第1章人工智能
一章节人工智能概述 共74页PPT资料
14.09.2019
人工智能
13
行为模拟,控制进化
行为模拟是一种基于感知-行为模型 的研究途径和方法,它是在模拟人在控制 过程中的智能活动和行为特性,如自适应 ,自寻优、自学习、自组织等,来研究和 实现人工智能。
以行为模拟方法研究人工智能者,被 称为行为主义、进化主义、控制论学派。
14.09.2019
难题求解 自动定理证明 自动程序设计 自动翻译 智能控制 智能管理 智能决策 智能通信 智能仿真 智能CAD 智能CAI
14.09.2019
人工智能
34
自动程序设计
自动程序设计
自动程序设计就是人只要给出关于某程序要求的 非常高级的描述,计算机就会自动生成一个能完成这 个要求目标的具体程序。
14.09.2019
人工智能
39
基于应用领域的领域划分
难题求解 自动定理证明 自动程序设计 自动翻译 智能控制 智能管理 智能决策 智能通信 智能仿真 智能CAD 智能CAI
14.09.2019
人工智能
40
智能管理
智能管理是人工智能与管理科学、系统工程、计 算机技术及通信技术等多学科、多技术相结合、互相 渗透而产生的一门新技术、新学科。它研究如何提高 计算机管理系统的智能水平以及智能管理系统的设计 理论、方法与实现技术。
14.09.2019
人工智能
3
人工智能的概念
什么是人工智能 为什么研究人工智能 人工智能的目标 人工智能的表现形式
14.09.2019
人工智能
4
什么是人工智能
人工智能
人工智能(Artificial Intelligence)简称AI, 主要研究如何用人工的方法和技术,使用各种自动化 机器或智能机器(主要指计算机)模仿、延伸和扩展 人的智能,实现某些机器思维或脑力劳动自动化。
第1章 人工智能概述_blue
—— 人工智能是那些使知觉、推理和行为成为可 能的计算的研究(Winston, 1992); —— 广义地讲,人工智能是关于人造物的智能行 为,而智能行为包括知觉、推理、学习、交流 和在复杂环境中的行为(Nilsson,1998)。 —— Stuart Russell和Peter Norvig则把已有的 一些人工智能定义分为4类:像人一样思考的系 统、像人一样行动的系统、理性地思考的系统、 理性地行动的系强人工智能 哲学家将人工智能的观点分为两类,弱人 工智能和强人工智能,分别认为机器智能 只是一种模拟智能和机器确实可以有真正 的智能。 两种观点进行了争论,出现了不少巧妙的 假想实验,其中中文屋子就是反驳强人工 智能的一个有名的假想实验。
6
中文屋子
1980年,哲学家西尔勒提出了名为“中文屋子”的假想实 验,模拟图灵测试,用以反驳强人工智能观点。主要说明 某台计算机即使通过了图灵测试,能正确的回答问题,它 对问题仍然没有任何理解,因此不具备真正的智能。
20
1.5.1 基于脑功能模拟的领域划分 1、机器感知(信息输入)。使计算机具有类似于人的感知 能力,能通过“感知”直接从外界获取信息。 可分为机器视觉、机器听觉等分支课题。
相关学科:模式识别(主要集中于图形识别和语音识别)。
2、机器联想。基于内容的联想,与具体存储位置无关。联 想存储技术实现联想。
研究策略则是先部分地或某种程度地实现机器的智能 (近期目标) ,并运用智能技术解决各种实际问题特别 是工程问题,从而使现有的计算机更灵活、更好用和 更有用,成为人类的智能化信息处理工具,而逐步扩 展和不断延伸人的智能,逐步实现智能化。
13
1.3 人工智能的学科范畴
人工智能已构成信息技术领域的一个 重要学科。当前的人工智能既属于计算机 科学技术的一个前沿领域,也属于信息处 理和自动化技术的一个前沿领域。还涉及 到智能科学、认知科学、心理科学、脑及 神经科学、生命科学、语言学、逻辑学、 行为科学、教育科学、系统科学、数理科 学以及控制论、科学方法论、哲学甚至经 济学等众多学科领域。人工智能实际上是 一门综合性的交叉学科和边缘学科。
第1章 人工智能-绪论
2020/8/1
人工智能
3
学者们从不同的角度、不同的层面给出了各自的定义:
(1)人工智能是那些与人的思维相关的活动,诸如决策、问 题求解和学习等的自动化(Bellman,1978)。
(2)人工智能是研究怎样让电脑模拟人脑从事推理、规划、 设计、思考、学习等思维活动,解决至今认为需要由专家才 能处理的复杂问题(Elaine Rich,1983)。
2020/8/1
人工智能
15
1.3人工智能的研究目标
➢ 近期目标
人工智能的近期目标是实现机器智能。即先部分地或 某种程度地实现机器智能,从而使现有的计算机更灵活 好用和更聪明有用。
➢ 远期目标
人工智能的远期目标是要制造智能机器。具体讲就是 使计算机具有看、听、说、写等感知和交互能力,具有 联想、学习、推理、理解、学习等高级思维能力,还要 有分析问题解决问题和发明创造的能力。
