信号与系统(第四版)
信号与线性系统 第四版 管致中 第3章1

11
傅里叶级数的指数形式
可以从三角傅立叶级数直接导出,由欧拉公式:
1 sin nt e jnt e jnt 2j 1 jnt cos nt e e jnt 代入三角形傅氏级数中去, 2
a0 f (t ) an cos nt bn sin nt 2 n 1 n 1
7
例
试将下图所示的方波信号f(t)展开为傅里 f (t) 叶级数。 f (t ) a0 an cos nt bn sin nt 1
2
n 1 n 1
T 2
2 T 2 2 T a0 f (t )dt dt T (1)dt 0 T 0 T 0 T 2
0
T 2
T
n
2
(cos n
T
T 2
8
1)
例
将具有不连续点的周期函数(如 矩形脉冲)进行傅立叶级数展开 后,选取有限项进行合成。当选 取的项数越多,在所合成的波形 中出现的峰起越靠近原信号的不 连续点。当选取的项数很大时, 该峰起值趋于一个常数,大约等 于总跳变值的9%。这种现象称 为吉布斯效应。
______。 B
2
f (t )
周期信号 f (t) 的傅立叶级数中所含有的频率分量是
1
0
T 2
T
t
-1
(A) 余弦项的奇次谐波,无直流 (B) 正弦项的奇次谐波,无直流 (C) 余弦项的偶次谐波,直流 (D) 正弦项的偶次谐波,直流。
奇函数:只含正弦项; 半周镜象对称: 只含奇次谐波
25
例 3 习题3.8
t0
t0+T
信号与系统吴大正第四版第二章

y p (t ) Pe ,
t
y p (t ) Pe ,
t
y p (t ) Pet , f (t ) 2et ,
P 5P 6P 2, 故P 1 整理得: 所以微分方程的特解为: y p (t ) et
则微分方程的全解为:
y(t ) yh (t ) y p (t ) C1e2t C2e3t et
解:选新变量y1(t),其冲激响应为h1(t),满足方程
(t ) 5 y1 (t ) 6 y1 (t ) f (t ) y1
设其冲激响应为h1(t),则原方程的冲激响应为
h(t ) h1(t ) 2h1(t ) 3h1 (t )
由于 所以
h1 (t ) (e2t e3t ) (t )
第1-13页
■
信号与系统 电子课件
5.冲激函数匹配法
目的:
用来求解初始值,求(0+)和(0-)时刻值
的关系。
应用条件: 如果微分方程右边包含δ(t)及其各阶导
数,那么(0+)时刻的值不一定等于(0-) 时刻的值。 原理: 利用t=0时刻方程两边的δ(t)及各阶导数 应该平衡的原理来求解(0+)
第1-14页
0 0
即h(0 ) 1 h(0 ) 1
第1-23页
■
信号与系统 电子课件
(2)再求冲激响应。
由δ(t)的性质知,对t>0时,有 h(t ) 5h(t ) 6h(t ) 0 故系统的冲激响应为一齐次解。 微分方程的特征根为-2,-3。故系统的冲激响应为
h(t)=(C1e-2t + C2e-3t)ε(t)
e t
(Cr 1t r 1 Cr 2t r 2 C1t C0 )et
电子教案《信号与系统》(第四版_燕庆明)(含习题解答)6.3

6.3 线性系统的稳定性
一、稳定的概念
稳定:充要条件是
h(t)
dt
,即H(s)的全部极点
位于S的左半平面;
临界稳定: H(s)在虚轴上有单极点,其余极点均在
S的左半平面;
不稳定: H(s)只要有一个极点位于S的右半平面。
信号与系统 6.3-2
例
图1
二、稳定性判据
信号与系统 6.3-3
必要条件: H( s )的分母多项式
D(s) ansn an-1sn-1 a1s a0
的全部系数非零且均为正实数。 充要条件:对二阶系统,D(s) a2s2 a1s a0 的全部 系数非零且为正实数。 充要条件:对三阶系统,D(s) a3s3 a2s2 a1s a0 的 各项系数全为正,且满足
a1a2 a0a3
信号与系统 6.3-4
例 导弹跟踪系统H (s) Nhomakorabeas3
34.5s2 119.7s 98.1 35.714s2 119.741s 98.1
N (s) D(s)
显然
a1a2 > a0a3
故系统稳定。
练习: 判别稳定性
1. D(s) s2 3s 2 2. D(s) s3 s2 4s 10 3. D(s) s3 4s2 5s 6
end
信号与线性系统(第四版)

