肖特基二极管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肖特基二极管和快恢复二极管又什么区别
肖特基二极管和快恢复二极管又什么区别
快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。
其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。
从性能上可分为快恢复和超快恢复两个等级。
前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。
肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。
这两种管子通常用于开关电源。
肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~!
前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~!快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.
肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。
它是具有肖特基特性的“金属半导体结”的二极管。
其正向起始电压较低。
其金属层除材料外,还可以采用金、钼、镍、钛等材料。
其半导体材料采用硅或砷化镓,多为N型半导体。
这种器件是由多数载流子导电
的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。
由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。
其工作频率可达100GHz。
并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。
快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 对于高频开关电源来说,由于频率很高(相位变换)当正半周时二极管正篇导通此时无影响,如果二极管反向恢复比较慢时,当负半周到来由于二极管还没有
从正偏时的导通状态变成截止相当于短路就等于是负半周的电压与正半周的电压叠加在二极管两端,由于频率很快,反向的时间就很短(等同与短路时间很短)所以一般情况下二极管不会立即烧掉,而是将短路的能量消耗在二极管的压降所以造成发热严重,同时整流的效果大大的降低.....
肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。
最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。
其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。
在通讯电源、变频器等中比较常见。
肖特基二极管在开关电源中的应用
肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。
其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。
这些优良特性是快恢复二极管所无法比拟的。
中、小功率肖特基整流二极管大多采用封装形式。
一、肖特基二极管原理
肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。
因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。
显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。
随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。
但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。
当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。
典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。
阳极(阻档层)金属材料是钼。
二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。
N型基片具有很小的通态电
阻,其掺杂浓度较H-层要高100%倍。
在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。
通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。
加负偏压-E时,势垒宽度就增加。
综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。
肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。
其反向恢复时间已能缩短到10ns以内。
但它的反向耐压值较低,一般不超过去时100V。
因此适宜在低压、大电流情况下工作。
利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。
二、肖特基二极管的结构
肖特基二极管在结构原理上与PN结二极管有很大区别,它的内部是由阳极金属(用钼或铝等材料制成的阻挡层)、二氧化硅(SiO2)电场消除材料、N-外延层(砷材料)、N型硅基片、N+阴极层及阴极金属等构成,如图4-44所示。
在N型基片和阳极金属之间形成肖特基势垒。
当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基
势垒层则变宽,其内阻变大。
肖特基二极管分为有引线和表面安装(贴片式)两种封装形式。
采用有引线式封装的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。
它有单管式和对管(双二极管)式两种封装形式,
快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。
其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。
从性能上可分为快恢复和超快恢复两个等级。
前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。
肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。
这两种管子通常用于开关电源。
肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~!
前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~!快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关
速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做
整流元件.
肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。
它是具有肖特基特性的“金属半导体结”的二极管。
其正向起始电压较低。
其金属层除材料外,还可以采用金、钼、镍、钛等材料。
其半导体材料采用硅或砷化镓,多为N型半导体。
这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。
由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。
其工作频率可达100GHz。
并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。
快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管和快恢复二极管有什么区别?
快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。
其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。
从性能上可分为快恢复和超快恢复两个等级。
前者反向恢复时间为数百纳秒或更长,
后者则在100纳秒以下。
肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。
/ j) M* Z5 x0 T T0 ?' k( B
这两种管子通常用于开关电源。
) M, Q5 z+ P* M9 N' t
肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~!8 _; d b3 H8 T, p1 t
7 p" K9 g; ]) a3 k4 P# t
前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~!