2020/8/1
人工智能
25
1.5人工智能的研究领域
1.5.1 博弈(Game Playing) 1.5.2 自动定理证明(Automatic Theorem Proving) 1.5.3 专家系统(Expert System) 1.5.4 模式识别(Pattern Recognition) 1.5.5 机器学习(Machine Learning) 1.5.6 计算智能(Computational Intelligence) 1.5.7 自然语言处理(Natural Language Processing) 1.5.8 分布式人工智能(Distributed Artificial Intelligence) 1.5.9 机器人(Robot)
2020/8/1
人工智能
《人工智能概论》课程笔记
《人工智能概论》课程笔记第一章人工智能概述1.1 人工智能的概念人工智能(Artificial Intelligence,简称AI)是指使计算机具有智能行为的技术。
智能行为包括视觉、听觉、语言、学习、推理等多种能力。
人工智能的研究目标是让计算机能够模拟人类智能的某些方面,从而实现自主感知、自主决策和自主行动。
人工智能的研究领域非常广泛,包括机器学习、计算机视觉、自然语言处理、知识表示与推理等。
1.2 人工智能的产生与发展人工智能的概念最早可以追溯到上世纪50 年代。
1950 年,Alan Turing 发表了著名的论文《计算机器与智能》,提出了“图灵测试”来衡量计算机是否具有智能。
1956 年,在达特茅斯会议上,John McCarthy 等人首次提出了“人工智能”这个术语,并确立了人工智能作为一个独立的研究领域。
人工智能的发展可以分为几个阶段:(1)推理期(1956-1969):主要研究基于逻辑的符号操作和自动推理。
代表性成果包括逻辑推理、专家系统等。
(2)知识期(1970-1980):研究重点转向知识表示和知识工程,出现了专家系统。
代表性成果包括产生式系统、框架等。
(3)机器学习期(1980-1990):机器学习成为人工智能的重要分支,研究如何让计算机从数据中学习。
代表性成果包括决策树、神经网络等。
(4)深度学习期(2006-至今):深度学习技术的出现,推动了计算机视觉、自然语言处理等领域的发展。
代表性成果包括卷积神经网络、循环神经网络等。
1.3 人工智能的三大学派人工智能的研究可以分为三大学派:(1)符号主义学派:认为智能行为的基础是符号操作和逻辑推理。
符号主义学派的研究方法包括逻辑推理、知识表示、专家系统等。
(2)连接主义学派:认为智能行为的基础是神经网络和机器学习。
连接主义学派的研究方法包括人工神经网络、深度学习、强化学习等。
(3)行为主义学派:认为智能行为的基础是感知和行动。
行为主义学派的研究方法包括遗传算法、蚁群算法、粒子群算法等。
第1章 人工智能概述
第1章 人工智能概述
1.2.3 行为模拟,控制进化
除了上述两种研究途径和方法外,还有一种基于感 知-行为模型的研究途径和方法。我们称其为行为模拟法。 这种方法是模拟人在控制过程中的智能活动和行为特性, 如自寻优、自适应、自学习、自组织等,来研究和实现 人工智能。基于这一方法研究人工智能的典型代表要算 MIT的R.Brooks教授,他研制的六足行走机器人 ( 亦称为 人造昆虫或机器虫),曾引起人工智能界的轰动。这个机 器虫可以看作是新一代的“控制论动物”,它具有一定 的适应能力,是一个运用行为模拟即控制进化方法研究 人工智能的代表作。
第1章 人工智能概述
2. 计算智能
计算智能是以数据为基础,通过数值计算进行问 题求解而实现的智能。计算智能研究的主要内容包括 人工神经网络、进化计算(包括遗传算法、遗传程序设 计、进化规划、进化策略等)、模糊技术以及人工生命 等。计算智能主要模拟自然智能系统,研究其数学模 型和相关算法,并实现人工智能。计算智能是当前人 工智能学科中一个十分活跃的分支领域。
第1章 人工智能概述
1.3 人工智能的分支领域
1.3.1 基于脑功能模拟的领域划分 1. 机器感知 机器感知就是计算机直接“感觉”周围世界。具
体来讲,就是计算机像人一样通过“感觉器官”直接
从外界获取信息。如通过视觉器官获取图形、图像信 息,通过听觉器官获取声音信息。所以,要使机器具
有感知能力,就首先必须给机器配置各种感觉器官,
第1章 人工智能概述
1.3.2 基于研究途径与实现技术的领域划分
1.符号智能 符号智能就是以符号知识为基础,通过符号推理 进行问题求解而实现的智能。这也就是所说的传统人 工智能或经典人工智能。符号智能研究的主要内容包 括知识工程和符号处理技术。知识工程涉及知识获取、 知识表示、知识管理、知识运用以及知识库系统等一 系列知识处理技术。符号处理技术指基于符号的推理 和学习技术,它主要研究经典逻辑和非经典逻辑理论 以及相关的程序设计技术。简而言之,符号智能就是 基于人脑的心理模型,运用传统的程序设计方法实现 的人工智能。