信号与线性系统(第四版)第一章:信号与系统概述1.1 信号的分类与特性1. 按照幅度是否连续:连续信号和离散信号2. 按照时间是否连续:连续时间信号和离散时间信号3. 按照周期性:周期信号和非周期信号4. 按照能量与功率:能量信号和功率信号连续信号:在任意时间点上都有确定值的信号,如正弦波、矩形波等。
离散信号:在离散时间点上才有确定值的信号,如采样信号、数字信号等。
连续时间信号:时间轴上连续变化的信号,如语音信号、图像信号等。
离散时间信号:时间轴上离散变化的信号,如数字音频、数字图像等。
周期信号:在一定时间间隔内重复出现的信号,如正弦波、方波等。
非周期信号:不具有周期性的信号,如爆炸声、随机信号等。
能量信号:信号的能量有限,如脉冲信号。
功率信号:信号的功率有限,如正弦波、方波等。
1.2 系统的定义与分类1. 按照输入输出关系:线性系统和非线性系统2. 按照时间特性:时变系统和时不变系统3. 按照因果特性:因果系统和非因果系统4. 按照稳定性:稳定系统和不稳定系统线性系统:满足叠加原理和齐次性原理的系统。
即输入信号的线性组合,输出信号也是相应输出的线性组合。
非线性系统:不满足线性系统条件的系统,如饱和非线性、幂次非线性等。
时变系统:系统的特性随时间变化而变化,如放大器的增益随时间衰减。
时不变系统:系统的特性不随时间变化,如理想滤波器、积分器等。
因果系统:当前输出仅取决于当前及过去的输入,与未来的输入无关。
非因果系统:当前输出与未来输入有关,如预测滤波器等。
稳定系统:对于有界输入,输出也有界;或者输入趋于零时,输出也趋于零。
不稳定系统:对于有界输入,输出无界;或者输入趋于零时,输出不趋于零。
第二章:线性时不变系统2.1 线性时不变系统的基本性质2.1.1 叠加性LTI系统对多个输入信号的叠加响应,等于这些输入信号单独作用于系统时的响应之和。
这意味着系统可以处理多个信号而不会相互干扰。
2.1.2 齐次性如果输入信号放大或缩小一个常数倍,那么系统的输出也会相应地放大或缩小同样的倍数。
(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。
根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。
二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。
2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。
图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。
图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。
这里雷达接收到的目标回波信号就是延时信号。
3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。
信号与线性系统分析(第四版)

信号与线性系统分析(第四版):探索信号处理的数学基石一、信号与线性系统的基本概念在信息技术飞速发展的今天,信号与线性系统分析已成为电子工程、通信工程等领域不可或缺的基础知识。
本版书籍旨在为您提供一个清晰、系统的学习路径,帮助您深入理解信号处理的理论与实践。
1. 信号的定义与分类(1)确定性信号与随机信号:确定性信号在任意时刻都有明确的函数值,而随机信号则具有不确定性。
(2)周期信号与非周期信号:周期信号在时间轴上呈周期性重复,而非周期信号则不具备这一特性。
(3)能量信号与功率信号:能量信号在有限时间内具有有限的能量,而功率信号则具有有限的功率。
2. 线性系统的特性(1)叠加原理:多个输入信号经过线性系统处理后,其输出信号等于各输入信号单独处理后的输出信号之和。
(2)齐次性原理:输入信号经过线性系统放大或缩小后,输出信号也会相应地放大或缩小。
二、线性时不变系统描述1. 冲激响应与卷积积分冲激响应是描述LTI系统特性的重要工具。
通过冲激响应,我们可以利用卷积积分求出系统对任意输入信号的响应。
2. 系统函数与频率响应系统函数是LTI系统在频域的描述方式,它揭示了系统对不同频率信号的响应特性。
频率响应则是对系统函数在特定频率下的直观展示。
3. 状态空间描述状态空间描述是一种更为全面的LTI系统描述方法,它将系统的内部状态与输入、输出联系起来,为分析和设计复杂系统提供了有力工具。
三、信号的傅里叶分析1. 傅里叶级数傅里叶级数将周期信号分解为一系列正弦波和余弦波,揭示了周期信号在频域的组成。
2. 傅里叶变换傅里叶变换将时间域的非周期信号转换为频域信号,为信号处理提供了强大的分析工具。
四、拉普拉斯变换与z变换的应用1. 拉普拉斯变换拉普拉斯变换将时间域的信号转换到复频域,它是分析线性时不变系统在复频域特性的关键工具。
在本版书籍中,我们将探讨:(1)拉普拉斯变换的基本性质和收敛域。
(2)利用拉普拉斯变换求解微分方程和积分方程。
《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以
即
70
系统函数
第3章 连续信号与系统的频域分析
故
因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107
信号与线性系统分析第四版答案