0 ] S) z9 q/ l3 c) `% F- p' Z p
快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关
速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做
整流元件., p8 g1 x; s7 F( D$ _ ?+ {" O
肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。
它是具有肖特基特性的“金属半导体结”的二极管。
其正向起始电压较低。
其金属层除材料外,还可以采用金、钼、镍、钛等材料。
其半导体材料采用硅或砷化镓,多为N型半导体。
这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。
由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。
其工作频率可达100GHz。
并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发
光二极管。
. I( n y d$ X. c. l2 Z) [ @
快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。
快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.6 F9 J8 k! ^" i: X
' a, s: ?; ~5 g! G' W$ G! t
a. L% ?7 d: i, h, |: S' G% l* g, w
- X7 S$ W0 [: }( k$ T' m
) q r! S% D
快恢复二极管FRD(Fast Recovery Diode)是近年来问世的新型半导体器件,具有开关特性好,反向恢复时间短、正向电流大、体积小、安装简便等优点。
超快恢复二极管SRD(Superfast Recovery Diode),则是在快恢复二极管基础上发展而成的,其反向恢复时间trr值已接近于肖特基二极管的指标。
它们可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管,是极有发展前途的电力、电子半导体器件。
1.性能特点
反向恢复时间3 S L' _, p) b
反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。
它是衡量高频续流及整流器件性能的重要技术指标。
反向恢复电流的波形如图1所示。
IF为正向电流,IRM为最大反向恢复电流。
Irr为反向恢复电流,通常规定Irr=0.1IRM。
当t≤t0时,正向电流I=IF。
当t>t0时,由于整流器件
上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。
然后整流器件上流过反向电流IR,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM值。
此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。
从t2到t3的反向恢复过程与电容器放电过程有相似之处。
`+ B7 f. Y
快恢复、超快恢复二极管的结构特点
快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。
由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。
快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。
超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。
Z0 E# \- i l; z
20A以下的快恢复及超快恢复二极管大多采用TO-220封装形式。
从内部结构看,可分成单管、对管(亦称双管)两种。
对管内部包含两只快恢复二极管,根据两只二极管接法的不同,又有共阴对管、共阳对管之分。
图2(a)是C 20-04型快恢复二极管(单管)的外形及内部结构。
(b)图和(c)图分别是C92-02型(共阴对管)、MUR1680A型(共阳对管)超快恢复二极管的外形与构造。
它们均采用TO-220塑料封装。
n+ S0 M. C% `8 H. x: j
几十安的快恢复二极管一般采用TO-3P金属壳封装。
更大容量(几百安~几千安)的管子则采用螺栓型或平板型封装形式。
! Q' n) c# W( _6 q* U4 k$ | . y. E* [6 C9 ^% c! b5 `2 m. t
2.检测方法J6 V P3 o% ~; ]3 T
/ `7 z3 b$ i; H) b. h R9 r; x
1)测量反向恢复时间
测量电路由直流电流源供规定的IF,脉冲发生器经过隔直电容器C加脉冲信号,利用电子示波器观察到的trr值,即是从I=0的时刻到IR=Irr时刻所经历的时间。
* T# j* k6 C) p- y
设器件内部的反向恢电荷为Qrr,有关系式2 n. t J0 l" k
# s: t% I, L5 L! x: m2 I1 ~. t
trr≈2Qrr/IRM (5.3.1)( B1 \2 v: a% _/ i/ V2 W g
* B8 w+ [. R# I) G) h2 {" F
由式(5.3.1)可知,当IRM 为一定时,反向恢复电荷愈小,反向恢复时间就愈短。
' U9 q, q( w8 [8 i* u8 g7 N- s3 G2 j
常规检测方法/ l$ i5 x) S. p
在业余条件下,利用万用表能检测快恢复、超快恢复二极管的单向导电性,以及内部有无开路、短路故障,并能测出正向导通压降。
若配以兆欧表,还能测量反向击穿电压。
! V) c0 V( O3 }
实例:测量一只C90-02超快恢复二极管,其主要参数为:trr=35ns,Id=5A,IFSM=50A,VRM=700V。
外型同图(a)。
将500型万用表拨至R×1档,读出正向电阻为6.4Ω,n′=19.5格;反向电阻则为无穷大。
进一步求得VF=0.03V/格×19.5=0.585V。
证明管子是好的。
U" F) {/ y6 ]5 d
注意事项:
有些单管,共三个引脚,中间的为空脚,一般在出厂时剪掉,但也有不剪的。
l9 H G
若对管中有一只管子损坏,则可作为单管使用。
测正向导通压降时,必须使用R×1档。
若用R×1k档,因测试电流太小,远低于管子的正常工作电流,故测出的VF值将明显偏低。
在上面例子中,如果选择R×1k档测量,正向电阻就等于2.2kΩ,此时n′=9格。
由此计算出的VF值仅0.27V,远低于正常值(0.6V)。