第一章 人工智能概述
机视觉的组成部分。
6、机器行为
机器行为主要是指机器人行动规划。它
是智能机器人的核心技术。
机器人要依靠规划功能拟定行动步骤和
动作序列。规划功能的强弱反映了智能
机器的智能水平。
§2基于研究途径与实现技术的领域划分 1 符号智能
符号智能就是以符号知识为基础,通过符
号推理进行问题求解而实现的智能。
符号智能研究的主要内容包括知识工程和
符号处理技术。
知识工程涉及知识获取、知识表示、知识
管理、知识运用以及知识库系统等一系列 知识处理技术。
符号处理技术指基于符号的推理和学习技
术,它主要研究经典逻辑和非经典逻辑理论 以及相关的程序设计技术。
符号智能基于人脑的心理模型,运用传
统的程序设计方法实现人工智能,是传
§1 符号主义—功能模拟,符号推演
功能模拟法就是以人脑的心理模型,将问
题或知识表示成某种逻辑网络,采用符号 推演的方法,实现搜索、推理、学习等功 能,从宏观上来模拟人脑的思维,实现机 器智能。
基于功能模拟的符号推演是人工智能研
究中最早使用也是现在还在使用的主要方
法。这种方法一般是利用显式的知识和推
机器,即拟人机器。
人工智能学科虽然是计算机科学的一个分支,但 它涉及到数学、思维科学、生命科学、哲学,以 及信息论、控制论、系统论等许多学科,因此也 是一门综合性的交叉学科和边缘学科。
§2 为什么要研究人工智能
1. 现在计算机的智能还相当低下,人们研 究人工智能的初衷是为了让计算机(电 脑)同人脑一样具有智能。
§3 基于应用领域的领域划分
第1章-人工智能概论
一、人工智能的基本概念
AI的基本含义 基本含义: 基本含义 AI是用机器(计算机或智能机)来模仿人类的智 能行为。 AI也叫机器智能,是研究如何使机器具有认识问 题与解决问题的能力,研究如何使机器具有感知 功能(如视、听、嗅)、思维功能(如分析、综 合、计算、推理、联想、判断、规划、决策)、 行为功能(如说、写、画)及学习、记忆等功能。
二、人工智能的研究内容
要了解人工智能的研究内容,必须先搞清楚什么 是人类的智能。 “智能”词源来自拉丁语Legere,字面意思是采 集、收集和汇集,并由此进行选择。 而Intellegere意思是从中进行选择,进而理解、 领悟和认识。
二、人工智能的研究内容
人工智能的研究内容应包括三个方面: 1.知识表示(Knowledge Representation):
五、人工智能的研究方法
从人工智能的中心内容(研究核心)来看,主要 有两种研究方法或途径: 2.结构学派 结构学派
这种学派从人脑的生理结构原型出发,探讨思维活动 的机理,进行结构模拟,也可称为仿生学派或生理学 派。 结构派的观点是,要模拟人的智能就必须首先从研究 人脑的结构和生理特点出发,制造出与人脑具有类似 结构和功能的机器。这一研究的主要代表是人工神经 网络、联想记忆、模式识别、图像分析。
从人工智能的中心内容(研究核心)来看,主要 有两种研究方法或途径: 1.功能学派 功能学派
这种学派从人的思维活动和智能行为的心理学特性出 发,利用计算机软件与心理学方法,进行宏观功能模 拟,也可称为计算机学派或心理学派。 这种研究不关心人的智能器官(大脑)的结构,只是 模拟人的智能行为。这种方法的主要成功代表为基于 知识表达和知识推理的专家系统。
3.成长期 成长期(1970年至今) 成长期
第1章 人工智能概述
Artificial Intelligence
第1章 人工智能概述
1.1 人工智能的基本概念
1.2 人工智能如何发展起来的? 1.3 人类智能与人工智能关系? 1.4 人工智能的学派 1.5 人工智能对人类的影响 1.6 人工智能的研究目标 1.7 人工智能研究的基本内容和主要方法 1.8 人工智能的研究与应用领域
7
Artificial Intelligence
人类智能
行为能力(表达能力)
是人们对感知到的外界信息作出动作反应的能力。 由感知直接获得的外界信息经过思维加工后的信息, 通过脊髓来控制,由语言、表情、体姿等来实现。
感知--动作方式:对简单、紧急信息 感知--思维--动作方式:对复杂信息
8
Artificial Intelligence
孕育期(1956年前)
亚里斯多德(公元前384——322):古希腊伟大的哲学 家和思想家,创立了演绎法。他提出的三段论至今仍然 是演绎推理的最基本出发点。 莱布尼兹(1646——1716):德国数学家和哲学家,把 形式逻辑符号化,奠定了数理逻辑的基础。
Artificial Intelligence
Artificial Intelligence
2. 人工智能如何发展起来的?