专业课习题解析课程西安电子科技大学844信号与系统专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
信号答案第四版

专业课习题解析课程 西安电子科技大学 844信号与系统 专业课习题解析课程第2讲第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
《信号与系统(第四版)》习题详解 (1)

第1章 信号与系统的基本概念 解 此题练习离散信号的图形表示方法。要求熟悉常用指数 和正弦序列的图形表示、阶跃序列的定义和基本性质以及序列平 移和翻转操作对序列图形的影响。
7
第1章 信号与系统的基本概念
题解图 1.2 8
第1章 信号与系统的基本概念 1.3 试写出题图1.1各信号的解析表达式。
第1章 信号与系统的基本概念 24
第1章 信号与系统的基本概念
题解图 1.5-7 25
第1章 信号与系统的基本概念 26
第1章 信号与系统的基本概念
题解图 1.5-8 27
第1章 信号与系统的基本概念 (9) 两个连续信号相加,任一时刻的和信号值等于两信号在 该时刻的信号值之和。题(9)信号波形如题解图1.5-9所示。
3
第1章 信号与系统的基本概念 解 此题练习连续信号的波形图表示方法。除应熟悉常用连 续指数、正弦和斜升信号波形外,还应特别注意阶跃函数的基本 性质以及信号平移、翻转操作对信号波形的影响。
4
第1章 信号与系统的基本概念
题解图 1.1 5
第1章 信号与系统的基本概念 1.2 绘出下列信号的图形:
题图 1.1 9
第1章 信号与系统的基本概念 10
第1章 信号与系统的基本概念 11
第1章 信号与系统的基本概念 1.4 判定下列信号是否为周期信号。若是周期信号,则确
定信号周期T。
12
第1章 信号与系统的基本概念
解 (1) 若有两个周期分别为T1和T2的连续信号相加,当
T1/T2为有理数时,其和信号亦是周期信号,相应周期为T1和T2的最
题解图 1.5-9 28
第1章 信号与系统的基本概念 (10) 两个连续信号相乘,任一时刻的积信号值等于两信 号在该时刻的信号值之积。题(10)信号波形如题解图1.5-10 所示。
信号与系统吴大正第四版第二章

利用冲激函数匹配法求初始条件0+ 状态
第1-17页
■
信号与系统 电子课件
例:描述某LTI系统的微分方程为
y(t ) 2 y(t ) y(t ) f (t ) 2 f (t ) 已知 y(0 ) 1, y(0 ) 1, f (t ) (t ),求y(0 )和y(0 ) 解:将输入f (t ) (t ) 代入微分方程,得: y(t ) 2 y(t ) y(t ) (t ) 2 (t ) 配平的原理:t=0时刻微分方程左右两端的δ(t)及各阶导数
不同特征根对应的齐次解
特征根λ和齐次解yh(t) 单实 根 r重实根
t
e
(Cr 1t r 1 Cr 2t r 2 C1t C0 )et
一对共轭复根 et [C cos(t ) D sin(t )]或A cos(t ),其中Ae j C jD
应该平衡,令
y(t ) a (t ) b (t ) c (t ) d (t )
y(t ) a (t ) b (t ) c (t )
y(t ) a (t ) b (t )
第1-18页
■
信号与系统 电子课件
代入微分方程: a 1 b 2a 0
第1-6页
■
信号与系统 电子课件
元件特性约束:
表征元件特性的关系式。例如二端元件电阻、电 容、电感各自的电压与电流的关系以及四端元件互感 的初、次级电压与电流的关系等等。
(完整版)信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))tf=r)(sin(t(7))f kε=t)(2(k(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
信号与线性系统分析 (第四版)第四章 级数

