SPC控制图判异准则制定依据判异准则顺口溜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPC控制图判异准则制定依据
过程控制图包含2种,一种是“分析用控制图”,另一种是“控制用控制图”。
分析用控制图,主要作以下2点用途:①所分析的过程是否为稳态;②过程能力指数是否满足要求。这种把能力指数满足要求称作技术稳态。分析用控制图的调整过程即质量不断改进的过程。
控制用控制图,当过程达到我们所确定的“统计稳态“和技术稳态”后,才能将分析用控制图的控制线延长作为控制用控制图。这种延长的控制线相当于生产立法,便进入日常管理。
故从数理统计的角度来看,分析用控制图阶级就是过程参数未知阶段,而控制用控制图阶段则是过程参数已知阶段。在由分析用控制图向控制用控图转化前,需要对过程判读,这时就需要用到:判稳准则和判异原则。
1)判稳准则的思路
对于判异来说,“点出界就判异”。虽不百发百中,也是千发九九七中,很可靠,但在控制图上有一点未出界,可否判稳?这可能存在2种可能:①过程本来就稳定;②异常漏报。故出现一点未出界不能立即判稳。但接连出现m(m>> 1)个点子未出界,则情况大不相同。这时整个点子系列的β总=βm要比个别点子的β小得多,可以忽略不计。那么仅有一种可能,即过程稳定。如果接连在控制界内的点子更多,即使有个别个点子偶然出界,过程仍可看作是稳态的。这就是判稳准则的思路。
判稳准则,在点子随机排列的情况下,符合下列各原则之一就判稳:
连续25个点,界外点数d=0;其概率P = α1
连续35个点,界外点数d≤1; 其概率P = α2
连续100个点,界外点数d≤2; 其概率P = α3
尽管在上述判稳原则下,对于出界点也应当加以排查。用概率统计如下,假设过程正常:
P(连续35点,d≤1)=(0.9973)35(0.0027)0+(0.9973)34(0.0027)1= 0.9959 =α2
故, P(连续35点,d>1)= 1 - 0.9959 = 0.0041 =α2
同理,α1 = 0.0654;α2 = 0.0041;α3 = 0.0026,可见α1 与α2 和α3明显不相称。故有专家认为应取消第①条,但体哈特控制图的国际标准ISO8258:1991仍然保留了这条原则,显然有经济因素考虑。
判异准则,我们知道SPC的基准为统计控制状态,若过程偏离这种状态就称为异常。因此,所以异常就会存在异常的好和异常的坏。判异准则有2类:
点出界就判异;
界内点排不随机就判异。由于点子数量未加以界定,其模式可能有无穷多,但现场能保留下来继续使用的只有明显物理意义的若干种,在控制图中要注意加以识别。
准则一,一点在A区外
准则一可对参数μ与σ变化给出信号,还可对过程单个失控作出反应,如计算错误,测量误差,原材料不合格,设备故障等,犯第一种错误的概率,称为显着水平,记α0 =0.0027
准则二,连续9点在C区或其外排成一串
此准则作为准则一而补充的,以提高控制图的灵敏度,选择9点是为了使其犯第一种错误的概率α与准则一的α0 =0. 0027大体相仿.在控制线一侧连续出现的点称为链,下列点数链长的α为:
P(中心线一侧出现长为7的链)= α7 = 2(0.9973/2)7 = 0.0153
P(中心线一侧出现长为8的链)= α8 = 2(0.9973/2)8 = 0.0076
P(中心线一侧出现长为9的链)= α9 = 2(0.9973/2)9 = 0.0038
P(中心线一侧出现长为10的链)= α10 = 2(0.9973/2)10 = 0.0019
可见,α9 与准则一的α0 相当,若长=7判异,比α0 大的多。以往采用不着7点,而目前改为9点判异。这主要是因为推行SPC一般采用电脑进行,从而使得整个系统的α总概率增大,不难
证明:α总≈∑αi为减少α总,就得使每条判异准则各自的αi
准则三,连续6点递增或递减。
此条准则针对过程平均值的倾向性而设计的,它判定过程平均值的较小倾向要比准则一更为灵敏。其产生原因可能是工具损坏,或作业员技能改进等。
P(n倾向)= αi = 2/ni(0.9973/2)n ,于是有:
P(5点倾向)= α5 = 0.01644
P(6点倾向)= α5 = 0.00273
P(7点倾向)= α7 = 0.00039
显然,6点倾向最接近准则一,α0 =0.0027,故其判异是合适的。
准则四,连续14点上下交替。
出现这种现象是由于轮流使用两台设备或两位操作人员轮流操作而引起的系统效应。实际上这是一个数据分层不够的问题,选择14点是通过统计模拟试验而得出的,其α大体与准则一,α0 =0.0027相当。
准则五,连续3点中有2点在A区
过程平均值的变化通常可由本准则判定,它对于变异的增加也较灵敏。这里要补充的是任何两点,至于第三点在何处,甚至可以根本不存在。由于点子落在中心线一侧2-3σ个标准差间的概率=0.0214,故α0 =2×3×0.02143×(0.9973 -0.0214)=0.00268,这与准则一很接近。
准则六,连续5点中有4点在B区。
此准则与准则五类似,这第5点可在任何地方。本准则对于过程平均值的偏移也灵敏。由于点子在 1-2σ之间的概率=φ(1)-φ(2)= 0.15886-0.02275 = 0.13591,故有P(5点中有4点在B区)= 2×C5×0.135914×(0.9973-0. 13591)=0.0029与准则一α0 =0.0027相当。
准则七,连续15点在C区中心线上下
对于本准则的现象,不要被它良好现象所迷惑,而应注意它的非随机性。造成这种现象的原因有2种:数据虚假或数据分层不够。我们知道点在C区的概率=0.68268
连续14点在C区,α14 = 0.6826814 = 0.00478
连续15点在C区,α15 = 0.6826815 = 0.00326
连续16点在C区,α16 = 0.6826816 = 0.00223
其中, α15??= 0.00326与准则一α0 =0.0027较近,故有准则七.从表面上看, α16 = 0.00223与准则一α0 =0.002 7更接近点,16个点子比15个点子应用起来不如15个点子方便.
准则八,8点在中心线两侧,但无1点在C区
造成此现象的原因为数据分层不够。由于点子落在1-3σ之间的概率=φ(1)-φ(3)= 0.15886-0.00135 = 0.1573 1,故有
α8 = 2×(C1×C2×C3×C4×C5×C6×C7×C8)×0.157318 = 0.0002,类似地可算出:
α7 =0.0006,α6 =0.0019,α5 =0.006。据此计算,显然α8 = 0.0002较之α0 =0.0027过小,而α6 =0.0019与之较接近,故建议准则8改为:6点在中心线两侧,而无1点在C区。
综合上述,不论是判稳还是判异原则,都是以是否服从正态分布为出发点,以休哈特定制的3σ为管理限度为类比参照。
控制图八大判异准则-精简顺口溜版
本人因记性差,对八大判异准则总记不下,所以就想到用把内容精简提练后,编成顺口溜。这样好记一些,再也不会忘记了。大家提提意见,觉得怎么样?
控制图八大判异准则-精简顺口溜版口决:(就三句,很简单吧!只要记住以下兰色部分的三句话就行了,不过第一次要对照下面附件中的图看才明白。)