暗淡期(1966——1974)
过高预言的失败,给AI的声誉造成重大的伤害。 “20年内,机器将能做人所能做的一切。” ——西蒙,1965 “在3—8年时间里,我们将研制出具有普通人智力的计算机 。这样的计算机能读懂莎士比亚的著作,会给汽车上润滑油 ,会玩弄政治权术,能讲笑话,会争吵。……它的智力将无 以伦比。” ——明斯基,1977
人工智能
人类同样梦想着发明各种智能工具和智能机器,协 助甚至代替人们从事各种脑力劳动。20世纪40年代 计算机的发明和50年代人工智能的出现开辟了利用 智能机器代替人类从事脑力劳动的新纪元。此后, 显著减轻脑力劳动和实现生产过程智能化才成为可 能。
人工智能1
3 机器学习(Machine Learning) 研究如何使用计算机模拟和实现人类的学习活动。 如果一个系统能够通过执行某种过程而改进它的 性能,这就是学习。
4 自动定理证明(Automatic Theorem Proving) 利用计算机证明非数值性的结果,即确定它的真 假。主要方法有:自然演绎法、判断法、定理证明器、 人机交互进行定理证明。
人工智能
(Artificial Intelligence,AI )
刘春阳
智能机器人研究所
第1章 人工智能概述
1.1 什么是人工智能(Artificial Intelligence,AI)
1 自然智能:人类所具有的智能行为。 2 智能行为:包括感知、推理、判断、识别、理解、学习 和问题求解等思维活动。 3 人工智能:关于人造物的智能行为。 4 人工智能(学科): AI的本质问题 研究如何制造出人造的智能机器或系统,来模拟人类 智能活动,以延伸人类智能的科学。
• 人工智能的发展是以硬件与 软件为基础。它的发展经历
了漫长的发展历程。人们从 很早就已开始研究自身的思 维形成,早在亚里士多德(公
元前384-322年)在着手解释和
编注他称之为三段论的演绎 推理时就迈出了向人工智能 发展的早期步伐,可以看作 为原始的知识表达规范。
亚里士多德(公元前384-322年)
– 新的动向——构造化方法
• 第五阶段(90年代初~现在) 数据与网络时代
– 网络给AI带来无限的机会 – 知识发现与数据挖掘 – AI走向实用化
三个重要事件
1
1956年召开人类历史上第一次人工智能研讨会, 标志着人工智能学科的诞生; 1969年召开了第一届人工智能联合会议;
1970年,《人工智能》国际杂志创刊。
人工智能技术应用导论 第1章 人工智能概述
01 人工智能发展现状
1.2021年,根据统计数据评分,全球人工智能排名
01 人工智能发展现状
2.人工智能企业城市分布
01 人工智能发展现状
3.我国人工智能发展三步战略
① 第一步,到2020年人工智能总体技术和应用与世界先进水平 同步
② 第二步,到2025年人工智能基础理论实现重大突破,部分技 术与应用达到世界领先水平
03 ቤተ መጻሕፍቲ ባይዱ然语言处理
03 自然语言处理
自然语言处理面临四大挑战: 一是在词法、句法、语义、语用和语音等不同层面存在不确定性; 二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性; 三是数据资源的不充分使其难以覆盖复杂的语言现象; 四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描 述,语义计算需要参数庞大的非线性计算
3)产业智能互联
产业互联网实现了产业链各环节的数据打通。人工智能的应用将从企业内部智能 化延伸到产业智能化。
03 人们对人工智能发展的担忧
1)绝大多数人相信富人会从人工智能中获益,而近一半的人预计穷人会受到伤 害。
2)近一半受访者预计人工智能生成的“深度伪造(Deepfake)”音频和视频将削 弱公众对真实事物的信任。
05 计算机视觉
计算机视觉Computer Vision:是一门研究如何使机器“看”的科学,更进一步 的说,就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视 觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的 图像。
06 生物特征识别
① 生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证 的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。
第一章人工智能绪论
28
14
第一章 人工智 研究的核心课题
1、 知识的模型化及其表示; 2、知识的组织、积累和管理; 3、知识的推理与问题的求解; 4、启发式搜索及其控制策略; 5、神经网络、人脑的结构及其工作原理; 6、人工智能系统及其开发语言。
15
第一章 人工智能绪论
23
第一章 人工智能绪论
概念及发展 学科范畴 研究目标、途径及领域
➢ 1.3.3 研究的领域
3、 模式识别 模式识别的主要目标就是用计算机来模拟人的各种识别
能力,当前主要是对视觉能力和听觉能力的模拟,并且主要 集中于图形识别和语音识别。
模式识别的过程大体是先将摄像机、送话器或其它传感 器接受的外界信息转变成电信号序列,计算机再进一步对这 个电信号序列进行各种预处理,从中抽出有意义的特征,得 到输入信号的模式,然后与机器中原有的各个标准模式进行
➢ 1.1.1 基本概念
2. 人工智能( “Artificial Intelligence”,AI ) 顾名思义,用人工的方法在计算机上模拟人类的智能,
或人工智能就是人造智能。
定义:人工智能是一门研究如何构造智能计算机,使它 能模拟、延伸、扩展人类智能的学科。即具体来讲,就是要 使计算机具有看、听、说、写等感知和交互功能,具有联想、 推理、理解、学习等高级思维能力,还要有分析问题、解决 问题和发明创造的能力。简言之,也就是使计算机像人一样
概念及发展 学科范畴 研究目标、途径及领域
➢ 1.1.1 基本概念
1、智能:就是在巨大的搜索空间中迅速找到一个满意解的能 力。即是知识和智力的总和。 智能的特征: (1) 感知能力; (2) 记忆与思维能力; (3) 学习能力及自适应能力; (4) 行为能力。
《人工智能基础》第一章课件
Page .