T 2 T 2 T 2 T 2
b-n
f (t ) sin( n t ) dt bn
龚茂康
扬州大学信息工程学院
f (t )
a0 2
( an cos n t bn sin n t )
n 1
信号与线性系统分析
A0 2
A0 2
A n cos(n t n )
n 1
A n Cos n Cos(n t ) -A n Sin n Sin(n t )
n 1 n 1
a n An Cos n , b n An Sin n ,
A n an
0
an
信号与线性系统分析
(2)奇函数 : 关于原点对称, f ( t ) f (t )
f (t )
t
a0 0
f (t )
龚茂康
n 1
an 0
b n sin n t
扬州大学信息工程学院
f (t ) cos nt为t的奇函数
an
信号与线性系统分析
信号与线性系统分析
第四章
傅里叶变换和系统的频域分析
很多问题在时域求解比较麻烦, 例如卷积; 很多问题在时域解释不清,例如声 音信号中的高低音处理; 第一个变换域------频域; 如何在频域中描述信号和系统?
龚茂康 扬州大学信息工程学院
信号与线性系统分析
§4-1 信号分解为正交函数 常用正交函数集 ①三角函数集
上式的物理意义:
f t 中含有sint、sin3t、sin5t等的正弦分量。
信号与系统吴大正第四版第一章课件1

0T 2m
) sin[ (k m N)]
正弦序列周期性的判定:
• 当 为整数时,正弦序列才具有周期 N 。 • 当
2
2
2
2
为有理数时,正弦序列仍具有周期性,其周期 N M
2
。
• 当 为无理数时,正弦序列不具有周期性。
第1-22页
■
信号与系统 电子课件
f (n )
2 1 1 1
2 1 ...
N=5
n
1
2
3
4
5
6
7
8
离散周期信号的周期只能为整数
第1-21页
■
信号与系统 电子课件
• 正弦信号:
sin 0t sin 0 (t T ) sin(0t 0T )
• 正弦序列:
sin(k ) sin(k 2m ) sin[ (k m 2
第1-11页
■
信号与系统 电子课件
1.1 信号的描述
1. 消息(message)
通过某种方式传递的声音、文字、图像、符号等。
2.信息(information) 通常把消息中有意义的内容称为信息。 信息的表现形态:数据、文字、声音、图像。 3.信号(signal)
信号是信息的载体,信息是信号的内容。
课程地位:
信号与系统是理工科学生一门重要的专业基
础课。是许多专业(通信、电子、自动化、计算
机、系统工程等)的必修课,是我们将来从事专 业技术工作的重要理论基础,是后续专业课(通 信原理、数字信号处理)的基础,也是上述各类 专业硕士研究生入学考试课程。
第1-5页
■
信号与系统 电子课件
信号与线性系统分析(第四版)

