上”的值之间有很大的偏差(如右下图)。这类现象也被称为龙 格现象,解决的办法是分段用较低次数的插值多项式。
拉格朗日插值法
5.2 拉格朗日(Lagrange)插值可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,例如,多项式是无穷光滑的,容易计算它的导数和积分,故常选用代数多项式作为插值函数。
5.2.1 线性插值问题5.1给定两个插值点其中,怎样做通过这两点的一次插值函数?过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值。
如图5.1所示。
图5.1 线性插值函数在初等数学中,可用两点式、点斜式或截距式构造通过两点的一条直线。
下面先用待定系数法构造插值直线。
设直线方程为,将分别代入直线方程得:当时,因,所以方程组有解,而且解是唯一的。
这也表明,平面上两个点,有且仅有一条直线通过。
用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和惟一性,但要解一个方程组才能得到插值函数的系数,因工作量较大和不便向高阶推广,故这种构造方法通常不宜采用。
当时,若用两点式表示这条直线,则有:(5.1)这种形式称为拉格朗日插值多项式。
,,称为插值基函数,计算,的值,易见(5.2)在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是平等的。
拉格朗日插值多项式型式免除了解方程组的计算,易于向高次插值多项式型式推广。
线性插值误差定理5.1记为以为插值点的插值函数,。
这里,设一阶连续可导,在上存在,则对任意给定的,至少存在一点,使(5.3)证明令,因是的根,所以可设对任何一个固定的点,引进辅助函数:则。
由定义可得,这样至少有3个零点,不失一般性,假定,分别在和上应用洛尔定理,可知在每个区间至少存在一个零点,不妨记为和,即和,对在上应用洛尔定理,得到在上至少有一个零点,。
现在对求二次导数,其中的线性函数),故有代入,得所以即5.2.2 二次插值问题5.2给定三个插值点,,其中互不相等,怎样构造函数的二次的(抛物线)插值多项式?平面上的三个点能确定一条次曲线,如图5.2所示。
拉格朗日插值运算
用MATLAB 实现拉格朗日插值实验题目:高次插值的龙格现象。
目的:观察高次插值的震荡现象-龙格现象。
内容:22511)(x x f += ]1,1[-∈x 。
做5次,10次,20次的拉格朗日插值多项式,)(5X L ,)(10X L ,)(20X L 。
将)(x f ,)(5X L ,)(10X L ,)(20X L ,的图像画在同一坐标下,观察高次插值的震荡现象。
1. 实验步骤及运行结果(1)插值节点的计算,将程序保存在f.m 文件中,程序如下:function y=f(x)y=1./(25.*x.^2+1)运行f.m 文件,执行命令:x=[-1:0.1:1] f(x) 输出结果为:(2)定义拉格朗日插值函数:将其保存在Lagrange.m 文件中,具体程序如下:function f=Lagrange(x,fx,inx) n=length(x);m=length(inx); for i=1:m; z=inx(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=kp=p*(z-x(j))/(x(k)-x(j)); end ends=p*fx(k)+s; endf(i)=s; endx0=-1:0.001:1;y0=(1+25.*x0.^2).^-1plot(x0,y0,'r',x,fx,'O',inx,f)1)运行程序执行命令: X=[-1:0.4:1]fx=[0.0385 0.1000 0.5000 0.5000 0.1000 0.0385] xi=[-1:0.001:1] Lagrange(x,fx,xi)得出)(x f ,)(5X L 在同一坐标系的图像:2)运行程序执行命令:X=[-1:0.2:1]fx=[0.0385 0.0588 0.1000 0.2000 0.5000 1 0.5000 0.2000 0.1000 0.0588 0.0385]xi=[-1:0.001:1] Lagrange(x,fx,xi)得出)(x f ,)(10X L 在同一坐标系的图像:3)运行程序执行命令:X=[-1:0.1:1]fx=[0.0385 0.0471 0.0588 0.0755 0.1000 0.1379 0.2000 0.3077 0.5000 0.8000 1 0.8000 0.5000 0.3077 0.2000 0.1379 0.1000 0.0755 0.0588 0.0471 0.0385] xi=[-1:0.001:1] Lagrange(x,fx,xi)得出)(x f ,)(20X L 在同一坐标系的图像:。
拉格朗日插值法(图文详解)
拉格朗⽇插值法(图⽂详解)拉格朗⽇插值⼊门由⼩学知识可知,n个点(x_i,y_i)可以唯⼀地确定⼀个多项式现在,给定n个点,请你确定这个多项式,并将k代⼊求值求出的值对998244353取模Input第⼀⾏两个正整数n,k,含义如题接下来n⾏,每⾏两个正整数x_i,y_i含义如题。
n≤2000,xi,yi,k≤998244353Output⼀个整数表⽰答案Sample Input3 1001 42 93 16Sample Output10201//样例⼀中的三个点确定的多项式是f(x)=x^2+2x+1,将100代⼊求值得到10201int re=1;while(y){if(y&1) re=(x*re)%mod;x=(x*x)%mod;y>>=1;}return re;}int read(){int x=0,f=1;char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}return x*f;}signed main(){n=read(),k=read();for(int i=1;i<=n;i++)a[i]=read(),b[i]=read();for(int i=1;i<=n;i++){int tmp=1;for(int j=1;j<=n;j++)if(i!=j)tmp=tmp*(a[i]+mod-a[j])%mod; //分母tmp=quickpow(tmp,mod-2);for(int j=1;j<=n;j++)if(i!