人工智能
人工智能(Artificial Intelligence,AI)是计算机科 学的一个分支,是研究智能的实质并且使计算机表现出 类似人类智能的学科。
人工智能是那些与人的思维、决策、问题求解和学习 等有关活动的自动化。源自Page .人工智能的定义
定义1 人工智能是一种使计算机能够思维,使机器具有智力的 激动人心的新尝试。
Page .
AlphaGo与“深蓝” 的区别
“深蓝”是“教”出来的——IBM的程序员们从国际象棋大师那 里获得信息、提炼出特定的规则和领悟,再通过预编程灌输给机器 ,即采用传统的人工智能技术。 AlphaGo是自己“学”出来的——DeepMind的程序员为它灌 输的是学习如何学习的能力,随后它通过自己不断的训练和研究学 会围棋,即采用深度学习技术。某种程度上讲,AlphaGo的棋艺不 是开发者教给他的,而是自学成才。
1950年,他还提出了著名的“图灵实验”,给 智能的标准提供了明确的定义:
把人和计算机分两个房间,并且相互对话,如
果作为人的一方不能判断对方是人还是计算机,
那这台计算机就达到了人的智能。
Page .
麦卡锡(John McCarthy),美国数学家、计算机科学家,“人工 智能之父”。
➢ 首次提出“人工智能” (AI)概念; ➢ 发明Lisp语言; ➢ 研究不寻常的常识推理; ➢ 发明“情景演算”。
定义7 人工智能是一门通过计算过程力图理解和模仿智能行为的 学科。
定义8 人工智能是计算机科学中与智能行为的自动化有关的一个 分支。
其中,定义1和定义2涉及拟人思维;定义3和定义4与理性思维
有关;定义5和定义6涉及拟人行为;定义7和定义8与拟人理性行为
第1章 人工智能概述
第1章 人工智能概述 章
1.2.3 行为模拟,控制进化 除了上述两种研究途径和方法外,还有基于感知-行 为模型的研究途径和方法——行为模拟法。 这种方法是模拟人在控制过程中的智能活动和行为特 性,如自寻优、自适应、自学习、自组织等,来研究和 实现人工智能。 典型代表:MIT的R.Brooks.研制的六足行走机器人(亦 称为人造昆虫或机器虫),曾引起人工智能界的轰动。这 个机器虫可以看作是新一代的“控制论动物”,它具有 一定的适应能力,是一个运用行为模拟即控制进化方法 研究人工智能的代表作。
第1章 人工智能概述 章
1.1 人工智能的概念
1.1.1 什么是人工智能 人工智能(Artificial Intelligence, AI)探讨人类思维、行动中那 些尚未算法化的功能行为;使机器 Thinking 、Acting
like
human。
人工智能下一个准确的定义很困难,至今尚无统一的定义。 狭义概念: 人工智能是计算机科学中涉及研究,设计和应用智能机器 的一个分支,是对智能计算机系统的研究。 智能机器: 能够在各类环境中自主地或交互的执行各种拟人 任务的,与人智力相当或相近的机器。具体地说是能够对人类
第1章 人工智能概述 章 2. 机器联想 联想是人脑思维过程中最基本、使用最频繁的功能。例如,当听到 一段乐曲,我们头脑中可能会立即浮现出几十年前的某一个场景,甚 至一段往事,这就是联想。 特点:按内容组织记忆 当前,对机器联想功能的研究中就是利用这种按内容记忆原理,采用 “联想存储”技术实现联想功能。其特点是: (1)可以存储许多相关(激励,响应)模式对; (2)通过自组织过程可以完成这种存储; (3)以分布、稳健的方式(可能出现高冗余)存储信息; (4)可以根据接收到的相关激励模式产生并输出适当的响应模式; (5)即使输入激励模式失真或不完全时,仍然可以产生正确的响应 模式; (6)可在原存储中加入新的存储模式。
第1章 人工智能概述
1.4 智能计算系统
1.4.1 智能计算系统概述
❖1. 智能计算系统
▪ 智能计算系统,是智能的物质载体 ▪ 算法或代码本身并不能构成一个完整的智能体,必
须要在一个具体的物质载体上运行才能展现出智能
▪ 智能计算系统包括
• 硬件部分,集成了通用CPU和智能芯片的异构系统
达特茅斯会议部分当事人于 2006年重聚
(左起:莫尔、麦卡锡、明斯 基、塞弗里奇、所罗门诺夫)
1.1.2 人工智能的历史
❖ 3.人工智能的发展历程
1.1.3 人工智能的学派