信号与线性系统分析(第四版)信号与线性系统分析是电子信息领域的重要课程,对于理解现代通信系统、控制系统以及信号处理技术具有重要意义。
本教材是信号与线性系统分析的第四版,根据最新的学科发展和技术进步进行了全面修订,以适应现代电子信息工程教育的需求。
在第四版中,我们对信号与线性系统分析的基本概念、基本理论、基本方法进行了系统的阐述。
同时,为了提高读者的实践能力,本教材还增加了大量的实例和习题,帮助读者更好地掌握信号与线性系统分析的理论和方法。
1. 信号与系统概述:介绍信号与系统的基本概念,包括连续时间信号、离散时间信号、线性时不变系统、线性时变系统等。
2. 信号分析:讲解信号的时域分析、频域分析、变换域分析等基本方法,包括傅里叶变换、拉普拉斯变换、Z变换等。
3. 系统分析:阐述线性时不变系统的基本性质,包括系统的稳定性、系统的频率响应、系统的零状态响应、系统的零输入响应等。
4. 信号处理:介绍基本的信号处理技术,包括滤波、调制、解调、采样、量化、编码等。
5. 应用实例:通过实际的应用实例,展示信号与线性系统分析在通信系统、控制系统、信号处理等领域的应用。
信号与线性系统分析(第四版)信号与线性系统分析是电子信息领域的重要课程,对于理解现代通信系统、控制系统以及信号处理技术具有重要意义。
本教材是信号与线性系统分析的第四版,根据最新的学科发展和技术进步进行了全面修订,以适应现代电子信息工程教育的需求。
在第四版中,我们对信号与线性系统分析的基本概念、基本理论、基本方法进行了系统的阐述。
同时,为了提高读者的实践能力,本教材还增加了大量的实例和习题,帮助读者更好地掌握信号与线性系统分析的理论和方法。
1. 信号与系统概述:介绍信号与系统的基本概念,包括连续时间信号、离散时间信号、线性时不变系统、线性时变系统等。
2. 信号分析:讲解信号的时域分析、频域分析、变换域分析等基本方法,包括傅里叶变换、拉普拉斯变换、Z变换等。
信号与系统 第四版 第一章 信号与系统

