度量空间之间的映射1
第二章拓扑空间与连续映射一、教学目的与要求

第二章 拓扑空间与连续映射一、教学目的与要求本章是点集拓扑学的基础知识,在本章中建立了点集拓扑学许多最基本的概念,为学习点集拓扑学的核心内容打下基础。
本章应掌握的概念有:度量空间、开集、邻域、拓扑空间、映射在一点连续、连续映射、度量诱导的拓扑、可度量化空间、同胚、拓扑不变性质、邻域系、聚点、孤立点、闭集、闭包、内点、内部、边界点、边界、基、子基、邻域基、邻域子基、序列、序列的极限点、收敛、子序列。
学生还应该掌握:典型的拓扑和度量空间的例子、开集和邻域的性质、连续映射和同胚映射的性质、(集合的)内部的性质内部和边界和闭包之间关系、连续映射的等价条件(分别用开集、闭集、邻域来描述)、邻域系的性质和判定方法、基的判定法和子集族成为基(或子基)的条件、映射在一点连续的性质和判定法则、拓扑空间和度量空间中序列的性质。
二、教学重点与难点教学重点:拓扑空间和连续映射、导集、闭集、闭包、基与子基、拓扑空间中的序列。
教学难点:拓扑空间概念的建立、导集概念和基与子基概念的建立等。
三、课时安排与教学方法教学内容 (计划/实际)课时数课程类型/教学方法2.1,2.2 4/4 理论/讲授2.3,2.4 4/4 理论/讲授2.5,习题课 4/4 理论/讲授、讨论2.6,2.7 4/4 理论/讲授习题课 4/4 练习/讲授、讨论四、教学过程在这一章中我们首先将连续函数的定义域和值域的主要特征抽象出来用以定义度量空间, 将连续函数的主要特征抽象出来用以定义度量空间之间的连续映射. 然后将两者再度抽象, 给出拓扑空间和拓扑空间之间的连续映射. 随后再逐步提出拓扑空间中的一些基本问题如邻域, 闭包, 内部, 边界, 基和子基, 序列等等.2.1度量空间与连续映射首先,我们从在数学分析中学过的连续函数出发, 抽象出度量和度量空间的概念.定义2.1.1 设是一个集合, X :X X R ρ×→.如果对于任何,,x y z X ∈,有(1) (正定性) (,)0,x y ρ≥并且(,)0x y ρ=当且仅当x y = ;(2) (对称性)(,)(,)x y y x ρρ=;(3) (三角不等式)(,)x z ρ≤(,)(,),x y y z ρρ+则称ρ是集合X 的一个度量.如果ρ是集合X 的一个度量,则称偶对(,)X ρ是一个度量空间或称,X 是一个对于度量ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已有交代,不提它不至于引起混淆,这时我们称X 是一个度量空间. 此外对于任意两点 ,,,x y ∈X 实数(,)x y ρ称为从点到点的距离.例2.1.1 实数空间 R .对于实数集合定义,R :R R Rρ×→如下:对于任意,,x y R ∈令(,).x y x y ρ−=容易验证ρ是的一个度量因此偶对R ,(,)R ρ是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量,ρ称为的通常度量,并且常常略而不提,称为实数空间.R 例2.1.2维欧氏空间n .n R对于任意1212,,,,,,(),()nn n x x x x ,y y y y R ==∈……令(,)x y ρ=容易验证ρ是的一个度量,因此偶对nR (,)nRρ是一个度量空间.这个度量空间特别地成为维欧式空间.这里定义的度量n ,ρ称为的通常度量,并且称为维欧氏空间.nR nR n 例2.1.3Hilbert 空间H .记为平方收敛的所有实数序列的集合,即H2121,,,;{()}i i i x R i Z x H x x x ∞+=∈∈<∞==∑…定义:H H R ρ×→如下:对于任意1212,,,,(),()x x x y y y H ==……∈令(,)x y ρ=则偶对(,)H ρ是一个度量空间.这个空间特别地称为Hilbert 空间.例2.1.4 离散的度量空间.设(,)X ρ是一个度量空间.称(,)X ρ是离散的,或者称ρ是的一个离散度量,如果对于每一个X ,x X ∈存在一个实数0x δ>使得(,)xx y ρδ>对于任何,.y X y x ∈≠例如我们假定是一个集合,定义X:X X Rρ×→使得对于任何,,x y X ∈有(,)0,x y x y ρ==或(,)1,x y x y ρ=≠容易验证ρ是的一个离散的度量,因此度量空间是离散空间.X 定义2.1.2 设(,)X ρ是一个度量空间,.x X ∈对于任意给定的0,ε>集合(,){}x y y X ρε<∈记作(,),B x ε或,称为一个以()B x εx 为中心,以ε为半径的球形邻域,简称为x 的一个球形邻域,有时也称为x 的一个ε−邻域.定理2.1.1 度量空间(,)X ρ的球形邻域具有以下基本性质:(1)每一点x X ∈至少有一个球形邻域,并且点属于它的每一个球形邻域; x (2)对于点x X ∈的任意两个球形邻域,存在的一个球形邻域同时包含于两者;x (3) 如果y X ∈属于x X ∈的某一个球形邻域,则y 有一个球形邻域包含于的x那个球形邻域.定义2.1.3 设A 是度量空间的一个子集.如果X A 中的每一个点有一个球形邻域包含于A (即对于每一个存在实数,a A ∈0ε>使得(,)B a A ε⊂),则称A 是度量空间中的一个开集.X 例2.1.5 实数空间中的开区间都是开集. R 定理2.1.2 度量空间中的开集具有以下性质:X (1) 集合本身和空集Φ都是开集; X (2) 任意两个开集的交是一个开集;(3) 任意一个开集族(即有开集构成的族)的并是一个开集。
压缩映射原理

压缩映射原理
压缩映射原理,也被称为Banach压缩映射原理或Contraction Mapping Principle,是实分析中的一个重要定理。
它提供了解
决完备度公理的一种方法,可以证明某个映射存在唯一的不动点,并且这个不动点可以通过迭代方法逼近。
压缩映射原理的内容可概括为:如果在完备度量空间(如实数空间或某个完备的欧几里得空间)中有一映射,它将该空间中的元素映射为自身,且满足一定的收缩性质,即映射的Lipschitz常数小于1,那么这个映射存在唯一的不动点,即存
在一个元素被映射为自身。
具体来说,设X是一个完备度量空间,也就是有一个距离函
数d(x,y)满足完备性公理,而f是X上的一个压缩映射。
即存
在一个常数L(0<L<1),使得对于空间X中的任意x和y,
都有d(f(x),f(y))≤Ld(x,y)。
那么根据压缩映射原理,f在X中存在唯一的不动点,即存在一个x0使得f(x0)=x0。
更进一步地,对于给定的初始猜测值x1,可以通过迭代的方
式逼近x0。
即依次计算x2=f(x1),x3=f(x2),...,则序列{xk}收敛
于x0,且收敛速度很快。
这是因为L<1,每次迭代xk+1和xk 之间的距离都会缩小L倍,使得误差快速收敛。
压缩映射原理在数值计算和实际应用中有着广泛的应用。
例如,在非线性方程求解、微分方程数值解法、优化等问题中,可以利用压缩映射原理结合迭代方法,找到问题的解。
该原理也被应用于非线性动力系统的稳定性分析,通过分析压缩映射的性
质,可以判断系统是否收敛于特定的不动点。
因此,压缩映射原理在数学和工程领域中有着重要的作用。
度量空间中的自列紧集、紧集、连通集与连续映射

由 d x, r r 和 d r, s r s 得 d s, x d r, s d r, x r s r s 。所
以 x N 。同理可得,若 x N ,则 x M 。所以 M N 。
因为集 A 是连通的,所以集合 A \ M N 不空(若空则 M 、 N 分离集 A )。
自列紧集(列紧闭集)与连续映射 1.度量空间的自列紧子集在连续映射下的象是自列紧集。 证明: 设 X、Y 是度量空间, A 是 X 的自列紧子集。
设 f : A Y 是连续映射,象集为 B f X Y 。设yn 是 B 的序列。对任意
正整数 k,设 yk 的某个原象是 xk A X ,这样得到 X 的序列xn 。因为 X 是自
R 的定义是函数值小于 y0 的自变量集合)。同理,对于任意点 s S ,存在邻域
U s, s 使得U s, s A S 。
对任意点 r R ,s S ,设s s 2 ;设 dr inf d r, s s S ,显然 dr 0
(否则,便不存在不包含 S 的点的邻域), d r, s s d r, s s 0 。
紧集与连续映射 1.度量空间的紧子集在连续映射下的象是紧集。 证明:
设 X、Y 是度量空间, A 是 X 的紧子集。设 f : A Y 是连续映射,象集为
B f XY 。
设 B 的一个开覆盖为 G 。任意 S G 是开集,所以对任意 y S ,存在邻域
U y, y S 。对于任意 x f 1 y ( f 1 y 是 y 的原象集),因为 f : A Y 是连
所以,对任意 r R ,s S 都有 d r, s s dr 4 。对任意 r R ,设r dr 4 。
实变函数与泛函分析第2章

备课第二章用点集纸§1 度量空间, n 维欧氏空间教学目的 1、深刻理解 R n 中的距离、邻域、点列收敛等概念,弄清它们在刻划不同类型 的点及点集中的作用. 2、理解距离的性质、点到集合的距离、两集合之间的距离、集合的直径等概念, 理解有界集、无界集、区间及区间的体积等概念. 3、了解邻域的四条性质. 本节要点 度量空间的概念. 本节难点 度量空间的概念. 一、 度量空间 定义 1:设 X 为一非空集合, d : X X R 为一映射,且满足 (1) d ( x , y ) 0 , d ( x , y ) (2) d ( x , y ) (3) d ( x , y ) d ( y, x) 0 x y(正定性)(对称性) (三角不等式) d ( x, z ) d ( z, y )则称 ( X , d ) 为度量空间. 例 1: (1) 欧氏空间 ( R n , d ) ,其中 d ( x , y ) (xi 1ni yi )2(2)离散空间 ( X , d ) ,其中 d ( x , y ) 1 0x y x y(3) C a , b 空 间 ( C a , b 表 示 闭 区 间 a , b 上 实 值 连 续 函 数 全 体 ), 其 中d ( x , y ) m ax | x ( t ) y ( t ) |atb二、 邻域 定义2: 称集合 { P | d ( P , P0 ) } 为 P0 的 邻域,并记为 U ( P0 , ) . P0 称为邻域的中 心, 称为邻域的半径. 在不需要特别指出是什么样的半径时,也简称为 P0 的邻域,并记为 U ( P0 ) . 不难看出:点列 { Pm } 收敛于 P0 的充分必要条件是对任意 0 ,存在 N ,当第 页备m N课用纸时有: Pm U ( P0 ) .容易验证邻域具有下面的基本性质: 1)P U (P ) ;2) 对于 U 1 ( P ) 和 U 2 ( P ) , 如果存在 P U 1 ( P ) U 2 ( P ) ,则存在U 3 (P ) U 1 (P ) U 2 (P )3) 对于 Q U ( P ) ,存在 U ( Q ) U ( P ) ; 4) 对于 Q P,存在 U ( Q ) 和 U ( P ) 满足 U ( Q ) U ( P )定义3:两个非空的点集 A , B 间的距离定义为d A, B P A ,Q Bin fd P,Q 注:1)如果 A , B 中至少有一个是空集,则规定 d A , B 0 ; 2)若 B X ,则记d A, B d A, X3)若 A B ,则 d A , B 0 。
2.1拓扑空间