❖ 1.符号主义学派 ▪ 符号主义又称为逻辑主义、心理学派或计算机学派。 ▪ 符号主义认为人工智能源于数理逻辑。 ▪ 符号主义学者在1956年首先采用“人工智能”术语,后 来又发展了启发式算法、专家系统、知识工程理论与技 术,并在20世纪80年代取得重大发展。 ▪ 符号主义学派代表人物有纽厄尔、西蒙和尼尔逊等。 ▪ 符号主义学派认为人工智能的研究方法应为功能模拟方 法,即通过分析人类认知系统所具备的功能和机能,然 后用计算机模拟这些功能,实现人工智能。
开的情况下,通过一些装置(如键盘)向被
测试者随意提问,进行多次测试后,如果机
器让平均超过30%的参与者做出误判,不能
图灵
辨别出其机器身份,那么这台机器就通过了
测试,并被认为具有人类智能。
1.1.2 人工智能的历史
❖ 2.达特茅斯会议 1956年,麦卡锡、明斯基、香
农、纽厄尔、西蒙、塞弗里奇、 所罗门诺夫、罗彻斯特、塞缪尔 和莫尔,在美国达特茅斯学院召 开了一次为期两个月的“人工智 能夏季研讨会”,从不同学科角 度探讨了人类各种学习和其他智 能特征的基础,以及用机器模拟 人类智能等问题,并首次提出人 工智能的术语。
第1章人工智能概述1.1人工智能基础-高中教学同步《信息技术-人工智能初步》(教案)
教学内容规划
设计教学流程和时间分配,确保每个教学环节(如讲授、互动讨论、案例分析)都有充足的时间。
制定详细的教学大纲,明确每个部分的教学内容和重点。
互动和讨论准备
准备课堂讨论的问题和主题,如人工智能定义的多样性、人工智能对生活和工作的影响等。
跟随教师讲解,理解人工智能的基本特征,并思考这些特征在实际应用中的体现。
参与讨论,发表自己对人工智能模拟和扩展人的智能的看法。
通过呈现不同定义,帮助学生全面了解人工智能的概念。
讲解基本特征,深化学生对人工智能的理解。
通过讨论,培养学生的思考能力和表达能力。
活动三:
调动思维
探究新知
案例分析:分析一些具体的人工智能应用案例,如智能家居、医疗诊断等,展示人工智能如何改变生活和工作方式。
在介绍人工智能的基本特征时,我采用了教材内容与实际案例相结合的方式,帮助学生更好地把握这些抽象的概念。通过实例,如自动化的个性化推荐系统等,学生们能够更清楚地看到人工智能技术是如何在现实生活中被应用的。然而,我也发现这部分内容的深度与学生的预备知识之间存在一定的差距,一些学生在理解“如何通过数据的采集、加工、处理来形成有价值的信息流和知识模型”时遇到了困难。因此,在未来的教学中,我计划增加更多具体示例,并可能引入一些基础的数据科学概念,以帮助学生构建起更扎实的基础。
《信息技术-人工智能初步》教案
课题
第1章人工智能概述1.1人工智能基础
课型
班课
课时
1
授课班级
高一1班
学习目标
理解人工智能的定义及其重要性。
学生能够描述人工智能的发展历程,包括其在信息技术、互联网等领域的应用。
第1章-人工智能概述PPT课件
⑦ 人工智能是一门通过计算过程力图理解和模仿智能行为的 学科(Schalkoff,1990)
⑧ 人工智能是计算机科学中与智能行为的自动化有关的一个 分支(Luger和Stubblefield,1993)
8种定义的比较
• 哲学(公元前428年—现在) • 数学(约800年—现在) • 经济学(1776年—现在) • 神经科学(1861年—现在) • 心理学(1879年—现在) • 计算机工程(1940年—现在) • 控制论(1948年—现在) • 语言学(1957年—现在)
• 中文屋子假设是说: 有一台计算机阅读了一段故事并且能 正确回答相关问题, 这样这台计算就通过了图灵测试。
• 而西尔勒设想将这段故事和问题改用中文描述(因为他本人不懂中文 ), 然后将自己封闭在一个屋子里, 代替计算机阅读这段故事并且回 答相关问题。描述这段故事和问题的一连串中文符号只能通过一个很 小的缝隙被送到屋子里。 西尔勒则完全按照原先计算机程序的处理 方式和过程(如符号匹配、查找、照抄等)对这些符号串进行操作, 然 后把得到的结果即问题答案通过小缝隙送出去。
主要内容包括: 神经计算(Neural Computation, NC)、 进化 计算(亦称演化计算, Evolutionary Computation, EC, 包括遗传 算 法 (Genetic Algorithm, GA) 、 进 化 策 略 (Evolutionary Strategies, ES)等)、免疫计算(immune computation)、 粒群算 法(Particle Swarm Algorithm, PSA)、 蚁群算法(Ant Colony Algorithm, ACA)、等。 计算智能主要研究各类优化搜索算法, 是当前人工智能学科 中一个十分活跃的分支领域。
