高中数学---椭圆知识点小结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习----椭圆

1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数

)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭

圆的焦距.

注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨

迹无图形.

2、椭圆的标准方程

1).当焦点在x 轴上时,椭圆的标准方程:12222=+b

y a x )0(>>b a ,其中2

22b a c -=;

2).当焦点在y 轴上时,椭圆的标准方程:12222=+b

x a y )0(>>b a ,其中2

22b a c -=;

3、椭圆:122

22=+b

y a x )0(>>b a 的简单几何性质

(1)对称性:对于椭圆标准方程122

22=+b

y a x )0(>>b a :是以x 轴、y 轴

为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对

称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆

122

22=+b

y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a

c

a c e ==

22。②因为)0(>>c a ,所以e 的取值范围是)10(<

仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+2

2。 注意:椭圆122

22=+b

y a x 的图像中线段的几何特征(如下图):

)2(21a PF PF =+

e PM PF PM PF ==

2

21

1;

)2(22

1c

a PM PM =+;

4、椭圆的令一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。即上图中有

e PM PF PM PF ==

2

21

1

5:椭圆12222=+b y a x 与 122

22=+b

x a y )0(>>b a 的区别和联系

标准方程

122

22=+b y a x )0(>>b a 122

22=+b

x a y )0(>>b a 图形

性质

焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F

焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性

关于x 轴、y 轴和原点对称

顶点 )0,(a ±,),0(b ±

),0(a ±,)0,(b ±

轴长 长轴长=a 2,短轴长=b 2

离心率

)10(<<=

e a

c

e 准线方程 c

a x 2

±=

c

a y 2

±=

焦半径

01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=

相关文档
最新文档