代数系统(离散数学)

合集下载

离散 代数系统知识点

离散 代数系统知识点

离散代数系统知识点离散代数系统(Discrete Algebraic System)是一种研究离散结构的数学分支,它包括了代数结构中的各种基本概念和运算。

离散代数系统主要研究集合、运算、关系和结构等离散性质,与连续性质相对应。

本文将以步骤思维的方式,介绍一些离散代数系统中的重要知识点。

1.集合(Sets)在离散代数系统中,集合是最基本的概念之一。

集合是由一些元素组成的整体,可以是有限的,也可以是无限的。

离散代数系统通常使用大写字母表示集合,例如A、B、C等。

2.运算(Operations)运算是离散代数系统中的另一个重要概念。

运算是对集合中的元素进行操作,产生新的元素。

常见的运算有加法、减法、乘法和除法等。

离散代数系统中的运算通常满足封闭性、结合律、交换律和分配律等性质。

3.关系(Relations)关系是描述集合中元素之间的联系的概念。

在离散代数系统中,关系可以用矩阵、图和逻辑表达式等形式表示。

常见的关系有等价关系、偏序关系和等价类等。

关系在离散代数系统中有着广泛的应用,如图论、关系代数等。

4.结构(Structures)在离散代数系统中,结构是由集合和运算构成的整体。

常见的结构有群、环、域和格等。

结构可以用来描述和研究离散代数系统的性质和规律。

例如,群是一种满足封闭性、结合律、单位元和逆元等性质的代数结构。

5.域(Fields)域是一种特殊的代数结构,它具有加法和乘法运算,并且满足一些特定的性质。

域中的元素可以进行加法、减法、乘法和除法等运算。

域在离散代数系统中具有广泛的应用,如编码理论和密码学等领域。

6.代数方程(Algebraic Equations)代数方程是离散代数系统中的重要内容之一。

代数方程是描述未知量之间关系的方程,常见的代数方程有线性方程、二次方程和多项式方程等。

解代数方程是研究离散代数系统的重要方法之一。

7.离散数学(Discrete Mathematics)离散数学是研究离散结构和离散性质的数学分支。

离散数学ch10[2]代数系统

离散数学ch10[2]代数系统

同态关系:同态
X Y
同态的图解
同态关系:同态
例: 给定代数系统<R,+>和<R,×>
设函数f:RR,f(x)=2z
则 f是从<R,+>到<R,×> 的同态,
证: 对于y,zR来说,
f(y+z) =2y+z =2y×2z =f(y)×f(z)
注: f(R)是R的一个子集 在f(R)中,原有的+运算关系得到保持
<ρ(S),∪,∩,~>也是代数系统, 其中含有两个二元运算∪和∩以及一个一元运算~。
代数系统:代数系统的实例
在某些代数系统中存在着一些特定的元素,它们对于系统 的一元或二元运算起着重要的作用, 例如二元运算的单位元和零元。 在定义代数系统的时候,如果把含有这样的特定元素也作 为系统的性质, 比如规定系统的二元运算必须含有单位元, 这时称这些元素为该代数系统的特异元素或代数常数。 有时为了强调某个代数系统是含有代数常数的系统,也 可以把这些代数常数列到系统的表达式中,
这样 * 和×可被分别运载到运算 ⊙ 和⊕,则: (4)如果运算 * 对于×运算是可分配的, 则运算 ⊙ 对于运算⊕也必定是可分配的。
同态关系:同态与同构
同态关系:同态与同构
定理
给定代数系统 U=<X,*,×> 和 V=<Y, ⊙, ⊕>,
其中的 * 和×以及 ⊙ 和⊕都是二元运算。 设 f:XY 是从 U 到 V 的满同态,
这样 * 和×可被分别运载到运算 ⊙ 和⊕,则: (3)对于运算 *,如果每一个元素 xX 都有一个逆元x-1,
则对于运算⊙,每一个f(x)Y,也都会具有一个逆元 f(x-1),

离散数学-第四章 代数系统

离散数学-第四章 代数系统

(r1 r2 r1r2 ) r3 (r1 r2 r1r2 )r3
r1 r2 r3 r1r2 r1r3 r2 r3 r1r2 r3
r1 (r2 r3 ) r1 (r2 r3 r2r3 )
(r1 r2 r3 r2 r3 ) r1 (r2 r3 r2 r3 ) r1 r2 r3 r2 r3 r1r2 r1r3 r1r2 r3
1 3 5 7
7 5 3 1
1 3 5 7
1 3 5 7 3 3 5 7 5 3 5 7 1 7 3 7
6
三、运算的封闭性
定义在集合A上的运算在A上一定是封闭的. 定义在集合A上的运算在A的子集上是否封闭呢?
例5 定义函数 : N N ,使 (n1 , n2 ) n1 n2
2
令S
(b, a, a), (b, a, b), (b, b, a), (b, b, b)}
2
f : An A ,于是对于 A n 设有集合 A和函数 中的每一个有序 n元组 (a , a ,, a ) ,在 A 中必有 1 2 n 唯一个元素 a与之对应,即 f (a1 , a 2 , , a n ) a
er er el , 令 e el er ,则 e 是 的单位元。 设 e 也是 的单位元, 则 e e e e 因此 e 是 的唯一的单位元。
因此, el
18
2. 零元
是集合A上的二元运算,若存在一元 素 z l A ,使得对于任意的 a A ,有 z l a z l , 则称 z l是A中运算 的左零元;若存在一元素 , 使得对于任意的 , zr a A a,则称 z是A中 zr A r 运算 z r 的右零元,若存在一元素 ,使得对于任 意 z A, a,则称Z是A中运算 z 的零 A z a a z 元。

离散数学 第4章 代数系统(祝清顺版)

离散数学 第4章 代数系统(祝清顺版)
离散数学 第四章 代数系统 2007年8月20日
代数结构的知识体系
半群与群 环与域 格与布尔代数
分类 成分:载体及运算 公理:运算性质 产生 代数系统的构成
子集
子代数
同 种 的 同 类 型 的
等价关系
映射
代数系统的 同态与同构 代数系统间的关系
离散数学 第四章 代数系统 2007年8月20日
商代数 新代数系统
,有限域理论是差错控制编码理论的数学基础,在通讯中发 挥了重要作用。而电子线路设计、电子计算机硬件设计和通 讯系统设计更是离不开布尔代数。
离散数学 第四章 代数系统 2007年8月20日
学习本篇的方法
1、要按照数学的思维方式学习, 即观察客观世界, 抽象出模型 , 再分析、推理揭示内在规律的过程。 2、领会“抽象”性:代数的抽象性不仅体现在元素的抽象上, 还体现在相应运算的抽象上, 是在最纯粹的形式下研究代数结 构中的运算的规律与性质, 从运算的角度来考虑代数结构中的 元素。因此, 初等代数的相应概念、结论不能直接应用在抽象 代数中。如何跨越从直观到抽象是学习抽象代数的重要一步。 3、教材的基本思路是: 首先严格定义什么是代数结构, 并讨 论一般代数结构的基本性质。然后讨论代数结构研究的两个方 面:其一是通过一些基本性质来规定一类特定的代数结构, 并 对这类代数结构的性质进行研究。其二是研究代数结构之间的 各种关系, 通过对代数结构之间关系的研究 , 就可以把一个代 数结构中的某些性质推广到另一个代数结构中。
离散数学
第四章 代数系统
2007年8月20日
例题
例2 实数集R和两个二元运算: 普通加法+和普通乘法 ×, 构成一代数系统, 记作(R, +, ×).
(1) 载体是实数集R.

离散数学之代数系统篇

离散数学之代数系统篇

第三篇代数系统篇第3-1章代数结构本章将从引入一般代数系统出发,研究如群、环、域等这样一些代数系统,而这些代数系统中的运算所具有的性质确定了这些代数系统的数学结构。

§3-1-1 代数系统的概念在计算机科学中,常用代数系统去描述机器可计算函数,研究运算的复杂性,分析程序设计语言的语义等。

由非空集合和该集合上的一个或多个运算所组合的系统,常称为代数系统,有时简称为代数。

在研究代数系统之前,首先考察一个非空集合上运算的概念,如将有理数集合Q上的每一个数 a 的映射成它的整数部分[a];或者将Q上的每一个数a 映射成它的相反数-a,这两个映射可以称为集合Q上的一元运算;而在集合Q上,对任意两个数所进行的普通加法和乘法都是集合Q上的二元运算,也可以,x2 ,x3,看作是将Q中的每两个数映射成一个数;至于对集合Q上的任意三个数x1代数式x12+x22+x32和x1+x2+x3分别给出了Q上的两个三元运算,它们分别将Q中三个数映射成Q中的一个数。

上述这些例子有一个共同的特征,那就是其运算的结果都是在原来的集合中,我们称那些具有这种特征的运算是封闭的,简称闭运算。

相反地,没有这种特征的运算就是不封闭的。

很容易举出不封闭运算的例子,设N是自然数集,Z是整数集,普通的减法是N×N到Z的运算,但因为两个自然数相减可以不是自然数,所以减法运算不是自然数集N上的闭运算。

定义3-1-1.1设A和B都是非空集合,n是一个正整数,若Φ是A n到B的一个映射,则称Φ是A到B的一个n元运算。

当B=A时,称Φ是A上的n元运算(n-ary operation),简称A上的运算。

并称该n元运算在A上是封闭的。

例3-1-1.1(1)求一个数的倒数是非零实数集R*上的一元运算。

(2)非零实数集R*上的乘法和除法都是R*上的二元运算,而加法和减法不是。

(3)S是一非空集合,S S是S到S上的所有函数的集合,则复合运算○是S S上的二元运算。

离散数学代数系统

离散数学代数系统

离散数学代数系统
离散数学代数系统(DMA)是一种非常重要的自然科学的数学工具,它的应用涉及到很多领域,尤其有助于理解和解释有关数学物理和技术实践的问题。

例如,它可以用来解决常微分方程的相关性、热传导的传递的关系和任何复杂系统的建模和仿真。

离散数学代数是一个全面的研究领域,它包括各种数学工具,比如数论,偏微分方程,微分动力学和控制论等,以及如何实际应用这些工具来解决数学物理和技术实践的问题。

离散数学代数的主要任务是解决与数值计算有关的科学问题,为此,他们开发了一系列数据结构,比如图,矩阵和线性代数。

重点也放在了提出有效的算法来解决离散问题,比如图像处理、机器人控制和递归算法等。

随着计算机技术和网络技术的发展,离散数学代数越来越重要,它们被广泛应用于新技术的研究中,包括经过计算机处理的信号、全局优化和分布式计算环境等。

因此,离散数学代数对计算机科学和技术的发展有着重要的作用,其重要性日益增强。

离散数学第六章代数系统

离散数学第六章代数系统

6.2 代数系统的基本性质
性质4 吸收率
给定<S,⊙,*>,则 ⊙对于*满足左吸收律:(x)(y)(x,y∈S→x⊙(x*y)=x) ⊙对于*满足右吸收律:(x)(y)(x,y∈S→(x*y)⊙x=x) 若⊙对于*既满足左吸收律又满足右吸收律,则称⊙对于*满足吸收律或
者可吸收的。
*对于⊙满足左、右吸收律和吸收律类似地定义。 若⊙对于*是可吸收的且*对于⊙也是可吸收的,则⊙和*是互为吸收的或
代数﹝Algebra﹞是数学的其中一门分支,可大致分为初等代数学和抽象 代数学两部分。
代数的由来
初等代数学:是指19世纪中期以前发展的方程理论,主要研究某一方程﹝ 组﹞是否可解,如何求出方程所有的根﹝包括近似根﹞,以及方程的根有 何性质等问题。
抽象代数:是在初等代数学的基础上产生和发展起来的。它起始于十九世 纪初,形成于20世纪30年代。在这期间,挪威数学家阿贝尔(N.H. Abel)、 法国数学家伽罗瓦(E′. Galois)、英国数学家德·摩根(A. De Morgan) 和布尔(G. Boole)等人都做出了杰出贡献,荷兰数学家范德瓦尔登(B.L. Van Der Waerden)根据德国数学家诺特(A.E. Noether)和奥地利数学家阿 廷(E. Artin)的讲稿,于1930年和1931年分别出版了《近世代数学》一卷 和二卷,标志着抽象代数的成熟。
同态与同构
PART 同余、商代数、积代数
04
PART 05
代数系统实例
6.1 代数系统的定义
定义6.1 设S是个非空集合且函数f: Sn→S ,则称f为S上的一个 n元运算。其中n是自然数,称为运算的元数或阶。
当n = 1时,称f为一元运算,当n = 2时,称f为二元运算,等等。 定义6.2 如果对给定集合的成员进行运算,从而产生了象点,而