第一章 人工智能概述
近期目标:是实现机器智能。即先部分地或 某种程度地实现机器的智能,从而使现有的 计算机更灵活,更好用和 更有用,成为人 类的智能化信息的处理工具。
计算智能主要模拟自然智能系统,研究其数学模 型和相关算法,并实现人工智能。
计算智能是当前人工智能学科中一个十分活跃的 分支领域。
§3 基于应用领域的领域划分
1 难题求解 主要是指那些没有算法解,或虽有算法解但在
现有机器上无法实施或完成的困难问题。 如路径规划、运输调度、电力调度、地质分析、
③将输入信号模式P与计算机中原有的各 个标准模式进行比 较,完成对输入信息 的分类识别工作。
2 机器联想
人脑的联想指对事情的一种记忆和想象 力。如当听到一首歌曲时会浮现往事等场 景,就是一种联想。
人脑的联想是基于神经网络的按内容记 忆方式进行的。即只要内容相关的事情, 不论在哪里,均可由其相关内容而被想 起。
2. 让计算机具有智能是人类智能的扩展 和延伸。智能机器人的出现,标志着 人类社会进入了一个新的时代。
3. 研究人工智能是当前信息化社会的迫切 要求。
4. 智能化是自动化发展的必然趋势。因为 自动化发展到一定程度就要向智能化迈 进。
5. 研究人工智能对探索人类自身智能的奥 秘很有帮助。
§3 人工智能的目标
智能管理研究如何提高计算机管理系统 的智能水平,以及智能管理信息系统的 设计理论、方法与实现技术。
第1章-人工智能概述
⑤ 人工智能是一种能够执行需要人的智能的创造性机器的技 术(Kurzwell,1990)
⑥ 人工智能研究如何使计算机做事让人过得更好(Rick和 Knight,1991)
⑦ 人工智能是一门通过计算过程力图理解和模仿智能行为的 学科(Schalkoff,1990)
• 1950年,图灵(A.Turing)在《心智》杂志上发表了一篇 题为“计算机和智能”的文章,第一次提出了“机器能思 维”的观点。从此也拉开了人类史上人工智能研究的序幕 。
图灵测试
• 大家请思考图灵测试合理吗? • 人类与计算机具有不一致的特长 • 一个通过了图灵测试的机器是否就一定具有智能呢? 如深蓝
英国数学家、逻辑学家Boole(布尔)(1815-1864),他 初步实现了布莱尼茨的思维符号化和数学化的思想,提出 了一种崭新的代数系统--布尔代数,构成了现代计算机的 理论基础。
美籍奥地利数理逻辑学家Godel(哥德尔)(1906-1978) 证明 了一阶谓词的完备性定理: 任何包含初等数论的形式系统, 如果它是无矛盾的,那么一定是不完备的。 此定理的意义在于,人的思维形式化和机械化的某种极限, 在理论上证明了有些事是做不到的。
• 方法论不同:是唯一一个明确属于计算机科学的分支, 因而不是数学或者控制论或其他学科的分支
• AI是唯一这样的领域:它试图建造在复杂和变化的环 境中自动发挥功能的机器
1.2 人工智能的发展概况-早期成功与期望
西尔勒认为尽管计算机用这种符号处理方式也能正确回答问题, 并且 也可通过图灵测试,但仍然不能说计算机就有了智能。
1.1.3 脑智能和群智能
• 人脑由大约1011-1012个神经元组成的一个复杂的、动态的 巨系统,人脑的智能表现可以辨识出来,如学习、发现、 创造等能力。而这些智能表现的发生过程都是在心理层面 上可见的,即以某种心理活动和思维过程表现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
17
“子符号”方法
通常采用自下而上的方式,从最低阶段向上进行。在 最低层阶段,符号的概念就不如信号这一概念确切了
这类方法认为:“为了制造出真正的智能机器,我们 必须沿着人的智能进化的步骤走。因此,我们必须集 中研究复制信号处理的能力和简单动物如昆虫的支配 系统,沿着进化的阶梯向上进行“。
这一方案不仅能在短期内创造实用的人造物,又能为 更高级智能的建立打好坚实的基础。
7
内容规划
8
首先,介绍响应agent,它们运用不同方式感知世界 并活动于其中。更复杂的agent具有记忆世界特性并 存储世界内部模型的能力。任何情况下,响应agent 的行为都是所感知和记忆的世界的过去或现在状态的 函数。
其次,介绍的一系列具备规划能力agent——能够预 计其行为的效果,并采取那些能够达到预期目的的行 动。
艾仑·图灵(Alan Turing)测试
15
符号处理的方法