2014-10-18
韩山师范学院数信系
10
给定一个子集, 拓扑空间中的每一个点相对于这个 子集而言“处境”各自不同, 可以对它们进行分类处理. 定义2.4.1 设 X 是一个拓扑空间, A X 如果点 x∈X 的每一个邻域 U 中都有 A 中异于x 的点, 即 U∩(A-{x})≠ , 则称点 x 是集合 A 的一个凝聚点或极限点.集合 A 的所有凝聚点构成
说明 拓扑空间的开集和度量空间的开集有区别 设 ( X , ) 是一个度量空间, {V X V是( X , )} 则称 为由度量 诱导的拓扑,( X , )是由度量
空间 ( X , ) 诱导的拓扑空间.
常见的拓扑 例2.1 平庸空间.
设X是一个集合.令 ( X , ) ,则 ( X , ) 是拓扑 空间,称为平庸拓扑空间.
2014-10-18 韩山师范学院数信系 19
U U A A and and U U A A
定义 定义2.5.2 2.5.2 设 设 X X 是一个拓扑空 是一个拓扑空
x X X A X X. 间, . 间,A .点 点 x .如果满足条件: 如果满足条件:
A E
A E
1
Ao Ext ( A)
1
2014-10-18
韩山师范学院数信系
24
定义2.12 设X是一个拓扑空间, A X 称A在X中稠密(A 是X中的稠密集),如果 A X .
例8 Q在 E1中稠密。 例9 在R中赋予余有限拓扑,设A是R的任意无 限子集,则A在R中稠密。
例2.3 余有限拓扑,可数拓扑,(设X是无限 集). C {U X U 是X的一个有限子集 } { }
3.度量空间

lim
n
xnx, 或x n来自x(n)21
定理3.1 设 {xn}是度量空间{V,d}中收敛于x序 列,则
(1){xn}是有界的;
(2){xn}的极限是唯一的。
证明: (1)已知
lim
n
x
n
x.
取=1,则存在自然
数N,当n>N时有
(xn,x)<1 令M=1+max{(x1,x),,(xN,x),1},则对一 切n∈N,有 (xn , xm) (xn , x) (xm, x) 2M
Br (x) {y V | (x, y) r}是闭集.
实际上,y Br (x),(x, y) r.令r0 r (x, y) 0,
z Br0 (y),由于(z, x) (z, y) (y, x) r0 (x, y) r,
故z Br (x),因此, Br0 (y) Br (x)
U(a,)U(x,).U(a,)中必包含有异于x的中之点.
从而,U(x,)必包含有异于x的A中之点.
29
因此,x是A的极限点, 即x A.所以,( A) A.
(2)x A B.当x A B时,显然x A B;
当x(AB)′时,则x不是A的极限点, 就是B的极限点. 若不对,即x既不是A的极限点,也不是B的极限点, 于是,有x的邻域U(x,),它不包含A的点, 又有x的邻域U(x,)U(x,), 它既不包含A的点,也不包含B的点, 这与x是AB的极限点矛盾.
‖x‖= (x, x)
x, y∈V两点间的距离定义为
d(x,y)=‖x-y‖= (x y, x y)
可以证明:d满足度量三公理,从而
{V,d}是度量空间。
6
首先证明:x,yV,有Cauchy不等式
度量空间内映射列的一致收敛性

Z
、
) y
,
。
(Z
〔X )
瓜
、
则d x ( 间
,
) 称为 两点 y
少之 间的距 离
而称 X 为按 照距 离 d (
,
) y
成 为 度凳 空间或 距离 空
,
记为 (X 的 定义
2
,
( X
( 有d x
,
d ) 为度量 空 间
。
,
{恙 冲 X
x
如果 对 于 任 意正 数。 中的基 本 列
。
> 叮
,
存在N
e ) (
。
,
V x
〔A
故 护 准
。
A
上 一致
收故于 T
定理 当 证
:
。
2
矿 } 在洲 上 一 致 性收敛 于 T 的 必要充 分条 件是 对 任给 。 时
, ,
。
)
O
一 定 存在 自 然 数
n
》N
+ P x
对 任 何 自然 数 P
,
有
,
T d ( n
T
司
<
君
,
冰
。
(注
必 要性
如果 伊
液 A 上 一致 收敛 于 T
,
则
兀 } 一 致收敛 于 T 丈
证
假 定 (工
Tx )
.
.
环 一致 收 敛 于
。
,
,
,.
刃
时
:
》 在 A 内一 致 收敛 于 T 的 必 要充 分条 件是 对任 给 T 川(
。
。
一 定 存 在 自然 数 . N
第七章度量空间和赋范线性空间

1
5.p次幂可和数列空间l p , d(x, y) ( yk xk p ) p .
k 1
§3 连续映射
回忆数学分析中连续函数的定义 : 0, 0,当x x0 时,有 f (x) f (x0) .
如同数学分析中的海涅(Heine)定理,可以证明如下结论。
:由T在x0 X连续, 对 0, 0,当d (x, x0 ) 时,有
证明:对 {x(k )} Rn为柯西点列 , x(k ) (x1(k ) , x2(k ) , , xn(k ) ),
n
则对 0, N ,当k, j N , 有d (x(k) , x( j) ) (
1
k) i
x( j) i
2
)2
.
i 1
即对每个i,当k, j N,有 xi(k) xi( j) . 故{xi(k)}是R1中柯西列 ,
xm (t)在[a,b]上收敛于一函数 x(t). 在(*)式中令n ,
当m
N时, 有 max at b
xm (t)
x(t)
,
即xm (t)在[a,b]上一致收敛于 x(t).
定理1.完备度量空间 X的子空间 M是完备空间的充要条件 为 M是X中的闭子空间 .
定理2.设( X , d )是度量空间 , Bn Bn (xn , rn ), (n 1,2, )是X中 一列闭球 ,则X是完备的度量空间的充 要条件是若 Bn Bn1,
d~(Tx,Tx0) 0.
取
1 n
,
则有xn
,
使d
(
xn
,
x0
)
1 n
,
但d~(Txn
,
Tx0
)
0.
这与已知矛盾.
从APOS理论出发构建连续映射的概念

D O I :10.3969/j.i s s n .1001-5337.2023.2.118 *收稿日期:2022-08-08基金项目:国家自然科学基金(11671133).作者简介:李启慧,女,1978-,博士,副教授;研究方向:算子理论与算子代数;E -m a i l :qi h u i _l i @126.c o m.从A P O S 理论出发构建连续映射的概念*李启慧(华东理工大学数学学院,200237,上海市) 摘要:文章利用A (a c t i o n )P (p r o c e s s )O (o b j e c t )S (s c h e m e )理论由易至难逐渐在不同情境下对连续映射的概念进行讨论和课程设计.经教学实践可以看出,这种方式比直接灌输知识更容易让学生理解新概念的数学本质和内涵,并更进一步帮助学生理解与新概念相关的其他数学概念,从而顺利构建认知结构.关键词:A P O S 理论;映射;映射的连续性中图分类号:G 642.1 文献标识码:A 文章编号:1001-5337(2023)02-0118-050 引 言20世纪初,为了能够让学生打下坚实的数学基础,人们开始研究数学学科与其他学科的区别,试图提高数学教学的有效性.数学学科和其他学科主要有3方面区别.首先,从定义到定理,从运算方式到计算方法,数学主要依赖于其精确性.因此在数学中,你看到的就是你得到的,没有任何隐含假设.其次,良好问题的提出是推动数学发展的动力.S t e w a r t [1]谈到对一个好问题的求解过程会打开一个新的领域和研究契机,因此对此问题的研究不止于解决问题本身,通过抽丝剥茧,可以达到深入探究问题本质的研究目标.数学有别于其他学科的最后一方面是认知方面.M u i s [2]指出数学的认知主要依赖于归纳和推理,而非实验,这一点有别于其他实验类学科.为了更好地学习数学知识,中小学数学教学中不可避免的在定义上缺乏精确性.在大学阶段对数学专业本科生而言,适应数学本身的内在逻辑,特别是数学概念的内在逻辑将有助于提高学生提出问题㊁解决问题的能力.本文欲利用A P O S 理论(A (a c t i o n )P (p r o c e s s )O (o b j e c t )S (s c h e m e ))对连续映射的概念进行教学讨论和设计.1 A P O S 理论在S f a r d [3]研究基础上,D u b i n s k y 和M c D o -n a l d [4]引入了A (a c t i o n )P (p r o c e s s )O (o b je c t )S (s c h e m e )理论,简写为A P O S 理论.该理论是一种建构主义的数学学习理论.这些年国内也有诸多学者探讨A P O S 理论,并将其应用到教学实践中[5-7].该理论认为学生学习数学概念要进行心理建构,此建构过程要经历以下4个阶段[8](表1).表1 A P O S 理论建构过程大脑构建概 况1操作或行动(A c t i o n)操作阶段是指个体或学习者通过一步一步的外显性(或记忆性)指令去变换一个客观的数学对象,一个数学概念就开始形成了.2过程(P r o c e s s)过程指当一个人重复和反思一个行为时,它可能内化为一个心理过程.过程是一种心理结构,它执行与内化活动相同的操作,但完全在个人的头脑中,因此使她或他能够想象执行转换而不必外显式地执行每个步骤.3对象(O b je c t )如果个体或学习者意识到一个过程是一个整体,给抽象出的本质特征赋予形式化的定义和符号,使其成为一个具体的对象,那么可以说个人已经把这个过程压缩成一个认知对象.4图式(S c h e m e) 图式阶段 是与其他概念建立联系,形成知识的综合图式,一个数学主题通常涉及许多动作㊁过程和对象,需要将它们组织起来并连接到一个紧凑的框架中,与已有的知识建立新的实质性联系.第49卷 第2期2023年4月 曲阜师范大学学报J o u r n a l o f Q u f u N o r m a l U n i v e r s i t yV o l .49 N o .2A p r .20232利用A P O S理论构建连续映射概念学生对映射的理解首先源于数学分析中函数概念及高等代数中的线性变换概念等.接下来利用A P O S4个阶段探析如何构建连续映射的概念.2.1连续映射的操作性概念T h o m p o s o n[9]指出当学生将映射视为能够经过计算得到结果的特定表达式时,则学生就有了映射的操作性概念.从此角度出发,首先引入以下2个一元函数的图像.图1一元函数图像从图1中2个函数图像可以看到,函数要在一点连续必须在该点有定义且图像应该是连续的,即在该点函数的极限存在并和定义是一致的.因此由图像的连续性和极限的存在性得到函数在点x0连续的操作性概念:(1)f(x0)存在;(2)l i m xңx0f(x0)存在;(3)l i m xңx0f(x0)=f(x0).在数学分析学习初期,学生已经学习了一元函数极限l i m xңx0f(x0)的ε-δ定义,利用此及以上讨论,学生应该比较容易理解对一元函数f(x)在点x0连续性的ε-δ定义.定义1函数f(x)在点x0处连续⇔对任意的ε>0,存在δ>0使得当|x-x0|<δ时,有|f(x)-f(x0)|<ε.一元函数实则为特殊类型的映射,在此基础上进一步建设连续映射概念,从以下几方面入手.内容描述学习目标建立度量空间上映射的连续性.帮助学生理解度量和连续性之间的关系.引导学生从一维空间过渡到n维空间.操作设计问题,由学生进行操作完成概念的延伸.在此过程中,引导学生逐步意识到连续映射和度量的关系.评价教学过程需要一个评价过程,教师可以利用习题的解答评价学生的完成情况为使学生更好理解连续映射概念,将按照A P O S理论4个环节设计问题.第一阶段问题如下.问题1由于定义1中的|x-x0|和|f(x)-f(x0)|均可以理解为一维空间两点之间的距离,依次类推如何给出二维空间㊁三维空间之间连续映射的定义?问题2 如何将定义1延拓到一般的度量空间?经过以上2个问题的铺垫,可以给出度量空间上连续映射的定义.定义2假设(X,d1)和(Y,d2)分别为以d1和d2为度量的度量空间,x0ɪX.则映射f:XңY在点x0连续⇔任意ε>0,存在δ>0使得当d1(x,x0)<δ时,d2(f(x),f(x0))<ε.为检验学生对以上定义的理解,引入以下例题帮助学生完成对此概念的掌握.例1设S1为单位圆周,令f:[0,1)ңS1,t|ң(c o s(2πt),s i n(2πt)).请利用ε-δ语言证明此映射为连续映射.为了让学生理解不同度量下映射的连续性,可以引导学生给出n维欧几里得空间ℝn以及H i l-b e r t空间H上映射的连续性概念,从而顺利形成连续映射的操作性概念,在这个过程中适当地习题是必要的.2.2连续映射的过程性概念通过以上过程,学生脑中连续的概念和度量紧密相关.如果学生将映射看做是输入和输出的过程,学生可以把输入和输出配对,并熟知每一次输入只有唯一一个输出.因此对于映射f:XңY,教师可引导学生构造出一个集合{(x,f(x)):xɪX}⊂XˑY,这是把输入和输出配对后获得的集合.为让学生逐步理解集合语言在映射连续性的重要性,从以下几方面入手.问题3利用集合语言是否能重新给出定义2已经帮助学生将输入和输出配对,并写成集合{(x,f(x)):xɪX}.这种思路有利于解答问题3.因此教师可以引导学生利用集合语言将定义2改写如下.定义3假设(X,d1)和(Y,d2)分别为以d1和d2为度量的度量空间,x0ɪX,则映射f:XңY在点x0连续⇔对任意的ε>0,存在δ>0,使得{(x,f(x)):d1(x,x0)<δ}⊂{(x,f(x)):d2(f(x),f(x0))<ε}.从以上表达观察有:911第2期李启慧:从A P O S理论出发构建连续映射的概念f({x:d(x,x0)<δ})⊂{f(x):d(f(x),f(x0))<ε}.问题4如何描述集合{xɪℝ:|x-x0|<1}?假设(X,d)一个度量空间,则{xɪℝ:|x-x0|<1}与集合{x:d(x,x0)<δ}有什么样的关系?问题4中涉及的集合都是开集,它们的构造将有助于引入以下概念.定义4(球形邻域)假设(X,d)为以d为度量的度量空间,x0ɪX,则对任意的ε>0,将集合{x: d(x,x0)<ε},记作B(x0,ε),称为以x0为中心,以ε为半径的球形邻域.根据球形邻域概念,对映射f有f({x:d(x,x0)<δ})⊂{f(x):d(f(x),f(x0))<ε}⇔f(B(x0,δ))⊂B(f(x0),ε).因此利用以上关系式提问.问题5如何利用球形邻域的定义给出映射连续性的概念回答问题5的过程将说明学生对映射连续概念的理解深度.定义5假设(X,d1)和(Y,d2)分别为以d1和d2为度量的度量空间,x0ɪX,则映射f:XңY在点x0连续⇔对任意的ε>0,存在δ>0,使得f(B (x0,δ))⊂B(f(x0),ε).定义5逐步接近了映射连续性的本质,这就是数学抽丝剥茧接近事物本质的过程.定义5中表达式f(B(x0,δ))⊂B(f(x0),ε)中不再出现度量,因此可以不用度量去衡量远近,利用球形邻域也可以衡量接近某一点的程度.以上从度量过渡到球形邻域的过程帮助学生顺利构建连续映射的过程性定义.2.3连续映射的对象性概念当学生把不同度量空间之间的映射作为整体考虑时,则学生开始在大脑中构建出映射的对象性定义.此时学生可以很好地理解复合运算,映射逆运算等相关概念[9].在此基础上,可以引导学生得到以下映射连续的等价概念,这个等价形式中利用了逆映射的概念.定义6假设(X,d1)和(Y,d2)分别为以d1和d2为度量的度量空间,x0ɪX,则映射f:XңY在点x0连续⇔对任意的ε>0,存在δ>0,使得B(x0,δ)⊂f-1(B(f(x0),ε)).度量空间中的球形邻域B(x0,δ)实际上是一个开集.因此引入问题如下.问题6度量空间中开集的定义是什么在以上问题回答基础上,映射连续性等价定义.定义7假设(X,d1)和(Y,d2)分别为以d1和d2为度量的度量空间,x0ɪX,则映射f:XңY在点x0连续⇔任意含有f(x0)的开集U,存在含有x0的开集V,使得V⊂f-1(U).以上定义再次弱化了度量在连续映射定义中的作用,如果学生能够证明定义6和定义7是等价,则说明此时学生能够将连续映射概念视为观察对象,不再依赖具体的情境和具体的操作,并逐渐接近连续映射的本质.2.4图式性概念任何一个新的数学概念都只是个体数学认知结构中的一个节点,孤立的一个概念是没有什么意义的.因此在逐步引入和深化连续映射概念时,此概念也逐渐和其他相关的知识建立稳定的有意义的联系,形成新的认知结构.为此从直接进入信息传递阶段,引入任意空间X的基准开邻域和邻域概念如下.定义8假设集合X非空,任意x0ɪX,则点x0的基准开邻域结构是X的一个子集族,记作N (x0),满足下述3条公理:(1)N(x0)ʂ∅,并且∀UɪN(x0),x0ɪU;(2)若U,VɪN(x0),则存在WɪN(x0)使得W⊆UɘV;(3)若yɪUɪN(x0),则存在VɪN(y)使得V ⊆U.如果UɪN(x0),则称U为x0的一个基准开邻域.如果U包含x0的某个基准开邻域,则称U为x0的一个邻域.如果X的子集U是每一个元素x ɪU的邻域,则称U为一个开集.称X上所有开集构成的子集族τ为一个拓扑结构,简称为拓扑.X 和τ合在一起,称为一个拓扑空间,记为(X,τ).在引入拓扑空间㊁拓扑空间的开集等概念时是利用学生认知结构中已有的知识,以定义的方式直接给学生传授,这种方式也是学习数学概念的一个重要途径.目前为止,学生应该有能力利用数学语言给出拓扑空间上映射连续性的概念.问题7如何在拓扑空间中给出映射的连续性概念?拓扑空间映射连续性定义如下.定义9假设(X,T1)和(Y,T2)为两个拓扑空间,x0ɪX,则映射f:XңY在点x0连续⇔任意含有f(x0)的开集U,存在含有x0的开集V,使得V ⊂f-1(U).021曲阜师范大学学报(自然科学版)2023年定义9将连续映射的概念延拓到更一般的空间上.通过前文分析,利用A P O S 理论引导学生逐步给出不用空间上连续映射的概念.需要注意的是在这个过程中,学生不断地对已有认知结构作出调整,也不断加深了对概念的理解.通过以上分析,为了理解映射的连续性,逐步引入球形邻域㊁邻域㊁拓扑空间等全新的概念.在这个过程中学生会逐渐构架图式结构,形成新的认知结构.2.5 概念的理解和应用学生一旦学习了一个数学概念,接下来的一步就是在数学环境中应用此数学概念,将其和其他相关数学概念联系在一起.在课堂教学中,为了让学生更好地理解和应用映射的连续性概念,需要帮助学生应用此概念.因此适当的课堂训练是必不可少的.例2 考虑圆周S 1={(x ,y )ɪℝ2|x 2+y 2=1}以及ℝ2中的正方形X ={-1,1}ˑ[-1,1]()ɣ[-1,1]ˑ{-1,1}().定义映射p :X ңS 1,(x ,y )|ңx x 2+y 2,y x 2+y 2æèçöø÷.证明p 为单射和满射,p -1为连续映射.对例2的分析和解决使得学生将圆周和正方形联系起来.这两个学生熟知的图形实则为同胚的.同胚是拓扑学习中一个非常重要的概念,如果两个拓扑空间之间有一个连续的单射满射,且其逆映射也连续,则两个拓扑空间同胚.由同胚的概念可知,同胚的空间本质上具有相同的连续性,因此在拓扑学中规定在同胚下保持不变的性质叫做拓扑性质,同胚下保持不变的量称作拓扑不变量.研究拓扑性质和拓扑不变量是数学中重要的研究课题.以上对同胚概念的引入将提升学生对映射连续性的兴趣和重视程度,有助于学生将此概念和其他相关的知识建立稳定的有意义的联系.3 教学设计和启发(1)一个数学概念不会是孤立存在的,在教学过程中学生对第一阶段的问题1和问题2的回答不但能看出学生对于度量空间上连续映射的理解情况,也能一定程度反映学生对于度量空间的理解.如果学生不能正确回答此问题,则需要教师分析学生哪方面知识掌握有欠缺,从而给出更多针对性例题和习题,如例1的解答帮助学生更深刻理解ε-δ语言与度量之间的关系.如果教师认为学生已经顺利掌握了此概念,则可以通过介绍欧几里得空间和H i l b e r t 空间上连续映射概念及具体实例拓展学生的知识体系.(2)集合作为数学中的重要概念,在连续映射中起到重要的作用.经过第一阶段的学习,学生理解了连续映射对度量的依赖,但这仅仅是连续映射概念的一个方面.通过对问题3㊁问题4㊁问题5的回答教师可以观察学生对于度量和集合这两个数学语言的应用能力,问题的回答过程也帮助学生多方位理解连续映射.(3)在第三阶段,教师需要引导学生考虑映射的运算和连续性之间的关系.对于问题6的回答将进一步引导学生注意到开集在连续映射中的作用,同时教师也要启发学生此时尽管学习的是度量空间中连续映射概念,但定义6中不再出现度量,这也从另一个侧面说明连续性可以和度量没有显然的关系.如果学生没有学习拓扑方面的知识,则对连续映射的学习到此已足够全面.(4)在点集拓扑课程中,连续映射是一个非常重要的概念.从拓扑概念的引入,学生不难看出度量空间是一个特殊的拓扑空间.因此类比度量空间,学生容易理解拓扑空间中的开邻域㊁开集概念.由前3个阶段的铺垫以及对于问题7的回答将帮助学生在连续映射中不再考虑度量在其中的作用,从而领悟到集合对映射连续的重要性,因此更进一步理解连续映射的本质,这也反映出拓扑空间的概念是度量空间概念的一个合理延拓.4 结束语本文对连续映射概念的教学实施利用了A P O S理论,逐步引导学生理解连续映射的本质和内涵,且从不同角度以及和多个数学概念之间的关系显示出连续映射在数学中的重要性.这样循序渐进,深入浅出的教学过程更利于学生的理解和掌握,这样的教学设计相对于老师直接向学生灌输知识更容易让学生看到新概念的数学本质和内涵.本文利用了A P O S 理论对同一个数学概念分多个阶段,多个版本介绍,这也有利于学生将新概念逐渐融入已有的认知当中.参考文献:[1]S T E WA R TI .T h eP r o b l e m s o fM a t h e m a t i c s [M ].N e w121第2期 李启慧:从A P O S 理论出发构建连续映射的概念Y o r k:O x f o r dU n i v e r s i t y P r e s s,1992.[2]MU I S K R.P e r s o n a l e p i s t e m o l o g y a n d m a t h e m a t i c s:ac r i t i c a l r e v i e wa n ds y n t h e s i so f r e s e a r c h[J].R e v e i wo fE d u c a t i o n a lR e s e a r c h,2004,74(3):317-377.[3]S F A R D A.O p e r a t i o n a l o r i g i n so fm a t h e m a t i c a l o b j e c t sa n d t h e q u a n d a r y o f r e i f i c a t i o n:t h e c a s e o f f u n c t i o n[M]. W a s h i n g t o n,D C:M a t h e m a t i c a lA s s o c i a t i o no fA m e r i-c a,1990:59-84.[4]D U B I N S K Y E,M C D O N A L D M.A P O S:Ac o n s t r u c-t i v i s t t h e o r y o f l e a r n i n g i nu n d e r g r a d u a t e m a t h e m a t i c s e d u c a t i o n r e s e a r c h[M]//T h eT e a c h i n g a n dL e a r n i n g o f M a t h e m a t i c s a t U n i v e r s i t y L e v e l:A n I C M I s t u d y. N e t h e r l a n d:S p r i n g e r,2001:275-282.[5]邵东涵.基于A P O S理论的 实数 概念的教学研究[D].上海:华中师范大学,2015.[6]马晓丹.A P O S理论探索的反思与超越[J].教学与管理(理论版),2020(11):74-77.[7]苏文婷,杨军.基于A P O S理论"导数概念"的有效分析[J].中外交流,2020,27(14):18-19.[8]HA R K N E S SD S.T e a c h i n g S t u d e n t st oC o mm u n i c a t e w i t h t h eP r e c i s eL a n g u a g e o fM a t h e m a t i c s:AF o c u s o n t h eC o n c e p t o f F u n c t i o n i nC a l c u l u sC o u r s e s[D].D o c t o r o fP h i l o s o p h y U t a hS t a t eU n i v e r s i t y,2020.[9]T HOM P S O NP W.S t u d e n t s f u n c t i o n s,a n d t h eu n d e r-g r a d u a t e c u r r i c u l u m[J].R e s e a r c hi nC o l l e g i a t e M a t h e-m a t i c sE d u c a t i o n,1994(1):21-44.[10]包志强.点集拓扑与代数拓扑引论[M].北京:北京大学出版社,2013.C o n s t r u c t i n g t h e c o n c e p t o f c o n t i n u o u sm a p p i n g s b y t h eA P O S t h e o r yL IQ i h u i(S c h o o l o fM a t h e m a t i c s,E a s tC h i n aU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y,200237,S h a n g h a i,P R C)A b s t r a c t:B y a p p l y i n g t h eA(a c t i o n)P(p r o c e s s)O(o b j e c t)S(s c h e m e)t h e o r y,t h ed e f i n i t i o no f c o n t i n u-o u sm a p p i n g s i s c o n s t r u c t e d s t e p b y s t e p.T h e t e a c h i n gp r a c t i c e s h o w s t h a t h e l p i n g s t u d e n t t o c o n s t r u c t a m a t h e m a t i c a l d e f i n i t i o nb a s e do nt h eA P O St h e o r y i sab e t t e rw a y t o l e a r nan e w m a t h e m a t i c a l c o n c e p t. T h i sm e t h o dw i l l a l l o wt h e s t u d e n t s t o c o m p r e h e n d t h e f u n d a m e n t a l i d e a l o f a n e wc o n c e p t.F u r t h e r m o r e, t h i sm e t h o dw i l l h e l p s t u d e n t s t o s e t u p t h e i r o w n c o m p r e h e n s i o no f r e l a t e dm a t h e m a t i c a l c o n c e p t s.K e y w o r d s:A P O S t h e o r y;m a p p i n g;c o n t i n u i t y o fm a p p i n g s221曲阜师范大学学报(自然科学版)2023年。
度量空间

例,设 ρ:R×R→R 为ρ(x, y)=│x-y│,x、y、ρ(x, y)∈R,
则ρ是“R上”的一个度量, 为R上的常用度量, 称度量空间(R, ρ)为实数空间或实直线。 “实数空间”度量了数轴上任意二点间的绝对距离。
-1-
例,设n∈N(自然数集合),ρi:Rn×Rn→R(i=0,1,2,3) ,对
∀x=(x1,…,xn)、y=(y1,…,yn)∈R ,有: (1) 设(X, ρ)为度量空间,如果对于∀x∈X, “存在”一个实数εx>0, 使得对任意y∈X,x≠y,有ρ(x,y)>εx, 则称ρ是X上离散度量, 称(X, ρ)是离散(度量)空间
[2]
n
。
例,定义ρ0为: ρ0(x,y)=0,当x=y; ρ0(x,y)=1,当x≠y; 证明:ρ0是一个离散度量。
[1]
度量空间是一类特殊的拓扑空间。
一、度量空间
定义 设 X 为非空集合,∃ρ:X×X→R,使∀x、y、z∈X 满足:
(1) 正定性:ρ(x,y)≥0,并且ρ(x,y)=0当且仅当 x=y; (2) 对称性:ρ(x,y)=ρ(y,x); (3)三角不等式:ρ(x,z)≤ρ(x,y)+ρ(y,z) 则ρ(x,y)称为度量空间(X, ρ)从点x到点y的距离, ρ是X的一个度量(metric), 偶对(X, ρ)为度量空间(metric space)。
-7-
例,度量空间的开集由距离/度量导出,同一集合上的不同度量可能
导出相同的开集,即某一集合对某一度量/距离是开集,则对另一度量/ 距离也是开集,从而导出的拓扑是相同的。 在Rn中给出如下三种距离/度量:
ρ1(x, y) = (∑(xi − yi ) ) ,ρ2 ( x, y) = max | xi − yi | ,ρ3 ( x, y) = ∑| xi − yi | 1≤ i ≤ n i =1 i =1
度量空间

设E 是集合,若映射:[0,)d E E R +×=+∞ 满足下述性质: M1:(,)0d x y x y =⇔= M2:(,)(,)d x y d y x = M3:(,)(,)(,)d x y d x z d z y ≤+则称映射d 是E 上的度量(metric),(,)d x y 称为点x ,y 间的距离(distance),(,)E d 称为度量空间(Metric space)[例1] 在实线R 上,映射(,)||x y x y →−是通常的度量 [例2] 设G 是一个(加法)交换群,映射:p G R + 满足:()00;()();()()()p x x p x p x p x y p x p y =⇔=−=+≤+则映射(,)()d x y p x y =−是G 上的度量 比如,12{(,,...,):}n n i R x x x x x R ==∈,1/1()(||),1nq q i i p x x q ==≥∑满足上述三个性质,因此1/1(,)()(||),1nq q i i i d x y p x y x y q ==−=−≥∑是n R 上的度量。
[例3] 离散度量:E 是一任意集合,(,)0;(,)1d x y if x y d x y if x y ===≠[距离空间的积]设{(,):1,2,...,}i i E d i n =是一簇度量空间,令积空间112(...)n i i n E E E E E ==×=×××,则(1)1/1(,)(,),1qnqq i i i i d x y d x y q =⎛⎞=≥⎜⎟⎝⎠∑(2)(,)sup (,)i i i i d x y d x y ∞= 均为积空间E 上的度量 [度量的等价性]设,d d ′是集合E 上的两个度量,如果存在常数12,0c c >使得1212(,)(,)(,),(,)()c d x y d x y c d x y x y E Ec d d c d ′≤≤∀∈×′≤≤则称,d d ′是等价的,记作d d ′∼[例4] 在积空间1n i i E E ==×中,不难验证:1/,1q q d d n d q ∞∞≤≤≥因此,{:[1,]}q d q ∈∞是E 上的一簇等价度量。
21度量空间与连续映射

2.1 度量空间与连续映射1.定义σ, 'σ:⨯R R →R 使得对任意x , y ∈R , 有2(,)()x y x y σ=-和22'(,)||x y x y σ=-. 证明σ和'σ都不是R 的度量.证明: 取2x y z +=, 其中,x y ∈R , x y ≠. 则()()2,,2x y x z z y σσ-⎛⎫== ⎪⎝⎭,()()()()2,,,2x y x z z y x y σσσ-+=<. 故σ不是R 的度量.()22',0x y x y x y σ=⇒=⇒=±. 故'σ也不是R 的度量.2. 证明: 只含有有限个点的度量空间都是离散的度量空间.证明: 设(),X ρ是一个度量空间, 其中{}1,n X x x = .(){},1min |,,2i j i j x x x x X i j δρ∈≠. 则对任意i j x x ≠,(),i j x x ρδ>. 这样, (),X ρ是一个离散的度量空间.3. 设(,)X ρ是一个离散的度量空间. 证明: (1) X 的每一个子集都是开集;(2) 如果Y 也是一个度量空间, 则任何映射:f X Y →都是连续的.证明: (1) 对任意x X ∈, 取0x δ>, 使得y X ∈, y x ≠有(),xx y ρδ>. 则(){},x B x x δ=. X 的单点子集都是开集. 从而X 的每一个子集都是开集.(2) 设f 是从X 到Y 的任一映射.任取x X ∈及0ε>. 则()()(){}()(),,x f B x f x B f x δε=⊂,其中x δ定义如(1). 故f 连续.4. 集合X 的两个度量1ρ和2ρ称为等价的, 如果X 的子集A 是度量空间1(,)X ρ的开集当且仅当A 是度量空间2(,)X ρ的开集.设1ρ和2ρ是集合X 的两个等价的度量, Y 是一个度量空间, :f X Y →. 证明f 相对于度量1ρ是连续的当且仅当f 相对于度量2ρ是连续的.证明: 设f 相对于度量1ρ是连续的. 任取Y 中开集B . ()1f B -为1(,)X ρ的开子集.因为1ρ和2ρ是X 的等价度量, ()1f B -亦为2(,)X ρ的开子集. 由定理2.1.4, f 相对于度量2ρ是连续.若f 相对于度量2ρ是连续, 则同理可推出f 相对于度量1ρ连续.5. 定义1ρ,2ρ22:→R R 使得对于任何12(,)x x x =, 212y=(y ,)y ∈2R ,1(,)x y ρ=max {}1122||,||x y x y -- 21122(,)||||x y x y x y ρ=-+-证明:1ρ和2ρ以及2R 的通常度量ρ是2R 的等价的度量.在平面上取定一个直角坐标系, 就以上提到的每一种度量画一个单位圆, 看看它们是什么样子的.证明: 先证明1ρ,2ρ是2R 的度量. 显然它们满足度量的条件(1), (2). 下面证明它们满足三角不等式. 设()()()2121212,,,,,x x x y y y z z z ===∈R .(){}{}{}{}()()11122111122221122112211,max ||,||max ||||,||||max ||,||max ||,||,,.x y x y x y x z z y x z z y x z x z z y z y x z z y ρρρ=--≤-+--+-≤--+--=+()()()()()21122111122221122112222,||||||||||||||||||||,,.x y x y x y x z z y x z z y x z x z z y z y x z z y ρρρ=-+-≤-+-+-+-=-+-+-+-=+故1ρ,2ρ是2R 的度量.其次证明证明1ρ, 2ρ和ρ等价.()()()11,,2,.x y x y x y ρρρ≤≤(1)设U 为()2,ρR 中的开集, 即对任意x U ∈, 存在0ε>, 使(),B x U ρε⊂, 其中(),B x ρε表示度量空间()2,ρR 中x 的ε-邻域.由(1)右边不等式, ()1,/2B x U ρε⊂. 即见U 是()21,ρR 中的开集.反之, 设U 是()21,ρR 中的开集, 即对任意x U ∈, 存在0ε>, 使()1,B x U ρε⊂. 由(1)左边不等式, (),B x U ρε⊂. 即见U 是()2,ρR 中的开集.因此, ()21,ρR 和()2,ρR 有相同的开集, 1ρ和ρ等价.又()()()2,,2,x y x y x y ρρρ≤≤(2)利用此不等式, 仿上可证()22,ρR 和()2,ρR 有相同的开集. 从而2ρ和ρ等价.图形略.6. 从欧氏平面2R 到实数空间R 的映射m , 2:s →R R 定义为对于任何12(,)x x x =,()m x =max {}12,x x12()s x x x =+证明m 和s 都是连续映射.证明: 先征m 是连续映射. 设(),x x y =是2R2中任意一点. 对任意0ε>, ()212,y y y =∈R , 因为(){}{}{}()()111221212,max ||,|||max ,max ,|||x y x y x y x x y y m x m y ρ=--≥-=- (其中1ρ是第5题中定义的2R2大度量), 故()()()(),,m B x B m x εε⊂. 于是m 在点x 对于度量1ρ而言是连续的. 由于2x ∈R 是任意的, 从而m 对于度量1ρ而言连续. 由第4题知m 对于2R2通常的度量ρ连续.其次证明s 连续. 设(),x x y =是2R2中任意一点. 对任意0ε>, ()212,y y y =∈R , 因为()()()()211221212,|||||()|||x y x y x y x x y y s x s y ρ=-+-≥+-+=- (其中2ρ是第5题中定义的2R2大度量), 故()()()(),,s B x B s x εε⊂. 于是s 在点x 对于度量2ρ而言是连续的. 由于2x ∈R 是任意的, 从而m 对于度量2ρ而言连续, 从而由第4题知知s 对度量ρ连续.7. 设(),X ρ是一个度量空间.1ρ, 2ρ:X X ⨯→R 分别定义为对于任意x , y X ∈,1(,)(,)1(,)x y x y x y ρρρ=+2(,),(,)1(,)1,(,)1x y x y x y x y ρρρρ≤⎧=⎨>⎩如果如果证明1ρ,2ρ和ρ是X 的三个等价度量.证明: 先证明1ρ,2ρ是X 的度量. 1ρ, 2ρ显然满足度量的条件(1), (2). 下面证明它们满足三角不等式. 设,,x y z X ∈.1ρ满足三角不等式是因为()()()()()()()()()()()()1111,11,111,,,,1,,1,,,,.x y x y x z z y x z z y x z z y x z z y x z z y ρρρρρρρρρρρρ=-+≤-++=+++++≤+若2ρ不满足三角不等式, 即存在,,x y z X ∈, 使()()()222,,,.x y x z z y ρρρ>+ 由2ρ的定义, ()()2,,x y x y ρρ≤, 且()2,1x y ρ≤, 从而()2,1x z ρ<, ()2,1z y ρ<, 故()()2,,x z x z ρρ=, ()()2,,z y z y ρρ=, 于是()()(),,,x z z y x y ρρρ+<, 与ρ是度量矛盾.因此,1ρ, 2ρ都是X 的度量.其次证明1ρ,2ρ和ρ等价.对任意,x y X ∈, 0ε>, 因为()()1,,x y x y ρρ≤, 所以()()1,,B x B x ρρεε⊂. 从而()1,X ρ中的开集是(),X ρ中的开集. 反之, 若V 是(),X ρ中的开集, 对任意x V∈, 存在01/2ε<<, 使得(),B x V ρε⊂. 对任意()1,/2y B x ρε∈, 因为()()()11,2,,11,14x y x y x y ερρερ=<<--所以()()1,/2,B x B x V ρρεε∈⊂. 这样, V 是()1,X ρ中的开集. 故(),X ρ, ()1,X ρ有完全相同的开集, ρ和1ρ等价.因为()()2,,x y x y ρρ≤, 所以()2,X ρ中的开集是(),X ρ中的开集. 另一方面, 当(),1x y ρ≤时,()()()21,,,x y x y x y ρρρ=≥; 当(),1x y ρ>时,()()21,1,x y x y ρρ=>. 因此, 总有()()21,,x y x y ρρ≥. 从而()1,X ρ中的开集也是()2,X ρ中的开集. 即(),X ρ中的开集也是()2,X ρ中的开集. (),X ρ和()2,X ρ有完全相同的开集, ρ和2ρ等价.所以, 1ρ, 2ρ和ρ等价.2.2 拓扑空间与连续映射1. 证明例2.2.5.证明: (1) ∅∈T . 'X X ∈⇐=∅T.(2) 设,A B ∈T. 若{},A B ∅∈, 则A B ⋂=∅∈T. 若{},A B ∅∉, 则()'''A B A B ⋂=⋃可数,A B ⋂∈T.(3) 设1⊂T T.{}21-∅ TT . 显然12= TT. 若2=∅T, 则12==∅∈ TTT.若2≠∅T, 选取02A ∈T. 这时有()()122''''0A A A A A A A ∈∈∈==⊂TTT . 可见()1'A A ∈T可数. 故1∈ T T.2. 对于每一个n +∈Z , 令{}|n A m m n +=∈≥Z , 证明{}{}|n A n +=∈⋃∅Z T 是正整数+Z 的一个拓扑.证明: ∅∈T. 1A +=∈Z T. ∅⋂∅=∅∈T; i A ∅⋂=∅∈T, i ∀;{}max ,i j i j A A A ⋂=∈T .{}∅=∅∈ T;{}{}11min |i i A A ∈-∅=∈ T T T,{}1∀∅≠∈T T.3. 就2n =, 3, 4指出:(1) 恰含n 个点的集合一共有多少个拓扑?(2) 恰含n 个点的拓扑空间一共有多少个同胚等价类?解: 略.4. 分别确定有限补空间和可数补空间何时是可度量化空间.解: 我们证明, 有限(可数)补空间X 可度量化当且仅当X 有限(可数). 若有限(可数)补空间X 有限(可数), 易验证X 的单点集为开集, 从而X 离散, 故可度量化(见第5题). 下证条件的必要性.设X 是可度量化的有限补空间, X 的度量ρ诱导X 的有限补拓扑. 若X 为单点集, 显然有限. 设X 含有至少两个点. 取,x y X ∈, x y ≠. 令正数()1/2,x y ερ<⋅. 因为(),B x ε是X 的开集, 则()()',B x ε有限. 同理()()',B y ε有限. 利用三角不等式可验证()(),,B x B y εε⋂=∅, 即()()()',,B x B y εε⊂. 所以(),B x ε有限. 这样()()()',,X B x B x εε=⋃有限.设X 是可数补空间且X 的度量ρ诱导X 的可数补拓扑. 取x X ∈. 则{}{}(){}{}'''11,,.n n X x x x B x x B x n n ++∈∈⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋃=⋃=⋃ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭Z Z由于各'1,B x n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭可数, 易见X 可数.5. 证明每一个离散空间都是可度量化的.证明: 设X 离散, 即X 的任一子集都是开集. 令()20,;:,, 1..x y X x y x y ρρ=⎧→=⎨≠⎩若若R则ρ是X 上的度量. 对任意x X ∈, (){},1/2B x x =. 即X 的单点集都是(),X ρ中的开集. 从而X 对所有子集都是(),X ρ中的开集. ρ诱导X 的离散拓扑.6. 设(),X ρ是一个度量空间. 证明作为拓扑空间X 是一个离散空间, 当且仅当ρ是一个离散度量.证明: 如果ρ离散, 则对任意x X ∈, 存在δ使得(){},B x x δ=. 从而X 的单点集都是闭集,(),X ρ离散. 如果ρ不离散, 则存在x X∈, 对任意0δ>, 存在y X ∈, y x ≠,(),x y ρδ<. 那么{}x 不是(),X ρ中的开集, (),X ρ作为拓扑空间不是离散的.7. 设1T和2T是集合X 的两个拓扑. 证明12⋂TT也是X 的拓扑. 举例说明12⋃T T可以不是X 的扑拓.证明: 由于12,,X ∅∈T T, 所以12,X ∅∈⋂TT. 对任意12,A B ∈⋂TT, 则12,A B ⋂∈T T, 所以12A B ⋂∈⋂TT. 对任意12⊂⋂TT T, 即12,⊂TT T,有12,∈ TT T. 故12∈⋂ TT T. 所以12⋂TT是X 的拓扑.{}1,2,3X , {}{}{}1,1,1,2,3∅ T , {}{}{}2,2,1,2,3∅ T. 则12,T T是X 的拓扑. 但{}{}{}{}12,1,2,1,2,3⋃=∅T T不是X 的扑拓.8. 设{}γγ∈ΓT是由X 的一些拓扑构成的集族, 其中指标集Γ非空. 证明:γγ∈ΓT是X 的一个拓扑.证明: 因为对任意γ∈Γ有,X γ∅∈T, 所以,X γγ∈Γ∅∈T. 对任意,A B γγ∈Γ∈ T, 则对每一γ∈Γ有A B γ⋂∈T , 从而A B γγ∈Γ⋂∈T. 对任意γγ∈Γ⊂ TT, 则对任意γ∈Γ, γ∈T T,γ∈ TT. 故γγ∈Γ∈ T T.γγ∈ΓT是X 的一个拓扑.9. 设(),X T 是一个拓扑空间,∞是任何一个不属于X 的元素. 令{}*X X =⋃∞,{}**X =⋃TT. 证明()**,X T 是一个拓扑空间.证明: **,X ∅∈T. 任取*,A B ∈T . 若,A B 有一个位*X , 则*A B ⋂∈T; 若,A B ∈T , 则*A B ⋂∈⊂TT. 任取*1⊂T T. 若*1X ∈T, 则**1X =∈ T T ; 若*1X ∉T, 即1⊂T T, 则*1∈⊂ TTT. 所以()**,XT是一个拓扑空间.10. 证明:(1) 从拓扑空间到平庸空间的任何映射都是连续映射; (2) 从离散空间到拓扑空间的任何映射都是连续映射.证明: 设()():,,XY f X Y →T T .(1) {}(){}1,,YYXY f X -=∅⇒=∅⊂TTT.(2)若X 离散, 则()()1Y Xf X -⊂=T P T11. 举例说明拓扑空间的连续的一一映射的逆映射可以不是连续的. 如果要求所涉及的拓扑空间都是可度量化的, 你还能举出这样的例子吗?解: {}0,1X , ()1X TP, {}2,X ∅ T. X 上的恒同映射X i 是从()1,X T到()2,X T 的连续的一一映射, 但不是从()2,X T 到()1,X T 的连续的映射.在所涉及的空间都是度量空间时这样的例子也是存在的. 令12:,it p S t e π→ R .1[0,1)|:[0,1)p S →是连续的一一映射而()1[0,1)|p -不连续.12. 设X 和Y 是两个同胚的拓扑空间. 证明: 如果X 是可度量化的, 则Y 也是可度量化的.证明: 设h 是从拓扑空间(),XX T到拓扑空间(),Y Y T 的同胚,X ρ是X 上诱导拓扑XT的度量. 令()()()()211122:,,,.Y X Y y y h y h y ρρ--→ R 易验证Y ρ是Y 的度量.由于h 是等距, 从而是从(),X X ρ到(),Y Y ρ的同胚. 则()()()(),,Y X XYY X h h ρρ===TTTT, 即Y ρ诱导YT.习题2.41. 求集合的导集和闭包.(1) 设A 是有限补空间X 中的一个无限子集. 求A 的导集和闭包; 解: (),.d A X A X ==(2) 设A 是可数补空间X 中的一个不可数子集. 求A 的导集和闭包; 解: (),.d A X A X ==(3) 求实数空间R 中的有理数集Q 的导集和闭包; 解: (),.d ==(4) 设*X 是§2习题9中定义的拓扑空间. 求单点集{}∞的导数和闭包. 解: ({}),{}{}.d ∞=Φ∞=∞ 2. 设X 是一个拓扑空间, ,.A B X ⊂证明:(1) x X ∈是集合A 的凝聚点当且仅当x 是集合{}A x -的凝聚点; 证明:x 为A 的聚点⇔对于任意的U ∈x U ,({})U A x ⋂-≠Φ⇔(({}){})(({})U A x x U A x ⋂--=⋂-≠Φ⇔x 为{}A x -的聚点.(2) 如果(),d A B A ⊂⊂ 则B 是一个闭集.证明: 由于(),d A B A ⊂⊂ 故()().d B d A B ⊂⊂因此B 是一个闭集. 3. 证明:闭包运算定义中的Kuratovski 公理等价于条件: 对于任何,,A B X ⊂*****()(())()()A c A c c B c A B c ⋃⋃=⋃-Φ证明: 若Kuratovski 公理成立, 则********()(())()()()()().A c A c c B c A c B c A B c A B c ⋃⋃=⋃=⋃=⋃-Φ反之, 令,A B ==Φ 则*****()(())()(),c c c c c Φ⋃Φ⋃Φ=Φ-Φ=Φ即*().c Φ=Φ 令,B =Φ 则 *****()(())()(),A c A c c A c A c A ⋃⋃Φ=⋃= 这说明*().A c A ⊂ 令,A =Φ 则 *****()(())()(),c c c B c B c Φ⋃Φ⋃=-Φ即***(())().c c B c B = 由上述结论知***()()().c A B c A c B ⋃=⋃4. 设X 是一个拓扑空间; {}A γγ∈Γ是X 中的一个任意子集族, 其中指标集Γ非空;,.A B X ⊂证明以下三个包含关系, 并举例说明每一个都不能改为等号.(1) A A γγγγ∈Γ∈Γ⋃⊂⋃; (2) A A γγγγ∈Γ∈Γ⋂⊃⋂; (3) .A B A B -⊂-解: (1) 对于每一个γ∈Γ, 都有A A γγγ∈Γ⊂⋃, 所以 ,A A γγγ∈Γ⊂⋃ 从而A A γγγγ∈Γ∈Γ⋃⊂⋃.(2) 对于每一个γ∈Γ, 都有A A γγγ∈Γ⊃⋂, 所以 ,A A γγγ∈Γ⊃⋂从而A A γγγγ∈Γ∈Γ⋂⊃⋂.(3) 因为()(),A A B A B =-⋃⋂ 所以()()().A B A B A B B A B A B B A B -=-⋃⋂-=-⋃⋂-⊂-5. 设X 是一个集合; F 是的一个子集族, 满足定理2.4.3中的条件 (1), (2), (3). 证明有惟一的一个拓扑T 使得F恰好为拓扑空间(,)X T中的全体闭集构成的集族.证明: 记{}'|F X F =⊂∈TF.因为,X Φ∈F ,所以,X Φ∈T ;设,A B ∈T , 则'',A B ∈F , '''()()A B A B ⋂=⋃∈F,所以A B ⋂∈T.设⊂1T T, 则'''()A A A A ∈∈⋃=⋂∈11TFT.其中'{|}A A =∈11F T .因此T 是X 的一个拓扑并且由T的构造知, F 恰好是拓扑空间(,)X T全体闭集族. 若1T也是X 的拓扑, 且使F 恰好使拓扑空间(,)X 1T 的全体闭集族, 设U ∈T , 即'U 是拓扑空间(,)X T的闭集. 从而也是拓扑空间(,)X 1T 的闭集. 即U ∈1T, 所以 ⊂1TT . 同理可证⊂1T T, 因此=1T T.6. 证明: 拓扑空间中的每一个子集的导集为闭集当且仅当每一个单点集的导集为闭集. 证明: 必要性显然, 下面证充分性.设,A X ⊂ 任取,x A ∈ 已知({})({}),dd x d x ⊂于是()(({}){})({})({})({})({})({})({})()()()({})()()x Ax Add A dd A x x dd A x dd x A x d A x d x A x d A dd A dd A A x d A d A ∈∈=-⋃=-⋃⊂-⋃-⋃=-⋃=⊂-⋃=这说明A 是闭集. (这是熊金城教授给出的答案)7. 设X 是一个拓扑空间; {}A γγ∈Γ是X 中的一个子集族. 证明: 如果对于每一个,γ∈Γ集合A γ导集是闭集, 则集合A γγ∈Γ⋃的导集是闭集. 利用第六题的方法依虎画猫就可以作出来.8. 证明: 度量空间中的每一个子集的导集都是闭集.证明: 设(,)X ρ是度量空间, {}x 是(,)X ρ的独点集, 对任意的'({})y x ∈,.y x ≠ 记(,)0,x y ερ=> 则'(,)({})2B y x ε⊂, 即 '({})x 是开集, 从而{}x 是闭集.下证(,)X ρ的每一个子集的导集都是闭集, 设ρT是由X 的度量ρ诱导出来的拓扑, 作为拓扑空间(,)X ρT的每一个独点集都是闭集, 即({}){},d x x ⊂ 又因为({}),x d x ∉ 所以({})d x =Φ. 因此(,)X ρT 中的每一个独点集都是闭集.由第6题知(,)X ρT中每一个子集的导集都是闭集. 所以(,)X ρ中每一个子集的导集都是闭集.习题2.51. 就§2.4习题1的条款求取指定集合的内部和边界. 解: (1) 若'A 是一个有限集, 则 ',()A A A A =∂= ; 若'A 是一个无限集, 则,()A A X =Φ∂= .(2) 若 'A 是一个可数集, 则 ',()A A A A =∂= ;若'A 是一个不可数集, 则,()A A X =Φ∂= .(3) (),().=Φ∂= (4) ({}),({}){}.∞=Φ∂∞=∞2. 设X 是一个拓扑空间, ,.A B X ⊂ 证明: (1) ();A A A -=⋃∂ ()A A A =-∂ .证明: ''()()()A A A A A A A A A X A ⋃∂=⋃⋂=⋂⋃=⋂=.''()()()A A A A A A A A A A -∂=-⋂=⋂⋃=Φ⋃= .(2) ()(),()();A A A A -∂⊂∂∂⊂∂证明: ''()()()()()A A A A A A ∂=⋂⊂⋂=∂ . (3) ()()(),();A B A B A B A B ∂⋃⊂∂⋃∂⋃⊃⋃证明:''''''()()()()()(())(())()()()()A B A B A B A B A B A A B B A B A A B B A B ∂⋃=⋃⋂⋃=⋃⋂⋃=⋂⋃⋃⋂⋃⊂⋂⋃⋂=∂⋃∂(4) ()A ∂=Φ当且仅当A 是一个既开又闭的集合;证明: 由于 ()A A A =⋃∂=Φ; ()A A A A =-∂=. 所以A 是既开又闭的集合;反之, 若A 是既开又闭的集合, A A =, ''A A =, 所以 ''()A A A A A ∂=⋂=⋂=Φ. (5) (())();A A ∂∂⊂∂ 证明:因为'()A A A ∂=⋂为闭集, 所以()()A A ∂=∂.则'()()(())()()A A A A A ∂∂=∂⋂∂⊂∂=∂.(6) ()(()()).A B A B A B A B ⋂⋂∂⋂=⋂⋂∂⋃∂ 证明:'''''''''()()()()()()()()(())(())(()())A B A B A B A B A B A B A B A B A A B B A B A A A B B B A B A A B B A B A B ⋂⋂⋂⋂⋂=⋂⋂⋃=⋂⋂⋃=⋂⋂⋃⋂⋂=⋂⋂⋂⋃⋂⋂⋂=⋂⋂∂⋃⋂⋂∂=⋂⋂∂⋃∂ 3. 仿照闭包运算的定义自行定义“内部运算”. 并且自行叙述和证明与定理2.4.8相应的定理.定义:设X 是一个集合. 映射 *:()()e X X →P P 如果满足条件: 对于任何,()A B X ∈P , (1) *()e X X =; (2) *()e A A ⊂;(3) ***()()()e A B e A e B ⋂=⋂; (4) **(())e e A A =.则称为集合X 的一个内部运算.定理: 设X 是一个集合, *:()()e X X →P P 是集合X 的一个内部运算. 则存在X 的惟一一个拓扑T使得在拓扑空间(,)X T中对于每一个A X ⊂有*()e A A = .证明: 我们证明X 的子集族*{|()}U X e U U =⊂=T 便是定理要求的那个惟一的拓扑.首先验证T是X 的一个拓扑:(i) 根据 (1), (2) *()e X X =, *()e Φ⊂Φ, 即*()e Φ=Φ, 故 ,X Φ∈T .(ii) 设,A B ∈T , 则 **(),()e A A e B B ==. 根据 (3)式 ***()()()e A B e A e B ⋂=⋂, 所以 A B ⋂∈T .(iii) 设⊂1TT ,对于任意的A ∈1T 都有*()e A A =. 由(2) 得*()A A e A A ∈∈⊂ 11T T , 另一方面, 若A B ⊂, 则A AB =⋂, *****()()()()()e A e A B e A e B e B =⋂=⋂⊂,所以**()()A e A e A ∈⊂ 1T ,**()()A A e A e A ∈∈⊂11TT , 故 *()A A e A A ∈∈= 11T T . 所以A A ∈∈1TT.假设 T也是X 满足定理要求的拓扑, 也就是说, 任何一个集合A X ⊂在拓扑空间(,)X T中的内部也是*()e A . 若A ∈T, 则 **1()()A e A A e A === . 所以⊂1TT , 同理可得 ⊂1TT故 1T =T.4. 证明: 对于任何拓扑空间中的任何一个子集A , 经过取补集, 闭包, 内部三种运算最多只能产生14个集合. 并且在实数空间中选取一个适当的子集, 使它经过上述三种运算恰能产生14个不同的集合.证明: 由于''()A A = , 即A 取内部运算可以通过取补集及闭包得到, 因此仅需考虑A 取补集和闭包所生成的集合, 有因为 '',A A A A ==, 因此只考虑交替取补集及闭包的运算. 首先易证: A A ---= , 又因为''()A A = , 所以 ''''''A A ------=, '''''A A ------=. 对A 先取补集运算, 最多可以得到7个不同的集合: '''''''''''''''',,,,,,A A A A A A A------------.对A 取闭包运算, 最多可以得到6个不同的集合: ''''''''',,,,,A A A A A A------------. 综上: 连同集合A , 至多有14个不同的集合. 5. 设A 是度量空间(,)X ρ中的一个子集. 证明: (1) x A ∈当且仅当'(,)0;x A ρ>(2) ()x A ∈∂当且仅当既有(,)0x A ρ=又有'(,)0x A ρ=. 证明: (1) ''()x A A ∈= 当且仅当 'x A ∉当且仅当'(,)0.x A ρ>(2) ()x A ∈∂ 当且仅当 'x A A ∈⋂ 当且仅当 x A ∈ 并且 'x A ∈当且仅当(,)0x A ρ= 并且 '(,)0x A ρ=.6. 设X 和Y 是两个拓扑空间, :f X Y →. 证明以下两个条件等价: (1) f 连续;(2) 对于Y 中的任何一个子集B , B 的内部的原像包含于B 的原像的内部, 即11()(()).f B f B --⊂证明: (1)⇒(2) 由于f 连续, 所以对于Y 中的任何一个子集B , 1()f B - 是开集, 故()()11()f B f B --= , 又因为 ()()11f B f B --⊂ , 所以 11()(()).f B f B --⊂反之, 对于任意的开集B , 111()(())(()).f B f B f B ---=⊂这说明 11(())(())f B f B --= ,1()f B -是开集, f 连续.7. 设X 和Y 是两个拓扑空间. 又设映射:f X Y →满足条件: 对于X 的任何一个子集,A A 的像的内部包含于A 的内部的像, 即(())()f A f A ⊂ .(1) 证明: 如果f 是一个满射, 则f 连续;(2) 举例说明当f 不是满射时f 可以不是连续映射.证明: 对于Y 中任意的开集B , 由于f 是满射, 故1(())B f f B -=.11((()))((()))B f f B f f B --=⊂ , 所以 ()11()()f B f B --⊂ , 这说明1()f B -是开集.f 是连续的.习题2.61. 设X 是一个集合, 则X 的子集族B和 B是X 的同一个拓扑的两个基的充分必要条件是B和 B满足条件: (1) 如果x B ∈∈B, 则存在 B∈B 使得 x B B ∈⊂; (2) 如果 ,x B∈∈B 则存在B ∈B 使得 x B B∈⊂. 证明: 设 B, B是X 的拓扑T 的两个基, 如果 x B ∈∈B, 根据定理2.6.2, 存在B∈B , 使得 x B B ∈⊂. 同理(2)也成立. 反之, 如果 B 和 B 分别是拓扑T 和 T的基, 并且(1),(2)成立.设x B∈∈B , 由条件(2), 存在x B ∈B, 使得 x x B B ∈⊂. 从而 {}x x B x B B x B B ∈∈=⊂⊂ , 即 x x B B B ∈= . 任取 A ∈T, 存在 ⊂1B B 使得 ()x B B x B A B B ∈∈∈==∈ 1B BT , 所以 ⊂TT ; 类似可以得到 ⊂TT.因此 T=T.2. 欧式平面2R 的一个子集D 叫做一个开矩形, 如果存在,,,a b c d ∈R 满足条件a b <和,c d < 使得(,)(,),D a b c d =⨯ 其中(,)a b 和(,)c d 都表示开区间. 证明: 2R 中所有的开矩形构成的集族是2R 的一个基. 证明: 记 {(,)(,)|,,,,,}a b c d a b c d a b c d =⨯∈<< B, 则B 是2 的一个开集族.任取2(,)P x y =∈ , 任意的PU ∈U , 存在0,ε> 使得(,)B P U ε⊂, 取,,,,2222a x b x c y d y εεεε=-=+=-=+ 则(,)(,)(,),a b c d B P U ε⨯⊂⊂ 且(,)(,)a b c d ⨯∈B , 由定理2.6.2知B 构成2 的基.3. 证明实数集合R 有一个拓扑以集族{[,)|}{(,]|}a a b b ∞∈⋃-∞∈ 为它的一个基,并说明这个拓扑的特点. 证明:记{(,]|}{[,)|}a ab b =-∞∈⋃∞∈ C , 因为(,][S S aa ∈=⊃-∞⋃∞= C, 所以 S S ∈= C. 由定理2.6.4知, 存在 的惟一的拓扑以C为子基.任意x ∈ , 因为(,][,){}x x x -∞⋂∞=∈T, 即 的每一个独点集都是开集, 因此T 是 的离散拓扑.4. 考虑实数集合 有一个拓扑T以集族{(,)|}a a ∞∈ 为它的一个基, 并且(1) 将T明确地表示出来;(2) 设A ⊂ , 求A 在拓扑空间(,)X T 中的闭包. 实数集合 的这个拓扑T通常称为右手拓扑. 解: 记{(,)|}a a =∞∈ B, 显然B B ∈= B , 设12(,),(,)B a B b =∞=∞∈B, 则12B B ⋂∈B . 由定理2.6.3知 有以B 为基的拓扑.(1) {,}X =⋃ΦTB ;(2) 设{(,]|}b b =-∞∈ F 是(,) T的所以闭集构成的集族, 任意的A ⊂ ,,{(,]|(,]}(,]F F AA F b A b SupA ∈⊃==-∞⊂-∞=-∞ F .5. 考虑实数下限拓扑空间l . 令B为例2.6.1中定义这个拓扑空间的拓扑的那个基. 证明: (1) B中的每一个元素在l 中既是开集又是闭集;(2) l 有一个子基{(,)|}{[,)|}b b a a -∞∈⋃∞∈ . 证明: (1) 任意的[,)a b ∈⊂B T , 即[,)a b 是开集. 又因为(,)[,),[,)[n n a a n a b b b n ∈∈∞=-∞=+∈T , 所以'(,)[,)([,aba b -∞⋃∞=∈T , 因此[,)a b 是闭集, 故B 中的成员是既开又闭的集合. (2) 记{(,)|}{[,)|}b b a a =-∞∈⋃∞∈ S , 则S是T 的子族, 不难验证,S 中任意有限个成员的交恰好是下限拓扑T 的基, 因此S是T的子基.6. 设X 是一个集合, {}γγ∈ΓT 是集合X 的一族拓扑, 其中指标集Γ≠Φ.证明:(1) 集族γγ∈Γ⋃T是X 的某一个拓扑T的一个子基.(2) 如果 T是X 的一个拓扑, 并且对于每一个γ∈Γ有 ,γ⊂T T则 .⊂T T证明(2)因为γγ∈Γ⋃T为T的子基,所以12{|,1,2,}n i S S S S i n γγ∈Γ=⋂⋂∈⋃= B T为T 的基. 任意的B ∈B, 则存在,1,2,i S i n γγ∈Γ∈⋃= T使得12n B S S S =⋂⋂ , 由于对每一个 ,γγ∈Γ⊂TT, 所以 γγ∈Γ⋃⊂TT, 即 i S ⊂T,1,2,i n = . 从而 B ∈T. 因为 ∈BT, 故⊂TT.7. 设X 是一个度量空间. 证明: 如果X 有一个基只含有有限个元素, 则X 必为只含有有限多个点的离散空间. 证明: 设12{,,}n B B B = B为X 的一个基, 假定X 无限, 取互异的1n +个点121,,,n n x x x x X +∈ , 令11min {(,)}i j n i j x x δρ≤<≤+=, 其中ρ为X 的度量, 则(,),1,2,1,i i x B x i n δ∈=+ U 并且(,)(,),i j B x B x i j δδ⋂=Φ≠. 因为B是X 的基, 故存在i B ∈B,(,),1,2,1,i i i x B B x i n δ∈⊂=+ 从而,,i j B B i j ⋂=Φ≠因此B至少有1n +个成员,矛盾.习题2.71. 设X 是一个离散空间, {}i i x +∈ 是X 中的一个序列. 证明: 序列{}i i x +∈ 收敛当且仅当存在M +∈ 使得当,i j M >时, 有i j x x =. 证明: 充分性显然, 下证明必要性设{}i i x +∈ 是X 中的一个序列, 并且{}i i x +∈ 收敛于x , 因为{}x 是x 的开邻域, 所以存在M +∈ 使得当i M >时, 有i x x =,因此当,i j M >时, 有i j x x =.2. 举出定理2.7.2和2.7.3的逆定理不成立的例子, 使得所涉及的空间都只含有可数多个点.3. 设X 是一个度量空间. 证明:(1) X 中的任何一个收敛序列都只有惟一的极限; (2) 定理2.7.2的逆定理成立;(3) 对于任何一个映射:f X Y →定理2.7.3的逆定理成立, 其中Y 是任何一个拓扑空间. 证明: (1) 设{}i i x +∈ 是X 中的一个序列, 并且,x y 为其极限, 若x y ≠, 则(,)0x y ρ>, 取0(,)x y ερ<<, 存在N ∈ , 使得当i N >时, (,)(,)22i x B x B y εε∈⋂. 从而(,)(,)(,)i i x y x x y x ρρρε<+<矛盾.(4) 逆定理: 如果X 中的一个序列{}i i x ∈ 收敛于x X ∈蕴涵着Y 中的序列{()}i i f x ∈ 收敛于()f x , 则f 连续.证明: 假设f 不连续, 则存在一个Y 中的开集U , 使得1()f U -不是X 的开集. 即存在1()x f U -∈, 对于任意的0ε>, 1(,)()B x f U ε-⊄. 取{}n n x ∈ , ,n x x →并且1()n x f U -∉, 则{()}n n f x ∈ 不可能收敛于()f x ,矛盾.。
度量空间(距离空间)

《度量空间》读书笔记金融数学10本 黄小听 17号关键词:度量空间 距离 连续映射 可分性 列紧性 完备性 完备化在数学分析中,当实数集R 中点列}{n x 的极限为x 时,用||x x n -来表示n x 与x 的接近程度。
实际上,|x x |n -可表示为数轴上n x 与x 这两点间的距离。
那么R 中点列}{n x 收敛于x 也就是指n x 与x 之间的距离随着∞→n 而趋于0,即0),(lim =∞→x x d n n 。
于是设想在一般的点集X 中如果也有“距离”,则在点集X 中也可借这一距离来定义极限,那么究竟什么是距离呢?一 度量空间的定义定义1.1 设X 是一个非空集合,若存在映射R X X d →⨯:,使得X z y x ∈∀,,,均满足以下三个条件:(1)0),(≥y x d ,且0),(=y x d 当且仅当y x =(非负性);(2)),(),(x y d y x d =(对称性);(3)),(),(),(z y d y x d z x d +≤(三角不等式),则称d 为X 上的一个度量函数(或距离函数),),(d X 为度量空间(或距离空间),简记为X 。
注:若X 为度量空间,Y 是X 的一个非空子集,则Y 也是一个度量空间,称Y 为X 的子空间。
例1-1 n 维欧氏空间n R 。
解析:n 维欧氏空间n R ,n R 表示n 维向量),,,(21n x x x x ⋯=。
对于n R 中任意两点),,,(x 21n x x x ⋯=,)y ,,,y (y 21n y ⋯=,定义: 21]||[),(12∑=-=n i i i y x y x d 易证)y x d ,(满足距离的条件,且其中的三角不等式为:≤-∑=21]||[12n i i i z x 21]||[12∑=-n i i i y x +21]||[12∑=-n i i i z y 因此,),(d R n 是度量空间,其中d 称为欧几里得距离。
点集拓扑学

点集拓扑学合肥工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版第一章 集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”)构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点或成员.集合也可以没有元素.例如平方等于2 的有理数的集合,既大于1 又小于2 的整数的集合都没有任何元素,这种没有元素的集合我们称之为空集,记作φ。
度量空间

度量空间
在近似代数中,对任意一个集合,赋予它一个或多个满足一定条件 的运算,就说这个集合具有一个代数结构,构成一个代数系统,从而可 在其上进一步研究代数问题。 ,使它构成一个拓扑空 对任意一个集合,赋予它一个“拓扑结构” 间,就可以在其上讨论“连续(变换) ”问题,研究拓扑变换(特殊的 连续映射)下的不变性 。
∞
二、开球/球形邻域
定义 设(X, ρ)为度量空间,ε>0,x∈X,X 的子集: B(x,ε)={ y∈X│ρ(x,y)<ε }
称为度量空间(X, ρ)的以点x为中心,以 为中心 ε为半径的“开球/球形邻
域” ,或点x的“ε-邻域(x-ε, x+ε)” ,即与点x距离ρ小于ε的所有点构成
的集合。
三、开集
定义 设(X, ρ)为度量空间, β是其 “所有开球” 构成的集合族, A⊆X,
, “所有开 若∃β0⊆β,使A=∪B∈β0B,则A称为度量空间(X, ρ)的“开集” 集”构成的集族记为Τρ。 定义说明:开集是若干开球的并集。 显然可知:每一个开球都是开集。
例 (1)实数空间 R 中的任意开区间(a, b)都是开集,
-4-
(1) X 的每一个子集都为开集同时又为闭集; (2) 若 Y 也是一个度量空间, 则任何映射 f: (X,d)→(Y,ρ)都是连续的。 证明
[3]
(1) 因为(X,d)是一个离散度量空间,则对于每一个x0∈X,
存在一个实数δ0>0,使得对于任何x∈X,x≠x0,d(x,x0)>δ0成立。 设A是X的任意子集,对于任意x0∈A,球形邻域B(x0,δ0)={x0}⊆A, 因此A是开集。 同理可证AC是开集,即证得A是闭集。 显然 X,Φ 既开又闭 所以 X 的每个子集既是开集又是闭集。 (2) 任意取x0∈X,ε>0,因为(X,d)是一个离散度量空间,所以总存在 δ>0,使得对于任何x∈X,d(x,x0)>δ。 当 d(x,x0)<δ 时,即 x∈B(x0,δ) ,便有 x=x0 ,从而 ρ(f(x),f(x0))=0<ε ,即 f(x)∈B(f(x0),ε),也就是f(B(x0,δ))⊂B(f(x0),ε),所以f在点x0处连续。 又由于点x0选取的任意性,所以f是连续的。 证毕。
度量空间中自列紧集、紧集、连通集与连续映射

开集与连续映射1.定义在度量空间的开子集上的函数,连续⇔开集的逆象是开集。
证明:设X 、Y 是度量空间,A 是X 的开子集,设有映射:f A Y →。
(1)充分性:设映射:f A Y →连续,需证开集的逆象是开集。
设S 是Y 的任一开子集,并设S 的逆象是()1R f S -=。
任取x R ∈,那么()f x S ∈。
因为A 是开集,所以存在正数x σ使得(),x U x A σ⊆。
因为S 是开集,所以存在正数x ε使得()(),x U f x S ε⊆。
因为:f A Y →是连续映射,故存在正数x τ使得()()()(),,x x f U x A U f x S τε⋂⊆⊆。
设{}min ,x x x δστ=,那么()(),,x x U x U x A δσ⊆⊆且()(),,x x U x U x δτ⊆,所以()()()()()()()(),,,,x x x x f U x f U x A f U x A U f x S δδτε=⋂⊆⋂⊆⊆,那么(),x U x R δ⊆。
所以S 的逆象()1R f S -=是开集。
(2)必要性:设开集的逆象是开集,需证映射:f A Y →连续。
任取x A ∈。
任取正数x ε,设()(),x S U f x ε=,显然S 是Y 的开子集。
设S 的逆象是()1R f S -=,那么R 是开集,所以存在正数x δ使得(),x U x R δ⊆ 。
因为()1R f S -= ,所以 ()()(),x f R S U f x ε⊆= 。
又因为(),x U x R δ⊆,所以()()()()(),,x x f U x f R S U f x δε⊆⊆= 。
所以映射:f A Y →连续。
自列紧集(列紧闭集)与连续映射1.度量空间的自列紧子集在连续映射下的象是自列紧集。
证明:设X Y 、是度量空间,A 是X 的自列紧子集。
设:f A Y →是连续映射,象集为()B f X Y =⊆。
度量空间与连续映射

[a,b]={x∈R|a≤x≤b} 却不是R中的开集.因为对于 a∈[a,b]而言, 任何ε>0,B(x,ε) [a,b] 都不成立.类 似地,半开半闭的区间 (a,b]={x∈R |a<x≤b}, [a,b)={x∈R|a≤x<b} 无限的闭区问 [a,∞)={x∈R|x≥a} , (-∞,b]={x∈R|x≤b} 都不是R中的开集.
1
(2)* 蕴涵(2). 设(2)* 成立. 对于任意x∈X,设U是f(x)的一个邻域, 即 存在包含 f(x)的一个开集V U.
f (U). 从而 x∈ f (V)
1 1
f (V)是一个开集, 根据(2)*,
1 f 所以 (U)是x的一个邻域,
1
因此 对于x而言,(1)*成立, 于是 f在点x处连续. 由于点x是任意选取的,所以f是一个连续映射.
三、连续映射
1、定义 •定义2.1.5 设X和Y是两个度量空间,f: X→Y, x0 x0 以及 ∈X如果对于f( )的任何一个球形邻域 x0 x0 B(f( ),ε),存在 的某一个球形邻域 x0 x0 x0 B( ,δ),使得f(B( ,δ)) B(f( ),ε), x0 则称映射在 点处是连续的.
即:A为度量空间X的开集 a A, B (a, ) A.
•球形邻域都是开集
def
例2.1.5 实数空间R中的开区间都是开集.
设a,b∈R,a<b.我们说开区间 (a,b)={x∈R|a<x<b} 是R中的一个开集.这是因为如果x∈(a,b), 若令ε= min{ x- a,b- x}, 则有B(x,ε)(a,b).也同样容易证明 无限的开区间 (a,∞)={x∈R|x>a}, (-∞,b)= {x∈R|x<b} (-∞,∞)=R 都是R中的开集.然而闭区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设 X, Y 是两个非空集合,所谓由 X 到 Y 的一个映射,用通俗的话来说,就是某个确定的对应法则,使得对每 个 x ∈ X ,都有唯一的 y ∈ Y 与之相对应。我们常用 f , g 等记号表示这种对应法则,并把按对应法则 f 与 x ∈ X 对 应的元素 y ∈ Y 记为 f (x) ,并常把 f (x) 称为 x 在映射 f 下的值。我们常称 X 为映射 f 的定义域,把 Y 称为映射 f 的 陪域,并把映射记号 f 及其定义域 X 与陪域 Y 一起,记为 f : X → Y ,以表明这样的约定:严格说来,两个映射,只 有当其对应法则,定义域以及陪域都分别相同时,才被视作相同的映射。另外,映射的陪域不一定是映射的值域,后者 是 {y ∈ Y | ∃x ∈ X s.t. f (x) = y} ,它当然总是前者的子集。类似于实值函数的情形,我们有如下的定义和点列式刻画:
定义 1:假设 (X, dX) , (Y, dY) 是两个度量空间, A ⊆ X , a ∈ X 是 A 的一个聚点, b ∈ Y , f : A → Y 。我们 称 f 在 a 处有极限 b ,并且记 limx→a f (x) = b ,如果对每个 ε > 0 ,都存在某个 δ > 0 ,使得对每个 x ∈ A ,只要满 足 0 < dX(x, a) < δ ,就有 dY( f (x), b) < ε 。
定理 2:假设 (X, dx) , (Y, dY) 是度量空间, A ⊆ X , a ∈ A , 映射 f : A → Y ;那么以下两个陈述等价: (i) f 在 a 处 连续; (ii) 对每个含于 A 的点列 {xn}∞n=1 ,只要 limn→∞ xn = a ,就有 limn→∞ f (xn) = f (a) 。
注意,定义映射 f : A → Y 在 a 处连续时,我们要求 a ∈ A ,但不要求 是 A 的聚点。因此,如果 a ∈ A 不是 A 的聚 点,也就是说,存在某 δ > 0 ,使得 BX(a, δ) ∩ A = {a} (此时我们称 a 是 A 的孤立点),据定义 f : A → Y 在 a 处总连续。
证明: “(i) =⇒ (ii)” 由于 f (a) ∈ V ,且 V 是 Y 的开集,可知有某个 ε > 0 ,使得 BY( f (a), ε) ⊆ V ;由于 f : X → Y 在 a 处 连续,据定义有 δ > 0 ,使得对每个 x ∈ BX(a, δ) ,都有 f (x) ∈ BY( f (a), ε) ,或者更学究气地,都存在 y ∈ BY( f (a), ε) ,使 得 y = f (x) 。如果记 U := BX(a, δ) ,自然有 U ⊆ f −1(BY( f (a), ε)) ;据引理 3 ,也就是说, f (U) ⊆ BY( f (a), ε) ⊆ V
定理 4:如果 (X, dX) , (Y, dY) 是度量空间, f : X → Y , a ∈ X ,那么以下两个陈述等价: (i) f : X → Y 在 a 处连 续; (ii) 对于 Y 中包含 f (a) 的每个开集 V ,都存在 X 中包含 a 的某个开集 U ,使得 f (U) ⊆ V 。
定理 1:如果 (X, dx) , (Y, dY) 是度量空间, A ⊆ X , a ∈ X 是 A 的聚点, b ∈ Y , f : A → Y 。那么以下陈述等 价: (i) limx→a f (x) = b ; (ii) 对每个含于 A \ {a} 的点列 {xn}∞n=1 ,只要 limn→∞ xn = a ,就有 limn→∞ f (xn) = b ;
证明: “(i) =⇒ (ii)” 对每个 x˜ ∈ A ,要证存在某 y˜ ∈ B ,使 f (x˜) = y˜ 。如果记 y0 := f (x˜) ,那么据 f (A) 的定义,可 见 y0 ∈ f (A) 。而据 (i) , y0 ∈ f (A) ⊆ B 。取 y˜ := y0 即得所求。 “(ii) =⇒ (i)” 对每个 y˜ ∈ f (A) ,要证 y˜ ∈ B ;据 f (A) 的 定义,有某 x0 ∈ A ,使 f (x0) = y˜ 。但据 (ii) , x0 ∈ A ⊆ f −1(B) ;于是有某 y0 ∈ B ,使 f (x0) = y0 。但因 f : X → Y 是映 射, y0 = y˜ 必成立。于是 y˜ ∈ B 。
定义 2:假设 (X, dx) , (Y, dY) 是度量空间, A ⊆ X , a ∈ A , 映射 f : A → Y 称为在 a 处连续,如果对每个 ε > 0 , 都存在 δ > 0 ,使得对每个 x ∈ A ,只要 dX(x, a) < δ ,就有 dY( f (x), f (a)) < ε 。如果映射 f : A → Y 在 A 上每点处都连 续,我们就称 f : A → Y 是连续映射。
“(ii) =⇒ (i)”;由 (ii) ,特别地,对每个 ε > 0 ,以及 Y 的包含 f (a) 的开集 BY( f (a), ε) ,都有 X 的包含 a 的开 集 U ,使得 f (U) ⊆ BY( f (a), ε) ;据引理 3 ,也就是说, U ⊆ f −1(BY( f (a), ε)) 。 a 属于开集 U ,于是有某个 δ > 0 ,使 得 BX(a, δ) ⊆ U ⊆ f −1(BY( f (a), ε)) ;也就是说,对每个 x ∈ BX(a, δ) ,都存在 y ∈ BY( f (a), ε) ,使得 y = f (x) ;更直白地说, 对每个 x ∈ BX(a, δ) ,都有 f (x) ∈ BY( f (a), ε) ;于是据连续的定义知 (i) 成立。
以下我们设法用开集来表述连续性的概念。首先我们需要以下引理:
引理 3:假设 X, Y 非空; A ⊆ X , B ⊆ Y ;映射 f : X → Y 。如果记 f (A) := {y ∈ Y | ∃x ∈ A s.t. f (x) = y} ,并 且 f −1(B) := {x ∈ X | ∃y ∈ Y s.t. f (x) = y} ,那么以下两陈述等价: (i) f (A) ⊆ B ; (ii) A ⊆ f −1(B) ;