离散数学中代数系统知识点梳理

离散数学中代数系统知识点梳理

离散数学中代数系统知识点梳理离散数学作为一门数学学科,研究的是离散化的对象和结构。

代数系统作为离散数学的一个重要分支,是对数学对象的代数性质进行研究的一种形式化工具。

在离散数学中,代数系统的概念和相关知识点是非常重要的。

一、代数系统的基本概念代数系统是指由集合和一组运算构成的数学结构。

其中,集合是代数系统中最基本的概念,可以是有限集或无限集;运算是指对集合中的元素进行操作并得到新的元素。

代数系统主要包括代数结构、代数运算和代数性质三个方面。

1. 代数结构:代数结构由集合和一组运算构成,可以包括加法、减法、乘法、除法等。

常见的代数结构有群、环、域等。

2. 代数运算:代数运算是指对集合中的元素进行操作,可以是二元运算也可以是多元运算。

常见的代数运算有加法、乘法、幂运算等。

3. 代数性质:代数系统具有一些特定的性质,如封闭性、结合律、交换律、单位元素、逆元素等。

二、代数系统的分类根据代数运算的性质,代数系统可以分为群、环、域和向量空间等不同类型。

1. 群:群是一种代数系统,具有封闭性、结合律、单位元素和逆元素等性质。

群分为有限群和无限群,可以是交换群或非交换群。

2. 环:环是一种代数系统,具有封闭性、结合律、交换律和单位元素等性质。

环分为有限环和无限环,可以是可除环或非可除环。

3. 域:域是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。

域是一种完备的代数系统,可以进行加、减、乘、除运算。

4. 向量空间:向量空间是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。

向量空间是一种具有线性结构的代数系统。

三、代数系统的应用代数系统作为离散数学的一个重要分支,在计算机科学、密码学、通信工程等领域有着广泛的应用。

1. 计算机科学:代数系统在计算机科学中起到重要的作用,比如在数据库设计、编译原理、算法设计等方面都有应用。

代数系统可以描述和分析计算机系统的运行和性能。

代数系统(离散数学)讲述

代数系统(离散数学)讲述


分别定义三个Z到A的函数如下 φ 1: Z→A,对于每一个n∊Z,φ 1(n)=1。 φ 2: Z→A,对于每一个n∊Z,若n是偶数,φ 2(n)=1; 若n是奇数,φ 2(n)=-1。 φ 3: Z→A,对于每一个n∊Z,φ 3(n)=-1。 则 φ 1是同态函数 , φ 2是满同态函数, φ 3不是同态函数。
φ 3(n+m)= φ 3(5)=-1 并且有 φ 3(n)· φ 3(m)=1 于是 φ 3(n+m) ≠ φ 3(n)· φ 3(m) 所以φ 3不是同态映射。
11/55
定理1
(A1,*)和(A2,·)是两个代数系统,

(A1,*)与(A2,·)满同态。 若“*”适合交换律,则“·”也适合交换律; 若“*”适合结合律,则“·”也适合结合律。
8/55
例(p176)
φ 1: Z→A={1,-1},对于每一个n∊Z,φ 1(n)=1。
(Z,+)
显然,对于Z中的任意二个数n和m,有 φ1(n)=1, φ1(m)=1, φ1(n+m)=1, ∴ φ1(n+m)=φ1(n) ·φ1(m) 故φ1是同态函数。
(A,·)
f(a*b)=f(a)· f(b)
+是 N × N 到 N 的代数运算 · 是 N× N到 N 的代数运算
-是N×N到Z 的代数运算
4/55
实例
<N,+>, <Z,+,· >, <R,+,· >是代数系统, + 和 ·分别表示普通加法和乘法. <Mn(R),+,· >是代数系统, + 和 ·分别表示n 阶 (n≥2) 实矩阵的加法和乘法. <Zn,,>是代数系统,Zn={0, 1, … , n-1}, 和 分别表示模 n 的加法和乘法,x,y∈Zn, xy = (x+y) mod n,xy = (xy) mod n <P(S),∪,∩,~> 也是代数系统, ∪和∩为并和交,~为绝对补

离散数学几个典型的代数系统

离散数学几个典型的代数系统

{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.

离散数学代数系统总结

离散数学代数系统总结

离散数学代数系统总结离散数学是数学的一个分支,主要研究离散对象和离散结构。

而代数系统是离散数学的一个重要分支,它研究的是一类具有特定性质的运算集合。

在这篇文章中,我们将从代数系统的基本概念、性质和应用几个方面对离散数学中的代数系统进行总结。

一、代数系统的基本概念代数系统是指一个非空集合A,以及在这个集合上定义的一个或多个运算。

根据运算的性质,代数系统可以分为不同的类型,包括群、环、域等。

其中,群是最基本的代数系统,它具有封闭性、结合律、单位元、逆元等性质。

环则在群的基础上增加了乘法运算,并满足了分配律。

域是环的一种扩充,它除了满足环的性质外,还具有乘法逆元。

二、代数系统的性质1. 封闭性:代数系统中的运算结果仍属于该系统,即对于任意a、b∈A,a运算b的结果仍然属于A。

2. 结合律:对于代数系统中的任意元素a、b、c,(a运算b)运算c 与a运算(b运算c)的结果相同。

3. 单位元:代数系统中存在一个元素e,对于任意元素a,a运算e与e运算a的结果均为a。

4. 逆元:代数系统中的每个元素a都存在一个逆元,使得a运算它的逆元等于单位元。

5. 交换律:对于代数系统中的任意元素a、b,a运算b与b运算a 的结果相同。

这些性质是代数系统的基本特征,不同类型的代数系统在这些性质上有所区别,比如群具有结合律和单位元,但不一定满足交换律。

三、代数系统的应用代数系统在数学及其他学科中有着广泛的应用。

以下是几个代数系统应用的例子:1. 编码理论:代数系统的运算可以用于编码和解码信息,例如循环冗余校验码(CRC)就是通过代数系统中的运算实现数据校验。

2. 密码学:代数系统中的数学运算被广泛应用于密码学中,用于加密和解密信息,保护数据的安全。

3. 图论:代数系统的概念和性质在图论中有着重要的应用,例如邻接矩阵和关联矩阵可以用于描述和分析图的结构和特性。

4. 计算机科学:代数系统在计算机科学中有着广泛的应用,例如布尔代数在逻辑电路设计和逻辑编程中的应用。

《离散数学》 第10章 代数系统

《离散数学》 第10章 代数系统
例10.1.8 实数集R上的乘法对加法是可分配的,但加法对 乘法不满足分配律。

10.1 二元运算及其性质
10.1.2 二元运算的性质
定义10.1.7 设 ,*为集合A上的两个可交换二元运算, 若对任意x,y∈A,都有x (x*y)=x和x* (x y)=x,则 称运算 和运算*是可吸收的,或称运算 和运算*满足
例如,A={所有整数},B={所有不等于零的整
数},C={所有有理数},则
f: A×B→C,
(a,b) a b
是一个A×B到C的代数运算,也就是普通的除法。
10.1 二元运算及其性质
10.1.1 二元运算
定义10.1.2 设A为集合,如果f是A×A到A的代数运算,则称f 是A上的一个二元运算,也称作集合A对于代数运算f来说是 封闭的。

10.1 二元运算及其性质
10.1.2 二元运算的性质
例10.1.7 设R为实数集, 为集合R上的二元运算,对任意
的a,b∈R,a b=a+2b,问这个运算满足交换律、结合律
吗?
解 因为2 3=2+2×3=8,而3 2=3+2×2=7,2 3≠3 2,故
该运算不满足交换律。
又=2因+2为×((23+32)×44)=(=223+,2×(32)3+)2×44≠=216(,3而42)(,3故4)该运
算也不满足结合律。

10.1 二元运算及其性质
10.1.2 二元运算的性质
定义10.1.6 设 ,*为集合A上的两个二元运算,若对任意 x,y,z∈A,有x(y*z) = (x y)*(x z)和(y*z) x的=,(或y称x运)算*(z对x)运成算立*满,足则分称配运律算。 对运算*是可分配

离散数学-代数系统

离散数学-代数系统
连接看作 上的一种运算,那么这种运算不可交换,但是 可结合。集合 关于连接运算就构成了一个代数系统,它 恰好是抽象代数系统 —— 半群的一个实例。
1
抽象代数在计算机中有着广泛的应用,例如自动机理论、编码 理论、形式语义学、代数规范、密码学等等都要用到抽象代数 的知识。 构成一个抽象代数系统有三方面的要素:
4
为了研究抽象的代数系统,需要先定义一元和二元代数运算以 及二元运算的性质,并通过选择不同的运算性质来规定各种抽 象代数系统的定义。在此基础上再深入研究这些抽象代数系统 的内在特性和应用。
主要内容:
第四章 代数系统 第五章 群 *第六章 环和域 第七章 格和布尔代数
5
第四章 代数系统
本章在集合、关系和函数等概念基础上,研究更为复杂的对 象——代数系统,研究代数系统的性质和特殊的元素,代数系 统与代数系统之间的关系(如代数系统的同态、满同态和同构, 这些概念较为复杂也较为抽象,是本章的难点)。它们将集合、 集合上的运算以及集合间的函数关系结合在一起进行研究。 前三章内容是本章的基础,熟练地掌握集合、关系、函数等概 念和性质是理解本章内容的关键。
= (r1 + r2 – r1r2) + r3 – (r1 + r2 – r1r2)r3
= r1 + r2 + r3 – r1r2 – r1r3 – r2r3 + r1r2r3,
r1 (r2 r3) = r1 (r2 + r3 – r2r3)
= r1 + (r2 + r3 – r2r3) – r1(r2 + r3 – r2r3)
定理4-1 设 ◦ 是定义在集合 A 上的一个 n 元运算,且在 A 的两 个子集 S1 和 S2 上均封闭,则 ◦ 在 S1 S2 上也是封闭的。

离散数学 代数系统

离散数学 代数系统

二元运算的性质
定义5.7 设°和∗为S上两个可交换的二元运算, 定义5.7 上两个可交换的二元运算, 上两个可交换的二元运算 如果对于任意的x,y∈ , 如果对于任意的 ∈S,都有 x∗(x°y)=x ∗ ° = x°(x∗y)=x ° ∗ = 则称运算° 满足吸收律 吸收律。 则称运算°和∗满足吸收律。
说 明
不是自然数集合N 不是自然数集合N上的二元运算
验证一个运算是否为集合S上的二元运算主要考虑两点: 验证一个运算是否为集合S上的二元运算主要考虑两点: 不封闭。 对减法不封闭 称N对减法不封闭。 中任何两个元素都可以进行这种运算, S中任何两个元素都可以进行这种运算,且运算的结果 是唯一的。 是唯一的。 中任何两个元素的运算结果都属于S S中任何两个元素的运算结果都属于S,即S对该运算是 封闭的。 封闭的。
ai ∅ {1} {2} {1,2}
~ ai {1,2} {2} {1} ∅
{2} {1,2}
{1,2} {1,2} {2}
例5.5
上的二元运算° 例5.5 设S={1,2,3,4},定义 上的二元运算°如下 ,定义S上的二元运算 x ° y=(xy) mod 5, ∀x,y∈S = , , ∈S
离散数学
第5章 代数系统
本章说明 本章的主要内容
–一元和二元运算定义及其实例 一元和二元运算定义及其实例 –二元运算的性质 二元运算的性质 –代数系统定义及其实例 代数系统定义及其实例 –子代数 子代数
与后面各章的关系
–是后面典型代数系统的基础 是后面典型代数系统的基础
本章内容
5.1 二元运算及其性质 5.2 代数系统 本章小结 作 业
二元与一元运算的算符
可以用° 可以用°、∗、·、⊕、⊗、∆等符号表示二元或一 、 元运算,称为算符 算符。 元运算,称为算符。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
定义4 群同态映射
设(G,*)和(A,*)是二个群,
f是G到A的一个映射, 若对于任意的g1,g2 ∊G ,有 f(g1*g2)=f(g1)*f(g2), 则称f是(G,*)到(A,*)的群同态映射。 ■ 若f是单射,说f是单一同态; ■ 若f是满射,说f是满同态,也说(A,*)是 (G,*)的同态象; ■ 若f是双射,说f是同构映射。
5
同态函数
定义2:设(A,*),(A1,· )是两个代数系统,
*是A上的一个二元运算, · 是A1上一个二元运算。 一个函数f:A→A1是A到A1的同态函数,若ห้องสมุดไป่ตู้于 A中的任意两个元素a,b,有
f(a*b)=f(a)· f( b )
■ 若f是单射,说f是单一同态函数; ■ 若f是满射,说f是满同态函数; ■ 若f是双射,说f是同构函数。
24/64
同态的群、同构的群
• • 说群(G,*)和(A,*)是二个同态的群,若
存在(G,*)到(A,*)的满同态映射;
说群(G,*)和(A,· )是二个同构的群,若
存在(G,*)到(A,· )的同构映射。
25/64
例3 (p182)
设(G,*)和(A,· )是二个任意的群,e1和e2分别 是它们的幺元。则φ :G→A,对于任意的g∊G, φ(g)=e2是一个同态映射。 证明: 因为,对于任意的g1,g2∊G,
6/55
单同态、满同态、同构
• 两个代数系统之间若存在单一同态函数,说 这两个代数系统是单同态的;
• 两个代数系统之间若存在满同态函数,说这
两个代数系统是满同态的; • 两个代数系统之间若存在同构函数,说这两 个代数系统是同构的。
7/55
例(p176)
Z是整数集,Z上的二元运算是数的加法,即(Z,+)。 A={1,-1},A上的二元运算是数的乘法,即(A,·)。
20/64
Klein四元群
设G={e,a,b,c}, *为G上的二元运算, 它由运算表给出。 * e a b c e e a b c a a e c b b b c e a c c b a e
不难证明: e是G中的幺元; G中任何元素的逆元就是它自己; G是一个群。 在a,b,c三个元素中,任何两个元素运算的结 果都等于另一个元素。
21/64
群中的术语
若群 G 是有穷集,则称 G 是有限群,否则称为 无限群. 群 G 的基数称为群G的 阶 有限群 G 的阶记作|G|. 若群G中的二元运算是可交换的,则称G为交换 群 或 阿贝尔(Abel)群.
22
实例
<Z,+> 和 <R,+>是无限群 <Zn,>是有限群,也是 n 阶群 Klein四元群 G = {e, a, b, c}是 4 阶群 上述群都是交换群 n 阶 (n≥2) 实可逆矩阵集合关于矩阵乘法构成的群 是非交换群.
分别定义三个Z到A的函数如下 φ 1: Z→A,对于每一个n∊Z,φ 1(n)=1。 φ 2: Z→A,对于每一个n∊Z,若n是偶数,φ 2(n)=1; 若n是奇数,φ 2(n)=-1。 φ 3: Z→A,对于每一个n∊Z,φ 3(n)=-1。 则 φ 1是同态函数 , φ 2是满同态函数, φ 3不是同态函数。
小结 代数运算的基本概念
1.二元运算 (封闭) 2.运算的表示 (运算表) 3.二元运算的性质
交换律、结合律、幂等律、消去律 分配律、吸收律
x∘y=y∘x ( x ∘ y) ∘ z = x ∘ ( y ∘ z)
4.二元运算的特异元素
单位元 零元 可逆元素及其逆元
el ∘ x = x 且x ∘ er = x
14

对于任意二个自然数m和n,定义“ * ”运算:
m*n=m+n+m· n
不难验证,(N,*)也是一个半群。
(a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c =a+b+c+ab+ac+bc+abc a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc) =a+b+c+ab+ac+bc+abc
若(B,*)本身是一个半群,
则称(B,*)是(A,*)的子半群。
17/55
11.3 群的基本概念
(一) 逆元 (二) 群的定义 (三) 群的同态、同构 (四) 无限群、有限群、交换群、元的阶
18/64

定义2:设A是一个非空集,(A,*)是一个代数系统,
* 是A上的一个二元运算,若(A,*)满足:
① *是A上的闭运算; ② *适合结合律; ③ 存在e ∊ A,是幺元(又称单位元); ④ 对于A中的任意元素a,存在a-1 ∊ A,使得 a*a-1=a-1*a=e。 则称(A,*)是一个群。
19/64

• (N,+)不是群,是含幺半群,幺元是0。
• (Z,+)是群。
• (Q,+)是群。
• (R,+)是群。 • (Z,· )不是群,也是含幺半群,幺元是1。 • ( Q, · )也不是群,因为0 ∊ Q,但0没有逆元。 • (Q*,· )是群,这里Q*=Q-{0}. • (R*,·)也是群,这里R*=R-{0}。
9/55
例(p176)
φ 2: Z→A,对于每一个n∊Z,若n是偶数,φ 2(n)=1; 若n是奇数,φ 2(n)=-1。
显然φ 2是Z到A的满射。对于Z中的任意的二个数n和m来说: 若n和m均是偶数,那么φ 2(n+m)=φ 2(n)·φ 2(m)。 若n和m均是奇数,那么φ 2(n+m)=φ 2(n)·φ 2(m)。
12/55
半群
定义3:设(A,*)是一个代数系统,
A是一个非空集,
*是A上的一个二元运算。
若*是A上的闭运算,
且*适合结合律, 则称(A,*)是一个半群。
13/55
实例
(1)<Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>都是半群,+是 普通加法. (2)设 n 是大于1的正整数,<Mn(R),+>和<Mn(R),· >都是半 群,其中+和 ·分别表示矩阵加法和矩阵乘法. (3)<P(B),>为半群,其中为集合的对称差运算. (4)<Zn, >为半群,其中 Zn={0,1, …, n1},为模 n 加法. (5)<AA, >为半群,其中 为函数的复合运算. (6)<R*,>为半群,其中R*为非零实数集合,运算定义 如下:x, y∈R*, x y =y
+结合、交换、 含幺、含逆
整环
*含幺
(G,+,*)
*结合律

含幺环 无零 因子环
2个 以上 元素

除环
28/64
格与布尔代数
有界格
全有补
有补格

分配格
布 尔 格
29/64
+是 N × N 到 N 的代数运算 · 是 N× N到 N 的代数运算
-是N×N到Z 的代数运算
4/55
实例
<N,+>, <Z,+,· >, <R,+,· >是代数系统, + 和 ·分别表示普通加法和乘法. <Mn(R),+,· >是代数系统, + 和 ·分别表示n 阶 (n≥2) 实矩阵的加法和乘法. <Zn,,>是代数系统,Zn={0, 1, … , n-1}, 和 分别表示模 n 的加法和乘法,x,y∈Zn, xy = (x+y) mod n,xy = (xy) mod n <P(S),∪,∩,~> 也是代数系统, ∪和∩为并和交,~为绝对补
θl ∘ x =θl 且x ∘θr =θr
yl ∘ x = e且x ∘ yr = e
1
11.2 代数系统和半群
(一) 代数系统 (二) 同态映射、同构映射 (三) 半群 (四) 含幺半群 (五) 子半群
2/55
代数系统
定义1
设A是一个集合,*1,*2,…,*n是A上的n个代数运 算,而 (A,*1,*2,…,*n)
φ 3(n+m)= φ 3(5)=-1 并且有 φ 3(n)· φ 3(m)=1 于是 φ 3(n+m) ≠ φ 3(n)· φ 3(m) 所以φ 3不是同态映射。
11/55
定理1
(A1,*)和(A2,·)是两个代数系统,

(A1,*)与(A2,·)满同态。 若“*”适合交换律,则“·”也适合交换律; 若“*”适合结合律,则“·”也适合结合律。
8/55
例(p176)
φ 1: Z→A={1,-1},对于每一个n∊Z,φ 1(n)=1。
(Z,+)
显然,对于Z中的任意二个数n和m,有 φ1(n)=1, φ1(m)=1, φ1(n+m)=1, ∴ φ1(n+m)=φ1(n) ·φ1(m) 故φ1是同态函数。
(A,·)
f(a*b)=f(a)· f(b)
表示集合A,以及A上的n个代数运算*1,*2,…,*n 组成的一个代数系统。 主要研究内容:只有一个代数运算的代数系统
(A,*)
3/55

• (N,+)表示自然数集带着数 的加法。 • (N, · )表示自然数集带着数 的乘法。 • (N,-)表示自然数集和数 的减法运算。 • (N, +, · )表示自然数集带着 数的加法与乘法。
相关文档
最新文档