基于Newell和Simon的物理符号系统的假说, 大多数被称为“经典的人工智能”均在其指 导之下。
这类方法中,突出的方法是将逻辑操作应用 于说明性知识库。
运用说明语句来表达问题域的“知识”,这 些语句基于或实质上等同于一阶逻辑中的语 句。采用逻辑推理可推导这种知识的结果。 通常就称作基于知识的方法。
这类方法也强调符号基础。 著名样品机器包括所谓的“神经网络”。
返回
18
最后,介绍已有其他agent占据的世界中的agent, agent之间的交流十分重要。
9
第一章 结束
10
人工智能
广义地讲,人工智能是关于人造物的智能行为, 而智能行为包括知觉、推理、学习、交流和在复杂环 境中的行为。人工智能的一个长期目标是发明出可以 保人类一样或能更好地完成以上行为的机器;
另一个目标是理解这种智能行为是否存在于机器、 人类或其他动物中。
C: X能告诉我你的头发的长度吗? 如果x是A,那么他必须回答。游戏中, A必须尽力使C判 断错误。
…… 而B的任务则是帮助询问者。 现在我们提出这样一个问题:一个机器代替游戏中的A会
如何?询问者会依然像当游戏由一男一女进行时一样经常判断错 误吗?这些问题代替了最初的问题:机器能思考吗?
图灵测试常被简化为让一个机器试图使询问者相信它是一 个人。
人工智能
Artificial Intelligence A New Synthesis
(美) Nils J.Nilsson 著
1
第一章 绪 论
什么是人工智能 人工智能的研究方法 人工智能的研究领域 内容规划
2
第一节 什么是人工智能
“我认为,理解智能包括理解:知识如何获取、表 达和存储;智能行为如何产生和学习;动机、情感和 优先权如何发展和运用;传感器信号如何转换成各种 符号;怎样利用各种符号执行逻辑运算、对过去进行 推理及对未来进行规划;智能机制如何产生幻觉、信 念、希望、畏惧、梦幻甚至善良和爱情等现象。我相 信,对上述内容有一个根本的理解将会成为与拥有原 子物理、相对论和分子遗传学等级相当的科学成就。”
————James Albus “ 答复 Henry Hexmoor” 1995年2月13日
3
Agent概念
Agent 我们可以理解为“智能体”或“智能主 体”
一名研究人员这样说: 一个agent的功能可视作该系统与动态环境 密切相互作用的自然属性。 agent本身对其 行为的说明并不能解释它运行时所表现的功 能;相反,其功能很大程度上取决于环境的 特性。不仅要动态地考虑环境,而且环境的 具体特征也要运用于整个系统之中。
因此,人工智能包含了科学和工程的双重目标。
返回
11
人类智能的产生过程
知识获取 行为表达 知识整理
返回
12
艾仑·图灵(Alan Turing)测试
游戏由一男(A)、一女(B)和一名询问者(C)(性别不限)进行。 询问者单独在一路、间房间里与其他两人分别通过电传打字机 联系。在游戏中,询问者的目的是分辨两人的性入别。开始, 他只知道两人的称呼X、 Y,最终,他需要在“X是A, Y是B” 或者“X是B,Y是A”中选择答案。询问者允许问A和B以下问题:
符号处理的过程。
返回
16
符号处理的过程
最高阶段是知识阶段,机器所需知识在 这里说明。
接下来是符号阶段,知识在这里以符号 组织表示(例如列表可用列表处理语言 LISP来描述),同时在这里说明这些组 织的操作。
接着,在更低级的阶段里实施符号处理。 多数符号处理采用自上而下的设计方法, 从知识阶段向下到符号和实施阶段。
4
思考:
1、智能是如何产生的? 2、机器是否能思考? 3、人工智能是什么?
5
பைடு நூலகம்
第二节 人工智能的研究方法
符号处理的方法 “子符号”方法 “环境自动机(situated automata)”——介于自上
而下和自下而上之间的方法
6
第三节人工智能的研究领域
专家系统 机器学习 模式识别 自然语言理解 自动定理证明 自动程序设计 机器人学 博弈 智能决策支持系统 人工神经网络
返回
13
简单过滤性病毒——E6抗菌素的示意图
14
关于什么样的机器才具有人类的思维能力 的看法:
.人脑对信息进行并行处理,而传统的计算机则是串行处 理。我们需建造各种新型的并行,计算机来加快人工智 能的发展。
.传统的计算机以非真即假(双态)逻辑为基础,而真正的 智能系统应运用某种模糊逻辑。
.动物神经元远比开关——计算机的基本模块——要复杂, 我们需要在智能机器中运用更现实的人造神经元。