一阶微分方程组 -------状态方程
15
系统的分类(描述):
连续时间系统:微分方程 混合系统 离散时间系统:差分方程
即时系统(非记忆系统):代数方程 动态系统(记忆系统):微分方程或差分方程
微分方程 (t ) 集总参数系统 : 分布参数系统 : 偏微分方程 (t , x, y, z )
系统基本概念:系统模型;系统描述(分类)
系统线性(零输入、零状态响应)
系统时不变性、稳定性、因果性
系统(连续)的框图模型与微分方程模型
9
p23:
第一章作业
1.9 ; 1.10 (1) (3) (5)
1.2 (1) (5) (7) ; 1.29
?
1.32
-
4 sin d ( - 6 )d = 4sin d ( - 6 )d =
(1-2)
(1-1)与(1-2)是形式上完型可有多种不同的数学表现形式
高阶微分方程 --------------称为输入/输出方程 状态方程 ---------------适合于多输入多输出系统分析(一阶微分方程组)
例:
1.4 系统分析方法
+
u s (t )
Zk (S=s+ jw) (Z = rejq)
est
数学方法
系统模型
LT
H (S) 4
ZT
H (Z) 3
8
h (t)
h (k) H (jw) H (ejq ) <3 > (6+3)
3+2
第一章小结
信号分类:连续&离散(模拟、数字);能量、功率信号
典型连续信号(抽样信号)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABC ABC AC( B B) AC
2 .卡诺图
最小项的定义: n个变量的逻辑函数中,包含全部变量的乘积项称为最 小项。n变量逻辑函数的全部最小项共有2n个。 用小方格来表示最小项,一个小方格代表一个最小项, 然后将这些最小项按照相邻性排列起来。即用小方格几 何位置上的相邻性来表示最小项逻辑上的相邻性。
L AB AC BCD AB AC BCD( A A) AB AC ABCD ABCD AB AC
在化简逻辑函数时,要灵活运用上述方法,才能将逻辑函 数化为最简。
1.4
逻辑函数的卡诺图化简法
一、 最小项的定义与性质
)
二、逻辑函数的最小项表达式 任何一个逻辑函数表达式都可以转换为一组最小项之 和,称为最小项表达式。 例4.1:将以下逻辑函数转换成最小项表达式:
L(A,B,C,D)=∑m(0,2,3,4,6,7,10,11,13,14,15)
解:(1)由表达式画出卡诺图。 (2)画包围圈,合并最小项, 得简化的与—或表达式:
例4.8 某逻辑函数的真值表如表3所示,用卡诺图化简该 逻辑函数。
解:(1)由真值表画出卡诺图。 (2)画包围圈合并最小项。 有两种画圈的方法: (a):写出表达式: (b):写出表达式:
反之,由函数表达式也可以转换成真值表。 例1. 2 列出下列函数的真值表: 真值表
A B 0 0 1 1 0 1 0 1
L 1 0 0 1
L A B A B
解:该函数有两个变量,有4种取值的 可能组合,将他们按顺序排列起来即 得真值表。
3.逻辑图——由逻辑符号及它们之间的连线而构成的图形。
AB(C C) ABC ABC ABC ABC ABC ABC
=m7+m6+m3+m5=∑m(3,5,6,7)
三、卡诺图
1.相邻最小项 如果两个最小项中只有一个变量互为反变量,其余变量均相同,则 称这两个最小项为逻辑相邻,简称相邻项。 例如,最小项ABC和 ABC 就是相邻最小项。 如果两个相邻最小项出现在同一个逻辑函数中,可以合并为一项, 同时消去互为反变量的那个量。如
总之,2n个相邻的最小项结合,可以消去n个取值不 同的变量而合并为l项。 2.用卡诺图合并最小项的原则(画圈的原则) (1)尽量画大圈,但每个圈内只能含有2n (n=0,1,2,3……)个相邻项。要特别注意对边相邻性和 四角相邻性。 (2)圈的个数尽量少。 (3)卡诺图中所有取值为1的方格均要被圈过,即不能 漏下取值为1的最小项。 (4)在新画的包围圈中至少要含有1个末被圈过的1 方格,否则该包围圈是多余的。
3.卡诺图的结构
(1)二变量卡诺图
(2)三变量卡诺图
B m0 ABC A m4 ABC m1 ABC m5 ABC C (a) m3 ABC m7 ABC m2 ABC m6 ABC A 0 1 0 4 1 5 3 7 2 6 BC 00 01 11 10
(b)
(3)四变量卡诺图
C m0 m1 m3 m2 ABCD ABCD ABCD ABCD m4 m5 m7 m6 ABCD ABCD ABCD ABCD m1 2 m1 3 m 15 m1 4 ABCD ABCD ABCD ABCD A m8 m9 m1 1 m1 0 ABCD ABCD ABCD ABCD D (a) (b) 10 8 9 11 10 B 11 12 13 15 14 CD 00 AB 00 01 0 4 01 1 5 11 3 7 10 2 6
仔细观察可以发现,卡诺图具有很强的相邻性: (1)直观相邻性,只要小方格在几何位置上相邻 (不管上下左右),它代表的最小项在逻辑上一定 是相邻的。 (2)对边相邻性,即与中心轴对称的左右两边和上 下两边的小方格也具有相邻性。
四、用卡诺图表示逻辑函数
1.从真值表到卡诺图
2.从逻辑表达式到卡诺图
(1)如果表达式为最小项表达式,则可直接填入卡诺 图。
逻辑1 逻辑1
逻辑0
逻辑0
逻辑0
3、在数字电路中,输入信号是“条件”, 输出信号是“结果”,因此输入、输出之间 存在一定的因果关系,称其为逻辑关系。 它可以用逻辑表达式、 图形和真值表来描 述。
热门促销安卓智能手机推荐
二、 基本逻辑运算
一、基本逻辑运算
1.与运算
设:开关闭合=“1” 开关不闭合=“0”
L( A, B, C) AB AC
解:
L( A, B, C) A ABC ABC
=m7+m6+m3+m1
例4.2 将下列逻辑函数转换成最小项表达式:
F AB AB AB C
解:
AB AB AB C AB ( A B )( A B )C AB ABC ABC
1.3 逻辑函数的代数化简法
一、逻辑函数式的常见形式
一个逻辑函数的表达式不是唯一的,可以有多种形 式,并且能互相转换。例如:
其中,与—或表达式是逻辑函数的最基本表达形式。
二、逻辑函数的最简“与—或表 达式” 的标准
(1)与项最少,即表达式中“+”号最少。 (2)每个与项中的变量数最少,即表达式中 “· ”号最少。
(2)如表达式不是最小项表达式,但是“与—或表达 式”,可将其先化成最小项表达式,再填入卡诺图。 也可直接填入。
五、逻辑函数的卡诺图化简法
1.卡诺图化简逻辑函数的原理 : (1)2个相邻的最小项结合,可以消去1个取值不同的变量而 合并为l项。 (2)4个相邻的最小项结合,可以消去2个取值不同的变量而 合并为l项。 (3)8个相邻的最小项结合,可以消去3个取值不同的变量而 合并为l项。
3.用卡诺图化简逻辑函数的步骤:
(1)画出逻辑函数的卡诺图。 (2)合并相邻的最小项,即根据前述原则画圈。 (3)写出化简后的表达式。每一个圈写一个最简与项,规 则是,取值为l的变量用原变量表示,取值为0的变量用反变 量表示,将这些变量相与。然后将所有与项进行逻辑加,即 得最简与—或表达式
例
用卡诺图化简逻辑函数:
由函数表达式可以画出逻辑图。 例1.3、 画出下列函数的逻辑图: L A B A B
解:可用两个非门、两个与门 和一个或门组成。
A & 1 & 1 ≥1 L
由逻辑图也可以写出表达式。
例1. 4 写出如图所示 逻辑图的函数表达式。 解:
B
A B C
& & & ≥1
L
L AB BC AC
三人表决电路真值表
A B C 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1
L 0 0 0 1 0 1 1 1
同意为逻辑“1”,
不同意为逻辑“0”。 对于因变量L设:
事情通过为逻辑“1”,
没通过为逻辑“0”。 第三步:根据题义及上述规定 列出函数的真值表。
2.或运算
A B
A
不闭合 不闭合
B
不闭合 闭合
灯L
不亮 亮
闭合
不闭合
闭合 或逻辑真值表
亮
亮
V
L
闭合
A B
≥1 L=A+B
输 A 0 0 1 1
入 B 0 1 0 1
输出 L 0 1 1 1
或逻辑表达式: L=A+B
或逻辑——当决定一件事情的几个条件中,只要有一个
或一个以上条件具备,这件事情就发生。
3.非运算
R A
A
闭合 不闭合
灯L
不亮 亮
V
L
非逻辑真值表
A 1 L=A
L A
A
0 1
L
1 0
非逻辑表达式:L A
非逻辑——某事情发生与否,仅取决于一个条件,而 且是对该条件的否定。即条件具备时事情不发生;条
件不具备时事情才发生。
三、其他常用逻辑运算
1.与非 —— 由与运算 和 非运算组合而 成。
利用反演规则,可以非常方便地求得一个函数的反函数。
例2.3 求以下函数的反函数:
L AC B D
解:
L ( A C) ( B D)
在应用反演规则求反函数时要注意以下两点: (1)保持运算的优先顺序不变,必要时加括号 表明,如例三。 (2)变换中,几个变量(一个以上)的公共非 号保持不变,如例四。
5 t(ms)
0
10
20
30 40
50
2、正逻辑与负逻辑
数字信号是一种二值信号,用两个电平(高电平和低电 平)分别来表示两个逻辑值(逻辑1和逻辑0)。 有两种逻辑体制: 正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。 负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。
下图为采用正逻辑体制所表的示逻辑信号:
“与非”真值 表 输 入 输出
A
0 0 1 1
B
0 1 0 1
L
1 1 1 0
A B
& L=A· B
2.或非 ——
“或非”真值 表 输 入 输出 A 0 0 1 1 B 0 1 0 1 L 1 0 0 0
A B ≥1 L=A+B
由或运算和
非运算组合 而成。
3.异或
异或是一种二变量逻辑运算,当两个变量取值相同时, 逻辑函数值为0;当两个变量取值不同时,逻辑函数值为1。 异或的逻辑表达式为: L A B
一般地说,若输入逻辑变量A、B、C… 的取值确定以后,输出逻辑变量L的值也唯 一地确定了,就称L是A、B、C的逻辑函数, 写作:
L=f(A,B,C…)
逻辑函数与普通代数中的函数相比较,有两 个突出的特点:
(1)逻辑变量和逻辑函数只能取两个值0和1。