=j) tmp=tmp*(k+mod-a[j])%mod; //分⼦tmp=tmp*b[i]%mod;ans=(ans+tmp)%mod;}printf("%lld\n",ans);return 0;}#include<bits/stdc++.h>using namespace std;const int mod=998244353;int x[2010],y[2010],a=1,b=0;int powmod(int a,int b){int ans=1;while(b){if(b&1)ans=1ll*ans*a%mod;a=1ll*a*a%mod;b>>=1;}return ans;}int main(){int n,k;scanf("%d%d",&n,&k);for(int i=1;i<=n;i++)scanf("%d%d",x+i,y+i);for(int i=1;i<=n;i++){int a1=1,b1=1;//a1代表分母,b1代表分⼦b1=1ll*b1*y[i]%mod;for(int j=1;j<=n;j++)if(j!=i){b1=1ll*b1*(k-x[j])%mod;a1=1ll*a1*(x[i]-x[j])%mod;}b=(1ll*a1*b+1ll*a*b1)%mod;a=1ll*a*a1%mod;//b/a+b1/a1=(b*a1+a*b1)/(a*a1)}a=(a+mod)%mod,b=(b+mod)%mod;printf("%lld\n",1ll*b*powmod(a,mod-2)%mod);//因为带了除法,所以分母会⽐较⼤,于是在前⾯边乘边取模,最后取逆元return 0;}参考资料。
拉格朗日插值讲解
x=[-2 -1 0 1 3]’; y=[-56 -16 -2 -2 4]’; f=y
-1 -16 40 0 -2 14 -13 1 -2 0 -7
n=length(x);
34 3 1
for k=2:n
for j=n:-1:k
f(j)=(f(j)-f(j-1))/(x(j)-x(j+1-k));
end
依此类推,F ( n+ 1 )(t) 在区间 ( a, b ) 内至少有 一个零点。故存在 ∈ (a, b), 使F(n+1)( )=0
F ( n 1 ) ( t ) f ( n 1 ) ( t ) L ( n n 1 ) ( t ) C n ( n 1 1 ) ( t )
f(n1)()C (n1) !0
C f (n1) ( )
(n 1)!
f(x)Ln(x)f(n (n 1)1())!n1(x)
5/18
例5.3 设 y = f(x) 在区间 [a, b]上有连续,且 f (x) 在 (a, b)内具有2阶导数,已知f (x)在区间端点处 的值.如果当x∈ (a, b)时,有|f ’’(x)|≤M. 试证明
f(x) – Ln(x)= C(x) n+1(x)
取定 x∈(a, b), 设 t∈( a, b ). 构造函数
F (t) f(t) L n (t) C n 1 (t)
显然, F(x) = 0, F(xj) = 0, ( j = 0,1,···,n )
4/18
F(t) 有(n+2)个相异零点. 根据Rolle定理, F’(t) 在区间(a, b)内至少有 (n +1)个相异零点.
一阶均差 f[xj,xj1]f(xxjj 11) xfj(xj) ( j = 0,1,…,n-1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目:高次插值的龙格现象。 目的:观察高次插值的震荡现象-龙格现象。 内容: 。做5次,10次,20次的拉格朗日插值多项式,,,。Байду номын сангаас将,,,,的图像画在同一坐标下,观察高次插值的震荡现象。
1. 实验步骤及运行结果 (1)插值节点的计算,将程序保存在f.m文件中,程序如下:
X=[-1:0.1:1] fx=[0.0385 0.0471 0.0588 0.0755 0.1000 0.1379 0.2000 0.3077 0.5000 0.8000 1 0.8000 0.5000 0.3077 0.2000 0.1379 0.1000 0.0755 0.0588 0.0471 0.0385] xi=[-1:0.001:1] Lagrange(x,fx,xi) 得出,在同一坐标系的图像:
function y=f(x) y=1./(25.*x.^2+1) 运行f.m文件,执行命令:x=[-1:0.1:1] f(x) 输出结果为: -1.0 -0.3 0.4 -0.9 -0.2 0.5 -0.8 -0.1 0.6 -0.7 0 0.7 -0.6 0.1 0.8 -0.5 0.2 0.9 -0.4 0.3 1.0
0.0385 0.0471 0.0588 0.0755 0.1000 0.1379 0.2000 0.3077 0.5000 0.8000 1.0000 0.8000 0.5000 0.3077 0.2000 0.1379 0.1000 0.0755 0.0588 0.0471 0.0385
(2)定义拉格朗日插值函数:将其保存在Lagrange.m 文件 中,具体程序如下:
2)运行程序执行命令:
X=[-1:0.2:1] fx=[0.0385 0.0588 0.1000 0.2000 0.5000 1 0.5000 0.2000 0.1000 0.0588 0.0385] xi=[-1:0.001:1]
Lagrange(x,fx,xi) 得出,在同一坐标系的图像:
3)运行程序执行命令:
function f=Lagrange(x,fx,inx) n=length(x);m=length(inx); for i=1:m; z=inx(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k
p=p*(z-x(j))/(x(k)-x(j)); end end s=p*fx(k)+s; end f(i)=s; end x0=-1:0.001:1; y0=(1+25.*x0.^2).^-1 plot(x0,y0,'r',x,fx,'O',inx,f) 1)运行程序执行命令: X=[-1:0.4:1] fx=[0.0385 0.1000 0.5000 0.5000 0.1000 0.0385] xi=[-1:0.001:1] Lagrange(x,fx,xi) 得出,在同一坐标系的图像: