立体几何中的推理证明问题(原卷版)

合集下载

专题4.4 立体几何中最值问题-2021届高考数学压轴题讲义(选填题)(原卷版)

专题4.4 立体几何中最值问题-2021届高考数学压轴题讲义(选填题)(原卷版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A .B .C .D .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .3、如右图所示,在棱长为2的正方体1111ABCD A B C D -中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P 所在线段,得解. 【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为( )A .B .C .D .2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21 D .41 3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .类型三 体积的最值问题 【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是( )A.B.C.D.【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. 182B. 362C. 18D. 36 2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A.243B.16C.48D.1443.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A .B .C .D .类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P 为AD 的中点,点Q 为上的动点,给出下列说法:可能与平面平行;与BC 所成的最大角为; 与PQ 一定垂直; 与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.三.强化训练 一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为( )A .B .C .D .2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A .B .C .4D .2 3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为( ) A .12B .6C .32D .244.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M 在俯视图上的对应点为A ,三棱锥表面上的点N 在左视图上的对应点为B ,则线段MN 的长度的最大值为A .B .C .D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 24 C. 12 D. 236.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O ,底面ABCD 在半球O 底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O ,圆柱的下底面在半球O 底面所在平面上,圆柱的上底面内接于球O ,则该圆柱的体积的最大值为_____.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

高中立体几何证明方法及例题

高中立体几何证明方法及例题

1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。

2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。

近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。

对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。

对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

专题8.7 高考解答题热点题型-立体几何(解析版)

专题8.7 高考解答题热点题型-立体几何(解析版)

高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥P­ABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M ­EC ­F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

初中数学知识归纳立体几何中的证明与推理

初中数学知识归纳立体几何中的证明与推理

初中数学知识归纳立体几何中的证明与推理初中数学知识归纳——立体几何中的证明与推理立体几何是数学中的重要分支,主要研究三维空间中的形状、位置、度量等问题。

在立体几何的学习过程中,证明和推理是不可或缺的内容,也是培养学生逻辑思维和分析问题能力的有效手段。

本文将对初中数学中立体几何中的证明与推理进行归纳总结,帮助读者更好地理解和掌握这一知识点。

一、平行与垂直的证明与推理在立体几何中,平行和垂直是常见的关系。

平行线之间具有特殊的性质,如有且仅有一条直线平行于给定的线段等。

垂直线之间也有各自的性质,如直角和垂足等。

在证明和推理过程中,我们常常需要运用这些性质来得出结论。

例如,对于两个平行线之间的夹角问题,我们可以利用同位角的性质来证明,如AB和CD是两条平行线,角A和角C是同位角。

如果我们能够证明角A等于角C,那么这就是两个平行线之间的夹角。

同样地,我们在证明垂直线之间的关系时,也需要利用到一些性质。

比如,证明两条垂直线的交点是直角。

可以通过利用相交直线的垂直对应角的性质来证明。

如果我们能够证明两个垂直对应角是等于90度的,那么我们就能够得出结论,两条线相交的交点是直角。

这样的推理过程帮助我们建立了数学概念之间的逻辑联系。

二、面积和体积的证明与推理在立体几何中,我们经常需要计算物体的面积和体积。

在证明和推理的过程中,我们也会遇到一些和面积和体积相关的问题。

例如,对于三棱柱和三棱锥的体积问题,我们需要通过概念的推理和逻辑结构的分析来解决。

首先,我们可以将三棱柱和三棱锥分解成更简单的几何体,如长方体、正方体、圆柱体等。

然后,我们通过加减运算和推理结构,一步步得出最终的结论。

这样的证明过程既考验了学生的逻辑思维能力,同时也深化了对体积概念的理解。

在计算面积时,我们也需要依靠一些证明和推理。

例如,对于三角形的面积计算,我们可以利用平行线切割三角形的方法来进行证明。

通过切割并重新组合三角形,我们能够得到更简单的形状,如矩形和直角梯形等。

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)(2)

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)(2)
A. 平面 B.平面 与平面 不垂直
C.平面 与平面 可能平行D.直线 与直线 可能不平行
11.如图为水平放置的 的直观图,则原三角形的面积为()
A.3B. C.6D.12
12.边长为2的正方形 沿对角线 折叠使得 垂直于底面 ,则点 到平面 的距离为()
A. B. C. D.
13.如图,正方体 的棱长为2,点 为底面 的中心,点 在侧面 的边界及其内部运动.若 ,则 面积的最大值为()
一、选择题
1.D
解析:D
【分析】
由线面和面面平行和垂直的判定定理和性质定理即可得解.
【详解】
解:对于①,由面面平行的判定定理可得,若 、 互为异面直线, , ,则 或相交,又因为 , ,则 ,故①正确;
对于②,若 , , ,则 或 , 相交,故②错误,
对于③,若 , ,则 ;故③正确,
对于④,若 , , ,则 或 ,故④错误,
, 平面 , 平面 ,则 平面
又 ,所以平面 平面
又平面 面
所以点 的轨迹为线段
当 为线段 的端点 (或 )时, 最长,此时
当 为线段 的中点时, 最短,此时
所以 ,
故选:C.
【点睛】
本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.
7.A
解析:A
当 时, 不一定成立,
即“ ”是“ ”的充分不必要条件,
故选:B.
【点睛】
本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.
6.C
解析:C
【分析】
分别取 的中点 ,可得平面 平面 ,从而点 的轨迹为线段 ,然后计算出线段 的范围.

巧建系,妙解立体几何题

巧建系,妙解立体几何题

解题宝典立体几何问题侧重于考查同学们的空间想象能力和逻辑推理能力.在解答立体几何问题时,我们一般只有借助立体几何图形来进行分析,才能快速明确题目中点、线、面的位置关系,找到解题的突破口.建系法是解答立体几何问题的一种重要方法,而运用建系法解答立体几何问题的关键是建立合适的空间直角坐标系,通过空间直角坐标运算求得问题的答案.那么如何选取坐标轴和原点,建立合适的直角坐标系呢?主要有以下两种方法.一、根据几何体的性质和特点建系我们知道,空间直角坐标系中的三个坐标轴相互垂直,并相交于一点.因此,在解答立体几何问题时,可以根据简单几何体的特点和性质,尤其是长方体、直棱柱、直棱锥、圆柱的性质和特点来寻找垂直关系.当图形中出现三条直线两两互相垂直且交于一点时,可以将这三条直线看作坐标轴,将该交点视为坐标原点来建系.例1.(2019年全国卷Ⅱ理科·第17题)如图1,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.若AE =A 1E ,求二面角B -EC -C 1的正弦值.图1图2分析:本题主要考查了二面角的求法.我们根据长方体的特点和性质可知长方体的所有侧棱都与底面垂直,且底面上由顶点出发的两条棱相互垂直,于是可将底面的其中一个顶点视为原点,以由顶点出发的三条棱为x 、y 、z 轴建立空间直角坐标系.然后根据题目给出的条件,找出相关点的坐标,求出两个平面、BEC 、ECC 1的法向量,再根据公式求出两个平面法向量的夹角余弦值,便可得出夹角的正弦值.解:以点D 为坐标原点,DA 的方向为x 轴的正方向,建立如图2所示的空间直角坐标系D -xyz .设正方形ABCD 的边长为1,||AA 1=2a ,则||A 1E =||AE =a ,所以||EB 1=||EB =a 2+1,因为ABCD -A 1B 1C 1D 1为长方体,所以B 1C 1⊥平面ABB 1A 1,且BE 在平面ABB 1A 1内,因此C 1B 1⊥BE .由题知BE ⊥EC 1,所以BE ⊥平面EB 1C 1.且EB 1在平面EB 1C 1内,则BE ⊥EB 1.在RtΔB 1EB 中,EB 12+EB 2=B 1B 2,即a 2+1+a 2+1=4a 2,所以a =1,所以B (1,1,0),C (0,1,0),E (1,0,1),C 1(0,1,2),所以 CE =(1,-1,1), CB =(1,0,0), CC 1=(0,0,2)设平面BCE 的法向量为n 1=(x 1,y 1,z 1),则ìíî n 1·CE =x 1-y 1+z 1=0, n 1·CB =x 1=0,,解得{x 1=0,z 1=y 1,取 n 1=(0,1,1),设平面CEC 1的法向量为 n 2=(x 2,y 2,z 2),则ìíî n 2·CE =x 2-y 2+z 2=0, n 2·CC 1=2z 2=0,解得{z 2=0,y 2=x 2,取 n 2=(1,1,0),所以cos n 1, n 2=n 1·n 2|| n 1·|| n 2=12.于是sin n 1, n 2=,故二面角B -EC -C 1的正弦值为.例2.如图3,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB 、BB 1的中点,AA 1=AC =CB .求二傅灵欣廖小莲44解题宝典面角D -A 1C -E 的正弦值.图3图4分析:该几何体为直三棱柱,我们可以根据直三棱柱图形的特点和性质来建立空间直角坐标系.直棱柱的侧棱垂直于底面,只要根据题目的条件在直三棱柱的底面找到两条互相垂直且与侧棱有交点的直线,这样三条直线两两便会互相垂直,为建立空间直角坐标系创造了条件.求出相关点的坐标以及二面角所包含的两个平面的法向量,再根据公式便可求出二面角的余弦值,求得夹角的正弦值.解:由AC =CB =得ΔACB 是以∠C 为直角的等腰直角三角形,又因为是直三棱柱ABC -A 1B 1C 1,所以棱CC 1⊥底面ACB .故以点C 为原点、CA 的方向为x 轴,建立如图4所示的空间直角坐标系.设AB =2,则AA 1=AC =CB =AA 1=2,则A (2,0,0),B (0,2,0),D 0),A 1(2,0,2),C (0,0,0),又因为AA 1=BB 1=2,所以E(0,2,于是 CA 1=(2,0,2), CD =0),CE =(0,2,,设平面DA 1C 的法向量为n 1=(x 1,y 1,z 1),则ìíîïï n 1·CA 121+2=0,CD · n 1=2121=0,解得{x 1+z 1=0,x 1+y 1=0,取n 1=(1,-1,-1),设平面A 1CE 的法向量为n 2=(x 2,y 2,z 2),则ìíîïï n 2·AC 1=2x 222=0, CE · n 2=2y 222=0,解得ìíîïïx 2+z 2=0,y 2+12z 2=0,取n 2=(2,1,-2),所以cos n 1, n 2=n 1·n 2|| n 1·||n 2=,则sin n 1, n 2=故二面角D -A 1C -E 的正弦值为.在用建系法解答与长方体、直棱锥有关的立体几何问题时,可以根据长方体、直棱锥本身的性质和特点来建系,若无法根据几何体的性质和特点建系,可以根据题意创造条件来建系.二、利用线面垂直关系建立直角坐标系在建系时,z 轴往往是比较容易选取的,而坐标原点即为z 轴与底面的交点,那么我们只需要确定与z 轴垂直的坐标平面xOy ,且使x 轴、y 轴相互垂直即可.可以根据线面垂直关系来寻找与z 轴垂直的平面.首先要充分利用好底面中的垂直条件,然后根据线面垂直的判断定理得到相应的z 轴以及与z 轴垂直的平面,这样便可建立符合要求的空间直角坐标系.例3(2020年全国Ⅰ卷,第20题)如图5,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l上的点,求PB 与平面QCD 所成角的正弦值的最大值.图5分析:我们可以先根据线面垂直的关系,即PD ⊥底面ABCD 来建立空间直角坐标系.而四棱锥P -ABCD 的底面为正方形,所以正方形的四条邻边相互垂直,于是可以以D 为坐标原点、DA 的方向为x 轴的正方向建立空间直角坐标系.求出相关点的坐标,设45方法集锦。

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

14高中数学必修2 立体几何考题13. 如图所示,正方体 ABCD -A 1B 1C 1D 1 中,M 、N 分别是 A 1B 1,B 1C 1 的中点.问:(1) AM 和 CN 是否是异面直线?说明理由;(2) D 1B 和 CC 1 是否是异面直线?说明理由.解析:(1)由于 M 、N 分别是 A 1B 1 和 B 1C 1 的中点,可证明 MN ∥AC ,因此 AM 与 CN 不是异面直线.(2)由空间图形可感知 D 1B 和 CC 1 为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题, 这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M 、N 分别是 A 1B 1、B 1C 1 的中点,∴MN ∥A 1C 1.又∵A 1A ∥D 1D ,而 D 1D 綊 C 1C ,∴A 1A 綊 C 1C ,∴四边形 A 1ACC 1 为平行四边形.∴A 1A ∥AC ,得到 MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故 AM 和 CN 不是异面直线.(2)是异面直线.理由如下:假设 D 1B 与 CC 1 在同一个平面 CC 1D 1 内,则 B ∈平面 CC 1D 1,C ∈平面 CC 1D 1.∴BC ⊂平面 CC 1D 1,这与在正方体中 BC ⊥平面 CC 1D 1 相矛盾,∴假设不成立,故 D 1B 与 CC 1 是异面直线.14. 如下图所示,在棱长为 1 的正方体 ABCD -A 1B 1C 1D 1 中,M 为 AB 的中点,N 为 BB 1 的中点,O 为面 BCC 1B 1 的中心.(1) 过 O 作一直线与 AN 交于 P ,与 CM 交于 Q (只写作法,不必证明);(2) 求 PQ 的长(不必证明).解析:(1)由 ON ∥AD 知,AD 与 ON 确定一个平面 α.又 O 、C 、M 三点确定一个平面 β(如下图所示).∵三个平面 α,β 和 ABCD 两两相交,有三条交线 OP 、CM 、DA ,其中交线 DA 与交线 CM 不平行且共面.∴DA 与 CM 必相交,记交点为 Q .∴OQ 是 α 与 β 的交线.连结 OQ 与 AN 交于 P ,与 CM 交于 Q ,故 OPQ 即为所作的直线.(2)解三角形 APQ 可得 PQ = . 15. 如图,在直三棱柱 ABC -A 1B 1C 1 中,AB =BC =B 1B =a ,∠ABC =90°,D 、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE 为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E 作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E 分别是BB1、MM1的中点,可得DE 綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC 得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB 交于点F,连结AF,由条件易证D是C1F 的中点,B 是CF 的中点,又E 是AC1的中点,所以DE∥AF.在△ACF 中,由AB=BC=BF 知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE 的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,2a.所以DE=2反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M 分别是BD1,AA1的中点.(1)求证:MO 是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O 是BD1的中点,∴O 是正方体的中心,∴OA=OA 1,又M 为AA1的中点,即OM 是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O 为BD1的中点知MO⊥BD1,即MO 是异面直线AA1和BD1的公垂线.33333 2(2)由于AA1∥BB1,所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中,设BB1=1,则BD1=3,所以cos∠B1BD1=,故异面直线AA1与BD1所成的角的余弦值等于.(3)由(1)知,所求距离即为线段MO 的长,1 a由于OA=AC1=a,AM=,且OM⊥AM,所以OM=a.2 2 2 213.如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E、F,且B1E=C1F,求证:EF∥ABCD.证明:解法一:分别过E、F 作EM⊥AB 于M,FN⊥BC 于N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又B1E=C1F,∴EM=FN,故四边形MNFE 是平行四边形,∴EF∥MN,又MN 在平面ABCD 中,所以EF∥平面ABCD.解法二:过E 作EG∥AB 交BB1于G,B1E B1G连结GF,则1=1,B A B B∵B1E=C1F,B1A=C1B,C1F B1G∴1=1,∴FG∥B1C1∥BC.C B B B又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF⊂平面EFG,∴EF∥平面ABCD.14.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E,又作DF⊥PB,交PB 于点F.(1)求证:点E 是PC 的中点;(2)求证:PB⊥平面EFD.证明:(1)连结AC,交BD 于O,则O 为AC 的中点,连结EO.∵PA∥平面BDE,平面PAC∩平面BDE=OE,∴PA∥OE.∴点E 是PC 的中点;(2)∵PD⊥底面ABCD 且DC⊂底面ABCD,∴PD⊥DC,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC.∵底面ABCD 是正方形,CD⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,22AB6 3∴DE⊥PB,又DF⊥PB 且DE∩DF=D,所以PB⊥平面EFD.15.如图,l1、l2是互相垂直的异面直线,MN 是它们的公垂线段.点A、B 在l1上,C在l2上,AM=MB=MN.(1)求证AC⊥NB;(2)若∠ACB=60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB 且AN⊥NB.又AN 为AC 在平面ABN 内的射影,∴AC⊥NB.(2)∵Rt△CNA≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH,∠NBH 为NB 与平面ABC 所成的角.在Rt△NHB 中,3HB 3ABcos∠NBH=NB==.16.如图,在四面体ABCD 中,CB=CD,AD⊥BD,点E、F 分别是AB、BD 的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E、F 分别是AB、BD 的中点,所以EF∥AD.又AD⊂平面ACD,EF✪平面ACD,∴直线EF∥平面ACD. (2)在△ABD 中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD 中,∵CD=CB,F 为BD 的中点,∴CF⊥BD.∵EF⊂平面EFC,CF⊂平面EFC,EF 与CF 交于点F,∴BD⊥平面EFC.又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.13.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为a 的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:平面PAC⊥平面PBD;(2)求二面角B-PC-D 的余弦值.5 6 解析:(1)证明:∵PA ⊥平面 ABCD ,∴PA ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面 PAC ,又 BD 在平面 BPD 内,∴平面 PAC ⊥平面 BPD . (2)在平面 BCP 内作 BN ⊥PC ,垂足为 N ,连结 DN ,∵Rt △PBC ≌Rt △PDC ,由 BN ⊥PC 得 DN ⊥PC ;∴∠BND 为二面角 B -PC -D 的平面角,在△BND 中,BN =DN = a ,BD = 2a , 5 5 a 2+ a 2-2a 2 6 6 ∴cos ∠BND = 5 a 2 31 =- . 5 14. 如图,已知 ABCD -A 1B 1C 1D 1 是棱长为 3 的正方体,点 E 在 AA 1 上,点 F 在 CC 1 上,G 在 BB 1 上,且 AE =FC 1=B 1G =1,H 是 B 1C 1 的中点.(1) 求证:E 、B 、F 、D 1 四点共面;(2)求证:平面 A 1GH ∥平面 BED 1F .证明:(1)连结 FG .∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綊 A 1E ,∴A 1G 綊 BE .∵C 1F 綊 B 1G ,∴四边形 C 1FGB 1 是平行四边形.∴FG 綊 C 1B 1 綊 D 1A 1,∴四边形 A 1GFD 1 是平行四边形.∴A 1G 綊 D 1F ,∴D 1F 綊 EB ,故 E 、B 、F 、D 1 四点共面. 3 (2) ∵H 是 B 1C 1 的中点,∴B 1H = . 2 又 B 1G =1,∴ B 1G 3 = . B 1H 2 FC 2 又 = ,且∠FCB =∠GB 1H =90°, BC 3∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知 A 1G ∥BE ,且 HG ∩A 1G =G ,FB ∩BE =B ,∴平面 A 1GH ∥平面 BED 1F .15. 在三棱锥 P -ABC 中,PA ⊥面 ABC ,△ABC 为正三角形,D 、E 分别为 BC 、AC 的中点,设 AB =PA =2.(1) 求证:平面 PBE ⊥平面 PAC ;(2) 如何在 BC 上找一点 F ,使 AD ∥平面 PEF ,请说明理由;(3) 对于(2)中的点 F ,求三棱锥 B -PEF 的体积.解析:(1)证明:∵PA ⊥面 ABC ,BE ⊂面 ABC ,∴PA ⊥BE .∵△ABC 是正三角形,E 为 AC 的中点,∴BE ⊥AC ,又 PA 与 AC 相交,∴BE ⊥平面 PAC ,∴平面 PBE ⊥平面 PAC .(2) 解:取 DC 的中点 F ,则点 F 即为所求., 3 3 6 2 2 3 3 3∵E ,F 分别是 AC ,DC 的中点,∴EF ∥AD ,又 AD ✪平面 PEF ,EF ⊂平面 PEF ,∴AD ∥平面 PEF . 1 1 1 3 (3) 解 :V B -PEF =V P -BEF = S △BEF ·PA = × × × ×2= . 3 3 2 2 2 416.(2009·天津,19)如图所示,在五面体 ABCDEF 中,FA ⊥平面 ABCD ,AD ∥BC ∥FE , 1 AB ⊥AD ,M 为 CE 的中点,AF =AB =BC =FE = AD . 2(1) 求异面直线 BF 与 DE 所成的角的大小;(2) 求证:平面 AMD ⊥平面 CDE ;(3) 求二面角 A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线 BF与 DE 所成的角.设 P 为 AD 的中点,连结 EP ,PC .因为 FE 綊 AP ,所以 FA綊 EP .同理,A B 綊 PC .又 FA ⊥平面 ABCD ,所以 EP ⊥平面 ABCD .而 PC ,AD都在平面ABCD 内,故EP ⊥PC ,E P ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a则 EP =PC =PD =a ,CD =DE =EC = 故∠CED =60°.2a .所以异面直线 BF 与 DE 所成的角的大小为 60°.(2) 证明:因为 DC =DE 且 M 为 CE 的中点,所以 DM ⊥CE .连结 MP ,则 MP ⊥CE .又MP ∩DM =M ,故 CE ⊥平面 AMD .而 CE ⊂平面 CDE ,所以平面 AMD ⊥平面 CDE .(3) 设 Q 为 CD 的中点,连结 PQ ,EQ .因为 CE =DE ,所以 EQ ⊥CD .因为 PC =PD ,所以 PQ ⊥CD ,故∠EQP 为二面角 A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ = a ,PQ = a . PQ 于是在 Rt △EPQ 中,cos ∠EQP = = .EQ 3 所以二面角 A -CD -E 的余弦值为 . 13.(2009·重庆)如图所示,四棱锥 P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面 ABCD ,PA 1 1 =AD =DC = AB =1,M 为 PC 的中点,N 点在 AB 上且 AN = NB .2 3(1) 求证:MN ∥平面 PAD ;(2) 求直线 MN 与平面 PCB 所成的角.解析:(1)证明:过点 M 作 ME ∥CD 交 PD 于 E 点,连结 AE . 1 ∵AN = NB , 3 1 1 ∴AN = AB = DC =EM .4 2又 EM ∥DC ∥AB ,∴EM 綊 AN ,∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面 PAD .(2)解:过 N 点作 NQ ∥AP 交 BP 于点 Q ,NF ⊥CB 于点 F .连结 QF ,过 N 点作 NH ⊥QF 于 H ,连结 MH ,易知 QN ⊥面 ABCD ,∴QN ⊥BC ,而 NF ⊥BC ,∴BC ⊥面 QNF ,∵BC ⊥NH ,而 NH ⊥QF ,∴NH ⊥平面 PBC ,∴∠NMH 为直线 MN 与平面 PCB 所成的角.2 2 6 2 2 10 10 5 2 10 53 3 通过计算可得 MN =AE = ,QN = ,NF = 2,4 4 QN ·NF ON ·NF ∴NH = = = ,QF QN 2+NF 2 4 NH 3 ∴sin ∠NMH = = ,∴∠NMH =60°,MN 2∴直线 MN 与平面 PCB 所成的角为 60°.14.(2009·广西柳州三模)如图所示,已知直平行六面体 ABCD -A 1B 1C 1D 1 中,AD ⊥BD , AD =BD =a ,E 是 CC 1 的中点,A 1D ⊥BE .(1) 求证:A 1D ⊥平面 BDE ;(2) 求二面角 B -DE -C 的大小.解析:(1)证明:在直平行六面体 ABCD -A 1B 1C 1D 1 中,∵AA 1⊥平面 ABCD ,∴AA 1⊥BD .又∵BD ⊥AD ,∴BD ⊥平面 ADD 1A 1,即 BD ⊥A 1D .又∵A 1D ⊥BE 且 BE ∩BD =B ,∴A 1D ⊥平面 BDE .(2)解:如图,连 B 1C ,则 B 1C ⊥BE ,易证 Rt △BCE ∽Rt △B 1BC ,CE BC ∴ = 1 ,又∵E 为 CC 1 中点, BC ∴BC 2 B B 1BB 21.BB 1= = 22BC = 2a .取 CD 中点 M ,连结 BM ,则 BM ⊥平面 CC 1D 1C ,作 MN ⊥DE 于 N ,连 NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角 B -DE -C 的平面角. BD ·BC 在 Rt △BDC 中,BM = DC = a , Rt △CED 中,易求得 MN = a , BM Rt △BMN 中,tan ∠BNM = = 5, MN则二面角 B -DE -C 的大小为 arctan 5.15.如图,已知正方体 ABCD -A 1B 1C 1D 1 中,E 为 AB 的中点.(1) 求直线 B 1C 与 DE 所成的角的余弦值;(2) 求证:平面 EB 1D ⊥平面 B 1CD ;(3) 求二面角 E -B 1C -D 的余弦值.解析:(1)连结 A 1D ,则由 A 1D ∥B 1C 知,B 1C 与 DE 所成的角即为 A 1D 与 DE 所成的角. 连结 A 1E ,由正方体 ABCD -A 1B 1C 1D 1,可设其棱长为 a ,则 A 1D = ∴cos ∠A 1DEA 1D 2+DE 2-A 1E 2 2a ,A 1E =DE = a , = 2·A 1D ·DE = . 10∴直线 B 1C 与 DE 所成角的余弦值是 5. (2)证明取 B 1C 的中点 F ,B 1D 的中点 G ,连结 BF ,EG ,GF .∵CD ⊥平面 BCC 1B 1,3 3 33 = 且 BF ⊂平面 BCC 1B 1,∴DC ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面 B 1CD . 1 1 又 ∵GF 綊 CD ,BE 綊 CD ,2 2∴GF 綊 BE ,∴四边形 BFGE 是平行四边形,∴BF ∥GE ,∴GE ⊥平面 B 1CD .∵GE ⊂平面 EB 1D ,∴平面 EB 1D ⊥平面 B 1CD .(3)连结 EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面 B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角 E -B 1C -D 的平面角. 设正方体的棱长为 a ,则在△EFG 中,1 GF = a ,EF = a ,2 2 FG ∴cos ∠EFG =EF = , 3∴二面角 E -B 1C -D 的余弦值为 3 . 16.(2009·全国Ⅱ,18)如图所示,直三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,D 、E 分别为 AA 1、 B 1C 的中点,DE ⊥平面 BCC 1.(1) 求证:AB =AC ;(2) 设二面角 A -BD -C 为 60°,求 B 1C 与平面 BCD 所成的角的大小.解析:(1)证明:取 BC 中点 F ,连结 EF , 1则 EF 綊 2B 1B ,从而 EF 綊 DA . 连结 AF ,则 ADEF 为平行四边形,从而 AF ∥DE .又 DE ⊥平面 BCC 1,故 AF ⊥平面 BCC 1,从而 AF ⊥BC ,即 AF 为 BC 的垂直平分线, 所以 AB =AC .(2)解:作 AG ⊥BD ,垂足为 G ,连结 CG .由三垂线定理知 CG ⊥BD ,故∠AGC 为二面 2 角 A -BD -C 的平面角.由题设知,∠AGC =60°.设 AC =2,则 AG = .又 AB =2,BC =2 2,故 AF = 2. 由AB ·AD =AG ·BD 得 2AD 2 · 3AD 2+22, 解得 AD = 2,故 AD =AF .又 AD ⊥AF ,所以四边形 ADEF 为正方形.因为 BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故 BC ⊥平面 DEF ,因此平面 BCD ⊥平面 DEF . 连结 AE 、DF ,设 AE ∩DF =H ,则 EH ⊥DF ,EH ⊥平面 BCD .连结 CH ,则∠ECH 为 B 1C 与平面 BCD 所成的角.4 17 17 16 17 17 6 因 ADEF 为正方形,AD = 2,故 EH =1,又 EC 1 B C =2, = 1 2所以∠ECH =30°,即 B 1C 与平面 BCD 所成的角为 30°.13. 在正四棱柱 ABCD -A 1B 1C 1D 1 中,底面边长为2的中点.(1) 求证:平面 B 1EF ⊥平面 BDD 1B 1;(2) 求点 D 1 到平面 B 1EF 的距离 d .2,侧棱长为 4,E 、F 分别为棱 AB 、BC分析:(1)可先证 EF ⊥平面 BDD 1B 1.(2)用几何法或等积法求距离时,可由 B 1D 1∥BD , 将点进行转移:D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4 倍,先求 B点到平面 B 1EF 的距离即可.解答:(1)证明:E rr o r !⇒EF ⊥平面 BDD 1B 1⇒平面 B 1EF ⊥平面 BDD 1B 1. (2)解:解法一:连结 EF 交 BD 于 G 点.∵B 1D 1=4BG ,且 B 1D 1∥BG ,∴D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4倍. 利用等积法可求.由题意可知,EF 1 AC =2,B G = 17. S △B EF = 2 1 1 EF ·B G 1 2× 17= 17,1 =2 1 S BE ·BF 1 = × 2 1 △BEF = = × 2 2∵VB -B 1EF =VB 1-BEF , 设 B 到面 B EF 的距离为 h 1 17×h 1 1×4,1 ∴h 1= . 1,则 × 3 1= × 3 ∴点 D 1 到平面 B 1EF 的距离为 h =4h 1= . 1 解法二:如图,在正方形 BDD 1B 1 的边 BD 上取一点 G ,使 BG = BD , 4连结 B 1G ,过点 D 1 作 D 1H ⊥B 1G 于 H ,则 D 1H 即为所求距离. 16 17可求得 D 1H = 17(直接法). 14. 如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC= 2,M 是棱 BC 的中点,N 是 CC 1 中点.求:(1) 二面角 B 1-AN -M 的大小;(2) C 1 到平面 AMN 的距离.解析:(1)∵∠BAC =90°,AB =AC = ∴AM ⊥BC ,BC =2,AM =1.∴AM ⊥平面 BCC 1B 1.∴平面 AMN ⊥平面 BCC 1B 1.2,M 是棱 BC 的中点,作 B 1H ⊥MN 于 H ,HR ⊥AN 于 R ,连结 B 1R ,∴B 1H ⊥平面 AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1是二面角 B 1-AN -M 的平面角.由已知得 AN = 3 23,MN = 2,B 1M = 5=B 1N , 则 B 1H = 2 , RH HN 又 Rt △AMN ∽Rt △HRN , = ,∴RH = .AM AN 6 2× 2=1.7 10 5 ∴B 1R =14 RH 3 ,∴cos ∠B 1RH = 1 = . B R 14 7∴二面角 B 1-AN -M 的大小为 arccos 14. (2)∵N 是 CC 1 中点,∴C 1 到平面 AMN 的距离等于 C 到平面 AMN 的距离. 设 C 到平面 AMN 的距离为 h ,由 V C -AMN =V N -AMC 1 1 1 1 得 × ·MN ·h = × AM ·MC . 3 2 3 2 2∴h = 2. 15.(2009·北京海淀一模)如图所示,四棱锥 P -ABCD 中,PA ⊥平面 ABCD ,底面 ABCD 为直角梯形,且 AB ∥CD ,∠BAD =90°,PA =AD =DC =2,AB =4. (1) 求证:BC ⊥PC ;(2) 求 PB 与平面 PAC 所成的角的正弦值;(3) 求点 A 到平面 PBC 的距离.解析:(1)证明:如图,在直角梯形 ABCD 中,∵AB ∥CD ,∠BAD =90°,AD =DC =2,∴∠ADC =90°,且 AC =2 2.取 AB 的中点 E ,连结 CE ,由题意可知,四边形 ABCD 为正方形,∴AE =CE =2. 1 1 又∵BE = AB =2.∴CE = AB ,2 2∴△ABC 为等腰直角三角形,∴AC ⊥BC .又∵PA ⊥平面 ABCD ,且 AC 为 PC 在平面 ABCD 内的射影,BC ⊂平面 ABCD ,由三垂线定理得,BC ⊥PC .(2) 由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C ,∴BC ⊥平面 PAC .PC 是 PB 在平面 PAC 内的射影,∴∠CPB 是 PB 与平面 PAC 所成的角.又 CB =2 2,PB 2=PA 2+AB 2=20,PB =2 5, BC 10 ∴sin ∠CPB =PB = 5,即 PB 与平面 PAC 所成角的正弦值为 . (3) 由(2)可知,BC ⊥平面 PAC ,BC ⊂平面 PBC ,∴平面 PBC ⊥平面 PAC .过 A 点在平面 PAC 内作 AF ⊥PC 于 F ,∴AF ⊥平面 PBC ,∴AF 的长即为点 A 到平面 PBC 的距离.在直角三角形 PAC 中, PA =2,AC =2 2,2 63 2 6 36 PC =2 3,∴AF = . 即点 A 到平面 PBC 的距离为 . 16.(2009·吉林长春一模)如图所示,四棱锥 P -ABCD 的底面是正方形,PA ⊥底面 ABCD , PA =2,∠PDA =45°,点 E 、F 分别为棱 AB 、PD 的中点.(1) 求证:AF ∥平面 PCE ;(2) 求二面角 E -PD -C 的大小;(3) 求点 A 到平面 PCE 的距离. 解析:(1)证明:如图取 PC 的中点 G ,连结 FG 、EG ,∴FG 为△PCD 的中位线, 1 ∴FG = CD 且 FG ∥CD . 2又∵底面四边形 ABCD 是正方形,E 为棱 AB 的中点, 1 ∴AE = CD 且 AE ∥CD , 2∴AE =FG 且 AE ∥FG .∴四边形 AEGF 是平行四边形,∴AF ∥EG .又 EG ⊂平面 PCE ,AF ✪平面 PCE ,∴AF ∥平面 PCE .(2)解:∵PA ⊥底面 ABCD ,∴PA ⊥AD ,PA ⊥CD .又 AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面 PAD .又∵AF ⊂平面 PAD ,∴CD ⊥AF .又 PA =2,∠PDA =45°,∴PA =AD =2.∵F 是 PD 的中点,∴AF ⊥PD .又∵CD ∩PD =D ,∴AF ⊥平面 PCD .∵AF ∥EG ,∴EG ⊥平面 PCD .又 GF ⊥PD ,连结 EF ,则∠GFE 是二面角 E -PD -C 的平面角.在 Rt △EGF 中 ,EG =AF = 2,GF =1,GE ∴tan ∠GFE 2.= = GF∴二面角 E -PD -C 的大小为 arctan 2.(3)设 A 到平面 PCE 的距离为 h , 1 1 1 1 由 V A -PCE =V P -ACE ,即 × PC ·EG ·h = PA · AE ·CB ,得 h = , 3 2 3 2 3 6∴点 A 到平面 PCE 的距离为 3. 13.(2009·陕西,18)如图所示,在直三棱柱 ABC -A 1B 1C 1 中,AB =1,AC =AA 1= 3, ∠ABC =60°.,6 2 6 3 6 3 3 4 3 2 3 M(1) 求证:AB ⊥A 1C ;(2) 求二面角 A -A 1C -B 的大小.解析:(1)证明:∵三棱柱 ABC -A 1B 1C 1 为直三棱柱,∴AB ⊥AA 1,在△ABC 中,AB =1,AC = ∴∠BAC =90°,即 AB ⊥AC .3,∠ABC =60°,由正弦定理得∠ACB =30°,∴AB ⊥平面 ACC 1A 1,又 A 1C ⊂平面 ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作 AD ⊥A 1C 交 A 1C 于 D 点,连结 BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角 A -A 1C -B 的平面角. AA 1·AC 3 × 3 在 Rt △AA 1C 中,AD = = = , A 1C 6 AB 6 在 Rt △BAD 中,tan ∠ADB = = ,AD 3 ∴∠ADB =arctan ,即二面角 A -A 1C -B 的大小为 arctan . 14.如图,三棱柱 ABC -A 1B 1C 1 的底面是边长为 a 的正三角形,侧面 ABB 1A 1 是菱形且垂直于底面,∠A 1AB =60°,M 是 A 1B 1 的中点.(1) 求证:BM ⊥AC ;(2) 求二面角 B -B 1C 1-A 1 的正切值;(3) 求三棱锥 M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1 是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形 E rr o r !⇒BM ⊥平面 A 1B 1C 1. E rr o r !⇒BM ⊥AC . E rr o r !⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1 中,ME =MB 1·sin60°= a ,Rt △BMB 1 中,MB =MB 1·tan60°= a , MB ∴tan ∠BEM = =2, E ∴所求二面角的正切值是 2. 1 1 1 1 1 3 1 (3)VM -A 1CB = VB 1-A 1CB = VA -A 1CB = VA 1-ABC = × × a 2· a = a 3. 2 2 2 2 3 4 2 1615.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥ AE AF 平面 BCD ,∠ADB =60°,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1).AC AD(1) 求证:不论 λ 为何值,总有 EF ⊥平面 ABC ; 1 (2) 若 λ= ,求三棱锥 A -BEF 的体积. 2解析:(1)证明:∵AB ⊥平面 BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD .∵又 AB ∩BC =B ,6 15 = 3,S 15 ∴CD ⊥平面 ABC .AE AF 又∵在△ACD 中,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1), AC AD ∴不论 λ 为何值,都有 EF ∥CD , ∴EF ⊥平面 ABC . (2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2. 又∵AB ⊥平面 BCD , ∴AB ⊥BC ,AB ⊥BD . 又∵在 Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°= 6, 由(1)知 EF ⊥平面 ABC , ∴V A -BEF =V F -ABE 1 = S △ABE ·EF 3 1 1 = × S △ABC ·EF 3 2 1 1 1 = × ×1× 6× = . 6 2 2 24 6 故三棱锥 A -BEF 的体积是 24 . 16.在四棱锥 P -ABCD 中,侧面 PDC 是边长为2 的正三角形,且与底面垂直,底面 ABCD 是面积为 2 3的菱形,∠ADC 为菱形的锐角. (1) 求证:PA ⊥CD ; (2) 求二面角 P -AB -D 的大小; (3) 求棱锥 P -ABCD 的侧面积; 解析:(1)证明:如图所示,取 CD 的中点 E ,由 PE ⊥CD ,得 PE ⊥平面 ABCD ,连结 AC 、AE . ∵AD ·CD ·sin ∠ADC =2 3, AD =CD =2, 3 ∴sin ∠ADC = 2 , 即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥PA (三垂线定理). (2) 解:∵AB ∥CD ,∴AB ⊥PA ,AB ⊥AE , ∴∠PAE 为二面角 P -AB -D 的平面角. 在 Rt △PEA 中,PE =AE ,∴∠PAE =45°. 即二面角 P -AB -D 的大小为 45°. (3) 分别计算各侧面的面积: ∵PD =DA =2,PA = 6, 1 ∴cos ∠PDA = ,sin ∠PDA = . 4 1 1 S AB ·PA = 2· 3= 6, △PCD △PAB = 2 ·2· 2 1 S △PAD =S △PBC = PD ·DA ·sin ∠PDA = . 2∴S P -ABCD 侧 = 3+ 6+ 15.13. 把地球当作半径为 R 的球,地球上 A 、B 两地都在北纬 45°,A 、B 两点的球面距离 π是 3R ,A 点在东经 20°,求 B 点的位置. 解析:如图,求 B 点的位置即求 B 点的经度,设 B 点在东经 α,7 2 7 21 = , π∵A 、B 两点的球面距离是 3R . π ∴∠AOB = ,因此三角形 AOB 是等边三角形,∴AB =R , 3又∵∠AO 1B =α-20°(经度差) 2问题转化为在△AO 1B 中借助 AO 1=BO 1=AO cos45°= 2 R , 求出∠AO 1B =90°,则 α=110°,同理:B 点也可在西经 70°,即 B 点在北纬 45°东经 110° 或西经 70°.14. 在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49πcm 2 和 400πcm 2, 求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为 AO 1、BO 2,则 AO 1∥BO 2. 若 O 1、O 2 分别为两截面圆的圆心,则由等腰三角形性质易知 OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为 R ,∵πO 2B 2=49π,∴O 2B =7cm ,同理 O 1A =20cm.设 OO 1=x cm ,则 OO 2=(x +9)cm.在 Rt △OO 1A 中,R 2=x 2+202,在 Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得 x =15cm.∴R =25cm ,∴S 球=2500πcm 2, 4 62500 V 球= πR 3= πcm 3. 3 3 π15. 设 A 、B 、C 是半径为 1 的球面上的三点,B 、C 两点间的球面距离为3,点 A 与 B 、C π两点间的球面距离均为2,O 为球心,求: (1) ∠AOB 、∠BOC 的大小; (2)球心 O 到截面 ABC 的距离. π 解析:(1)如图,因为球 O 的半径为 1,B 、C 两点间的球面距离为3, π π点 A 与 B 、C 两点间的球面距离均为2,所以∠BOC =3,∠AOB =∠AOC = π , 2 3 (2) 因为 BC =1,AC =AB = 2,所以由余弦定理得 cos ∠BAC sin ∠BAC = ,设 4 4 截面圆的圆心为 O 1,连结 AO 1,则截面圆的半径 r =AO 1,由正弦定理得 r = BC = ,所以 OO 1= OA 2-r 2= .2sin ∠BAC 7 716. 如图四棱锥 A -BCDE 中,AD ⊥底面 BCDE ,AC ⊥BC ,AE ⊥BE .(1) 求证:A 、B 、C 、D 、E 五点共球;(2) 若∠CBE =90°,CE = 3,AD =1,求 B 、D 两点的球面距离.解析:(1)证明:取 AB 的中点 P ,连结 PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形. 1 故 PE =PD =PC = AB =PA =PB . 2所以 A 、B 、C 、D 、E 五点在同一球面上.(2)解:由题意知四边形 BCDE 为矩形,所 以 BD =CE = 3,在 Rt △ADB 中,AB =2,AD =1, 2 ∴∠DPB =120°,D 、B 的球面距离为 π. 32 2 15 5 63 5 17.(本小题满分 10 分)如图,四棱锥 S —ABCD 的底面是正方形,SA ⊥底面 ABCD ,E 是 SC 上一点.(1) 求证:平面 EBD ⊥平面 SAC ;(2) 假设 SA =4,AB =2,求点 A 到平面 SBD 的距离;解析:(1)∵正方形 ABCD ,∴BD ⊥AC ,又∵SA ⊥平面 ABCD ,∴SA ⊥BD ,则 BD ⊥平面 SAC ,又 BD ⊂平面 BED ,∴平面 BED ⊥平面 SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO 1 1 AC 2AB 1 · 2·2= 2,SA =4, = = = 2 2 2 则 SO = SA 2+AO 2= 16+2=3 2,S 1 BD ·SO 1 ·2 2·3 2=6.设 A 到面 BSD 的距 △BSD = = 2 2 1 1 4 离为 h ,则 V S -ABD =V A -BSD ,即 3S △ABD ·SA = S △BSD ·h ,解得 h = ,即点 A 到平面 SBD 的距 3 3 4 离为 . 318.(本小题满分 12 分)如图,正四棱柱 ABCD -A 1B 1C 1D 1 中,AA 1=2AB =4,点 E 在 C 1C 上且 C 1E =3EC . (1)证明 A 1C ⊥平面 BED ;(2)求二面角 A 1-DE -B 的大小.解析:依题设知 AB =2,CE =1,(1) 证明:连结 AC 交 BD 于点 F ,则 BD ⊥AC .由三垂线定理知,BD ⊥A 1C .在平面 A 1CA 内,连结 EF 交 A 1C 于点 G , AA 1 AC由于FC =CE=2 , 故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1 互余. 于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD 、EF 都垂直. 所以 A 1C ⊥平面 BED .(2) 作 GH ⊥DE ,垂足为 H ,连结 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1-DE -B 的平面角.EF = CF 2+CE 2= 3, CE × CF2 CG = EF =3 . 3EG = CE 2-CG 2= 3 . EG 1 1 EF × FD = ,GH = × = .EF 3 3 DE 又 A 1C = AA 21+AC 2=2 A 1G6,A 1G =A 1C -CG = , tan ∠A 1HG = HG=5 . 所以二面角 A 1-DE -B 的大小为 arctan5 5.19.(本小题满分12 分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°, AB =BC =SB =SC =2CD =2,侧面 SBC ⊥底面 ABCD .3 3 3 2 3 2= (1) 由 SA 的中点 E 作底面的垂线 EH ,试确定垂足 H 的位置;(2) 求二面角 E -BC -A 的大小.解析:(1)作 SO ⊥BC 于 O ,则 SO ⊂平面 SBC , 又面 SBC ⊥底面 ABCD , 面 SBC ∩面 ABCD =BC , ∴SO ⊥底面 ABCD ① 又 SO ⊂平面 SAO ,∴面 SAO ⊥底面 ABCD , 作 EH ⊥AO ,∴EH ⊥底面 ABCD ② 即 H 为垂足,由①②知,EH ∥SO , 又 E 为 SA 的中点,∴H 是 AO 的中点. (2)过 H 作 HF ⊥BC 于 F ,连结 EF , 由(1)知 EH ⊥平面 ABCD ,∴EH ⊥BC , 又 EH ∩HF =H ,∴BC ⊥平面 EFH ,∴BC ⊥EF , ∴∠HFE 为面 EBC 和底面 ABCD 所成二面角的平面角. 在等边三角形 SBC 中,∵SO ⊥BC , ∴O 为 BC 中点,又 BC =2. ∴SO = 22-12= 3,EH 1SO = , 1 又 HF = AB =1, 2 2 2 3EH 2 ∴在 Rt △EHF 中,tan ∠HFE = = = ,HF 1 2 ∴∠HFE =arctan . 即二面角 E -BC -A 的大小为 arctan. 20.(本小题满分 12 分)(2010·唐山市高三摸底考试)如图,在正四棱柱 ABCD -A 1B 1C 1D 1 中,AB =1,AA 1=2,N 是 A 1D 的中点,M ∈BB 1,异面直线 MN 与 A 1A 所成的角为 90°. (1) 求证:点 M 是 BB 1 的中点;(2) 求直线 MN 与平面 ADD 1A 1 所成角的大小;(3) 求二面角 A -MN -A 1 的大小.解析:(1)取 AA 1 的中点 P ,连结 PM ,PN .∵N 是 A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N ,∴AA 1⊥面 PMN .∵PM ⊂面 PMN ,∴AA 1⊥PM ,∴PM ∥AB ,∴点 M 是 BB 1 的中点.305 2 2 2 2(2) 由(1)知∠PNM 即为 MN 与平面 ADD 1A 1 所成的角.1 在 Rt △PMN 中,易知 PM =1,PN = ,2 PM∴tan ∠PNM =PN =2,∠PNM =arctan2. 故 MN 与平面 ADD 1A 1 所成的角为 arctan2.(3) ∵N 是 A 1D 的中点,M 是 BB 1 的中点,∴A 1N =AN ,A 1M =AM ,又 MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作 AG ⊥MN 交 MN 于 G ,连结 A 1G ,则∠A 1GA 即为二面角 A -MN -A 1 的平面角.在△A 1GA 中,AA 1=2,A 1G =GA = , A 1G 2+GA 2-AA 12 2 2 ∴cos ∠A 1GA = 2A 1G ·GA =- ,∴∠A 1GA =arccos(- ), 3 3 2 故二面角 A -MN -A 1 的大小为 arccos(- ). 321.(2009·安徽,18)(本小题满分 12 分)如图所示,四棱锥 F -ABCD 的底面 ABCD 是菱 形,其对角线 AC =2,BD = 2.AE 、CF 都与平面 ABCD 垂直,AE =1,CF =2. (1) 求二面角 B -AF -D 的大小;(2) 求四棱锥 E -ABCD 与四棱锥 F -ABCD 公共部分的体积.命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接 AC 、BD 交于菱形的中心 O ,过 O 作 OG ⊥AF ,G 为垂足,连接 BG 、DG . 由 BD ⊥AC ,BD ⊥CF 得 BD ⊥平面 ACF ,故 BD ⊥AF .于是 AF ⊥平面 BGD ,所以 BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角 B -AF -D 的平面角.π 由 FC ⊥AC ,FC =AC =2,得∠FAC = ,OG = . 4 2 π 由 OB ⊥OG ,OB =OD = ,得∠BGD =2∠BGO = . (2)解:连接 EB 、EC 、ED ,设直线 AF 与直线 CE 相交于点 H ,则四棱锥 E -ABCD 与四棱锥 F -ABCD 的公共部分为四棱锥 H -ABCD .3 2 3 2 过 H 作 HP ⊥平面 ABCD ,P 为垂足.因为 EA ⊥平面 ABCD ,FC ⊥平面 ABCD ,所以平面 ACEF ⊥平面 ABCD ,从而 P ∈AC ,HP ⊥AC . HP HP AP PC 2 由 + = + =1,得 HP = . CF AE AC AC 3 又因为 S 1 菱形ABCD = AC ·BD = 2, 2 1 2 2 故四棱锥 H -ABCD 的体积 V = S 菱形ABCD ·HP = .3 922.(2009·深圳调考一)(本小题满分 12 分)如图所示,AB 为圆 O 的直径,点 E 、F 在圆 O 上,AB ∥EF ,矩形 ABCD 所在平面和圆 O 所在的平面互相垂直.已知 AB =2,EF =1.(1) 求证:平面 DAF ⊥平面 CBF ;(2) 求直线 AB 与平面 CBF 所成角的大小;(3) 当 AD 的长为何值时,二面角 D -FE -B 的大小为 60°?解析:(1)证明:∵平面 ABCD ⊥平面 ABEF ,CB ⊥AB ,平面 ABCD ∩平面 ABEF =AB ,∴CB ⊥平面 ABEF .∵AF ⊂平面 ABEF ,∴AF ⊥CB ,又∵AB 为圆 O 的直径,∴AF ⊥BF ,∴AF ⊥平面 CBF .∵AF ⊂平面 DAF ,∴平面 DAF ⊥平面 CBF .(2)解:根据(1)的证明,有 AF ⊥平面 CBF ,∴FB 为 AB 在平面 CBF 上的射影,因此,∠ABF 为直线 AB 与平面 CBF 所成的角.∵AB ∥EF ,∴四边形 ABEF 为等腰梯形,过点 F 作 FH ⊥AB ,交 AB 于 H .AB =2,EF =1,则 AH = AB -EF 1 = . 2 2在 Rt △AFB 中,根据射影定理 AF 2=AH ·AB ,得 AF =1, AF 1 sin ∠ABF = = ,∴∠ABF =30°, AB 2∴直线 AB 与平面 CBF 所成角的大小为 30°.(3)解:过点 A 作 AM ⊥EF ,交 EF 的延长线于点 M ,连结 DM .根据(1)的证明,DA ⊥平面 ABEF ,则 DM ⊥EF ,∴∠DMA 为二面角 D -FE -B 的平面角,∠DMA =60°. 1 在 Rt △AFH 中,∵AH = ,AF =1, 2 ∴FH = .又∵四边形 AMFH 为矩形,∴MA =FH = . 3 ∵AD =MA ·tan ∠DMA = 2 · 3=3 2 .3因此,当AD 的长为时,二面角D-FE-B 的大小为60°.2。

(压轴题)高中数学必修二第一章《立体几何初步》检测(包含答案解析)(1)

(压轴题)高中数学必修二第一章《立体几何初步》检测(包含答案解析)(1)

一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( ) A .3 B .6 C .5 D .225.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°6.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6π B .4π C .3π D .2π 7.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .78.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( ) A .GH 平分EF ,BH AGHC GD = B .EF 平分GH ,BH GDHC AG = C .EF 平分GH ,BH AGHC GD= D .GH 平分EF ,BH GDHC AG= 9.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为5 B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于10 D .直线1AC 与平面BDM 相交11.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A .2B .22C .12D .3212.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.14.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.15.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .16.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;17.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.18.已知扇形的面积为56π,圆心角为63,则由该扇形围成的圆锥的外接球的表面积为_________.19.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 20.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.三、解答题21.设某几何体的三视图如图(尺寸的长度单位为cm ),(1)用斜二测画法画出该几何体的直观图(不写画法); (2)求该几何体最长的棱长.22.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.23.如图,平行四边形ABCD 中,45DAB ∠=,PD ⊥平面ABCD ,PA BD ⊥,BD PD =,4AB =.(1)求证:平面PBC ⊥平面PBD ;(2)若点,M N 分别是,PA PC 的中点,求三棱锥P MBN -的体积.24.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 25.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案. 【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF△中,1EG =,222GF AG AF =+=,则2222123EF EG GF =+=+=,所以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.3.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A B C D -的棱长为2,故22,5BD BE ED ===,如图,2215232h ED BD ⎛⎫=-=-= ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.5.A解析:A 【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒,∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.6.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=.故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.8.C解析:C 【分析】举特例舍去不正确选项,可得正确答案. 【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AGHC GD==,EF 平分GH , 即BH AG HC GD =,所以舍去ABD ,选C 故选:C9.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.11.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=2215142MA MC CA =+=+=,所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离,又因为111122B N AB ===,所以点1B 到截面1A BM的距离为2, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt ACH 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的 解析:643π【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果. 【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =33GE OH ==,2222125AH AE EH +=+=则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭, 故四棱锥P ABCD -外接球的表面积为2364433ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,3x ∴=, 所以,球O 的半径为323x =,则球O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.15.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长. 【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==, 设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥, 则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球, 在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==, 所以532cm AE AB BE =-=-=, 在直角三角形AFB 和直角三角形AEO 中, 因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足,则球O 与圆锥的侧面的交线是以DE 为半径的圆,354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.16.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22. 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案. 【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =,30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..17.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论. 【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AEDE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==,112ME BC ==, 又113323323EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos EO MEO ME ∠==. 故答案为:3.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤.18.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积. 【详解】设扇形的长为l ,半径为R ,则22111656222S lR R παπ====,解得30R =l 为锥底面周长2r π,∴底面的半径5r =∴225R r -=.设外接球的半径为1R ,∴()222115R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π. 【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.19.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算. 【详解】设该球的半径为R ,则AB =2R ,2AC ==2R , ∴AC=,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC , 在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC =2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32,∴VP ﹣ABC 13=⨯R R 232=3=9,R 3=所以:球的体积V 43=⨯πR 343=⨯=.故答案为:. 【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.20.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫- ⎪⎝⎭【分析】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于二面角D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,求出二面角D AC B --的平面角和二面角D BC A --的平面角即可. 【详解】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,设正四面体的棱长为2a ,如图所示,取AC 的中点E ,连接DE 、BE , 易知DEB ∠为二面角D AC B --的平面角,3DE BE a ==,所以((()()()2223321cos 3233a a a DEB a a+-∠==⨯⨯, 同理可得:二面角D BC A --的平面角的补角的余弦值为13-, 故二面角D PC B --的平面角的余弦值的取值范围是11,33⎛⎫- ⎪⎝⎭, 故答案为:11,33⎛⎫- ⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.三、解答题21.(1)答案见解析;(2)4cm . 【分析】(1)直接画出三棱锥S ABC -即可;(2)作SE ⊥面ABC ,取线段AC 中点为D ,分别在等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △中,求出线段长度,得到该几何体最长的棱长. 【详解】(1)(2)如下图,SE ⊥面ABC ,线段AC 中点为D 2,3,1,4,2,=1SE cm AE cm CE cm AC cm AD DC cm DE cm ======,BD AC ⊥,3BD cm =,在等腰ABC 中,222313cm AB AC ==+ 在Rt SEA △中,22222313cm SA SE AE =+=+ 在Rt SEC △中,2222215cm SC SE CE =+=+= 在Rt BDE △中,22223110cm BE BD DE =+=+SE ⊥面ABC ,SE BE ∴⊥在Rt SEB △中,22222(10)14cm SB SE BE =+=+=在三梭锥S-ABC 中,SC AB AC SA SB AC <==<<, 所以最长的棱为AC ,长为4cm 【点睛】关键点点睛:本题考查几何体的三视图,以及棱锥的性质,解决本题的关键点是作出SE ⊥面ABC ,取线段AC 中点为D ,由三视图得出等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △,分别求出线段长度,得出答案,考查学生空间想象能力与计算能力,属于中档题.22.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值. 【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V SCC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.23.(1)证明见解析;(2)223. 【分析】(1)可由PD BD ⊥,PA BD ⊥证得BD ⊥平面PAD ,故BD AD ⊥,再由BD BC ⊥和PD BC ⊥可得BC ⊥平面PBD ,从而面PBC ⊥面PBD (2)可利用1144P MBN B PMN B PAC P ABC V V V V ----===,进行转化求体积. 【详解】解:(1)因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥. 又PA BD ⊥,PAPD P =,平面PD ⊂平面PAD ,PA ⊂平面PAD ,所以BD ⊥平面PAD ,而AD ⊂平面PAD ,所以BD AD ⊥.在平行四边形ABCD 中,//AD BC ,所以BD BC ⊥.由PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥, 而BDPD D =,PD ⊂平面PBD ,BD ⊂平面PBD ,所以BC ⊥平面PBD .又BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .(2)由(1)可知,BD AD ⊥,而45DAB ∠=,则ADB △为等腰直角三角形,又4AB =,所以22PD BD AD ===,连接AC ,由点,M N 分别是,PA PC 的中点,所以PMN PAC 且12MN AC =, 所以14PMNPAC SS =,则1144P MBN B PMN B PAC P ABC V V V V ----===, 在平行四边形ABCD 中,1222242ABCABDSS==⨯=, PD 为三棱锥P ABC -的高,所以118242233P ABC ABCV SPD -=⨯=⨯⨯=所以三棱锥P MBN -的体积为12243P MBN P ABC V V --==. 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积. 24.(1)证明见解析 ;(26. 【分析】(1)由面面垂直以及AB AC ⊥可得AB ⊥平面A AC ',进而可得AB AC '⊥,再由AC AA ''⊥利用线面垂直的判定定理即可证明;(2)取BC 的中点N ,连结,,A M A N MN '',可得A MN '∠为二面角A AC B '--的平面角即60A MN '∠=,设1AB =,则2AC A A ''==,利用余弦定理求出32A N '=,由勾股定理可证A N MN '⊥,结合A N AC '⊥可证明A N '⊥平面ABC ,A BN '∠为直线A B '与平面ABM 所成角,在A BN '中求sin A BN ∠'即可. 【详解】(1)∵90CAB CA A '∠=∠=,∴AB AC ⊥,∵平面A AC '⊥平面ABC ,平面A AC '⋂平面ABC AC =,AB 平面ABC ,∴AB ⊥平面A AC ',A C '⊂平面A AC ',∴AB AC '⊥,AC AA ''⊥,又∵AB平面A AB ',AA '⊂平面A AB ',A A A B A '''⋂=,∴A C '⊥平面A AB '.(2)取BC 的中点N ,连结,,A M A N MN '',设1AB =,则2AC A A ''==,∵点M 为中点,∴A M AC '⊥, ∵//MN AB ,∴MN AC ⊥,∴A MN '∠为二面角A AC B '--的平面角, ∴60A MN '∠=, ∵1122MN AB ==,∴1A M '=, 在A MN '△中,由余弦定理可得:22222cos6011131214224A N A M MN A M MN +-='''=⨯+-⨯⨯⨯=,∴222A M A N MN ''=+,∴A N MN '⊥,A N AC '⊥,MN AC M ⋂=, ∴A N '⊥平面ABC ,∴A BN '∠为直线A B '与平面ABM 所成角,在A BN '中,A B '===,所以sinA N A BN AB '''∠===【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.25.(1)证明过程见解析;(2)3. 【分析】(1)根据矩形的性质,结合线面垂直的判定定理进行证明即可;(2)根据线面平行的判定定理、平行线的性质,结合棱锥的等积性、线面角的定义进行求解即可. 【详解】(1)在矩形ABCD 中,连接BM ,所以90D C ︒∠=∠=,因为2AB AD =,M 为DC 的中点,所以三角形ADM 和三角形BCM 是等腰直角三角形,因此有45DMA CMB ︒∠=∠=,所以90AMB ︒∠=,即MB AM ⊥,在棱锥D ABCM -,取AM 中点N ,连接,DN CN ,因为三角形ADM 是等腰直角三角形,所以DN AM ⊥,因为平面ADM ⊥平面ABCM ,平面ADM平面ABCM AM =,所以DN ⊥平面ABCM ,而BM ⊂平面ABCM ,所以DN BM ⊥,又因为,,DNAM N DN AM =⊂平面ADM ,所以BM ⊥平面ADM ,而AD ⊂平面ADM ,所以BM AD ⊥;(2)设1AD =,所以2AB =,M 为DC 的中点,因此1DM MC ==,在等腰直角三角形ADM 中,1112222DN AM ====,在直角梯形ABCM 中,2BN ===,。

高考满分数学压轴题16 立体几何中探索性问题(可编辑可打印)

高考满分数学压轴题16 立体几何中探索性问题(可编辑可打印)

一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。

考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。

对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。

现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。

二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥,立体几何中探索性问题且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则122162322326A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)

专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。

2019高考数学(文)真题分类汇编-立体几何含答案

2019高考数学(文)真题分类汇编-立体几何含答案

2019高考数学(文)真题分类汇编-立体几何含答案立体几何专题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是α内有两条相交直线与β平行。

解析:根据面面平行的判定定理,α内有两条相交直线都与β平行是α∥β的充分条件。

又根据面面平行性质定理,若α∥β,则α内任意一条直线都与β平行。

因此,α内两条相交直线都与β平行是α∥β的必要条件。

所以选B。

名师点睛:本题考查了空间两个平面的判定与性质及充要条件,需要运用面面平行的判定定理与性质定理进行判断。

容易犯的错误是记不住定理,凭主观臆断。

2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BM≠EN,且直线BM,EN是相交直线。

解析:连接ON,BD,容易得到直线BM,EN是三角形EBD的中线,是相交直线。

过M作MF⊥OD于F,连接BF,平面CDE⊥平面ABCD,EO⊥CD,EO⊥平面CDE,因此EO⊥平面ABCD,MF⊥平面ABCD,所以△MFB与△EON均为直角三角形。

设正方形边长为2,可以计算出EO=3,ON=1,EN=2,MF=35,BF=22,因此BM=7,BM≠EN,故选B。

名师点睛:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形。

解答本题时,先利用垂直关系,再结合勾股定理进而解决问题。

3.【2019年高考浙江卷】XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高。

若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是162.解析:根据三视图,可以得到底面为直角梯形,上底为10,下底为18,高为9.因此,底面积S=1/2(10+18)×9=108,高h=9,代入公式V柱体=Sh可得V柱体=108×9=972,单位为cm3,故选B。

(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)(2)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)(2)
A. B. C. D.
3.设 , 为两条不同的直线, , 为两个不同的平面,给出下列命题:
①若 , ,则 ;
②若 , ,则 ;
③若 , , ,则 ;
④若 , ,则 与 所成的角和 与 所成的角相等.
其中正确命题的序号是 )
A.①②B.①④C.②③D.②④
4.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面 是铅垂面,下宽 ,上宽 ,深 ,平面BDEC是水平面,末端宽 ,无深,长 (直线 到 的距离),则该羡除的体积为()
D. , 与 所成的角,转化为 的大小, 的最小角是 与平面 所成的角,即 ,此时 ,所以 的最小角大于 ,故D正确.
故选:C
【点睛】
关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C和D,C选项的关键是 平面 ,点 是等边三角形的中心,D选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.
C. , ,则 D. , ,则
12.在正方体 中, 和 分别为 ,和 的中点.,那么直线 与 所成角的余弦值是()
A. B. C. D.
二、填空题
13.如图,在矩形 中, , ,点E为 的中点,F为线段 (端点除外)上一动点.现将 沿 折起,使得平面 平面 .设直线 与平面 所成角为 , 的取值范围为__________.
【详解】
依题意, ,而 ,
解得 ,记 的中心为О, 的中心为О1,则 ,
取 的中点 ,因为 , ,由勾股定理得 ,同理可得 ,
所以正三棱柱的外接球的球心为即 , 为外接球的半径,

2024年中考数学几何模型(全国通用):三角形中的导角模型飞镖模型、风筝模型、角内翻模型(原卷版)

2024年中考数学几何模型(全国通用):三角形中的导角模型飞镖模型、风筝模型、角内翻模型(原卷版)

专题02三角形中的导角模型-飞镖模型、风筝模型、角内翻模型近年来各地中考中常出现一些几何导角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题就飞镖型、风筝模型进行梳理及对应试题分析,方便掌握。

模型1、“飞镖”模型(“燕尾”模型)图1图2图3条件:如图1,凹四边形ABCD;结论:①BCD A B D;②AB AD BC CD。

(∠A+∠C)。

条件:如图2,线段BO平分∠ABC,线段OD平分∠ADC;结论:∠O=12条件:如图3,线段AO平分∠DAB,线段CO平分∠BCD;结论:∠O=1(∠D-∠B)。

2飞镖模型结论的常用证明方法:例1.(2023·重庆·八年级专题练习)请阅读下列材料,并完成相应的任务:有趣的“飞镖图”:如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.A.19 B.20例4.(2023·广东·八年级期中)如图,在三角形ABC 中,AB AC BC ,为三角形内任意一点,连结AP ,并延长交BC 于点D .求证:(1)AB AC AD BC ;(2)AB AC AP BP CP . AB D CP 探究:(1)观察“箭头四角形”,试探究BDC 与A 、B 、C 之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺XYZ 放置在ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、则ABX ACX ;②如图o 3,ABE 、ACE 的2等分线(即角平分线)BF 点F ,若60BAC ,130BEC ,求BFC 的度数;模型2、风筝模型(鹰爪模型)图1图21)风筝(鹰爪)模型:结论:∠A +∠O =∠1+∠2;2)风筝(鹰爪)模型(变形):结论:∠A +∠O=∠2-∠1。

(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(2)

(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(2)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A 5B 25C 5D 25 3.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 4.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A.43B.2C.4 D.65.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.24 B.30 C.47D.76.一个几何体的三视图如图所示,则该几何体的外接球的表面积是()A .2πB .3πC .4πD .16π7.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 8.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 9.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PF FC=( )A .1B .32C .2D .310.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( )A .2278S d =B .2272S d =C .292S d =D .21114S d = 11.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( ) A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.已知直线a 、b 都不在平面α内,则下列命题错误的是( )A .若//a b ,//a α,则//b αB .若//a b ,a α⊥,则b α⊥C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.14.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB 的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.17.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)18.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.19.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.如图,在三棱柱111ABC A B C -中,1B C ⊥平面ABC ,侧面11ABB A 为矩形,11,2AB AA AC ===.(1)证明:平面11ABB A ⊥平面1BB C ;(2)求四棱锥11C ABB A -的体积.22.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.23.如图所示,在四棱锥P ABCD -中,底面ABCD 是60DAB ∠=且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 的中点,E 为BC 的中点.(1)求证://BG平面PDE;(2)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理出.24.如图,四棱锥P ABCD-中,PA⊥平面ABCD,四边形ABCD为梯形,//AD BC,6BC=,2PA AD CD===,E是BC上一点且23BE BC=,PB AE⊥.(1)求证:AB⊥平面PAE;(2)求点C到平面PDE的距离.25.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,∠ADP=90°,PD=AD,∠PDC=60°,E为PD中点.(1)求证:PB//平面ACE:(2)求四棱锥E ABCD-的体积.26.在四棱锥P ABCD-中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB 的中点求证:(1)平面PAD ⊥平面ABCD ;(2)//EF 平面PAD【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333x OE CE ==,即可求出x ,进而求出腰长.【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC , 由三视图可知5AB AC AD ===45AEC ∠=,设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则1333x OE CE ==, 2532x x -=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//A G C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC A C,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//A G C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG=10GF=22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 的外接球的半径为2541116+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.4.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD ,所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.7.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确. 【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确. 故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 10.A解析:A【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】因为3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=,所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.11.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的解析:10【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+= 111Rt B A C 中,1112212122B C A D ===,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===10【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.14.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且解析:910【分析】取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111B C D C 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111A C B D O ⋂=,所以BD AC ⊥,1111B D A C ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11A ACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α,分别取1111B C D C 、的中点M N 、,连接MN 交11A C 与H 点,H 即为11O C 的中点, 所以1A H GC =,且1//A H GC ,所以四边形1A HCG 是平行四边形,所以1//A G HC ,1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A B C D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==,且CM CN ====,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910.【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 解析:224【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的体积342324V r π==.故答案为:224.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.17.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④ 【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确. 【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =;∴22AD AE DE a =-=,222AC CD AD a ∴=+=,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角, 在Rt ABC 中, tan 2ACABC BC∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE , ∴CE AD ⊥,又BDAD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD , ∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯.故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC ,∴BC ⊥平面ADC ,∵BC ⊂平面ABC , ∴ABC ⊥平面ADC .故④正确. 故答案为:①③④. 【点睛】 思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明.18.【分析】作出图形设球体的半径为根据几何关系可得出关于的等式进而可解得的值【详解】如下图所示:在正四棱锥中设为底面正方形的对角线的交点则底面由题意可得则设该球的半径为设球心为则由勾股定理可得即解得故答解析:29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值. 【详解】 如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM = 设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =. 故答案为:29714. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体解析:②④ 【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角. 【详解】①八面体的体积为21822(22)33⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF , 解得26EH =,所以E 到平面ADF 26; ④因为//ED BF ,所以EC 与BF 所成角为60︒. 故答案为:②④. 【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,底面三角形的高:22a a =,3a =, 设外接球半径为R ,222))R R a =-+,解得R =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)证明见解析;(2)3. 【分析】(1)根据线面垂直的判定定理,先证明AB ⊥平面1BB C ,再由面面垂直的判定定理,即可证明结论成立;(2)先由(1)得到AB BC ⊥,求出BC 和1B C ,过点C 作1CD BB ⊥于点D ,求出CD ,再由棱锥的体积公式,即可求出结果. 【详解】(1)∵1B C ⊥平面ABC ,AB平面ABC ,∴1B C AB ⊥,又四边形11ABB A 为矩形,∴1AB B B ⊥.又∵111B B B C B ⋂=,1B B ⊂平面1BB C ,1B C ⊂平面1BB C ,∴AB ⊥平面1BB C , 又AB平面11ABB A ,∴平面11ABB A ⊥平面1BB C .(2)由(1)知AB ⊥平面1BB C ,∴AB BC ⊥,则223BC AC AB =-=,从而()221231B C =-=,在1BB C △中,过点C 作1CD BB ⊥于点D , 由于平面11ABB A ⊥平面1BB C ,平面11ABB A 平面11BB C BB =,∴CD ⊥平面11ABB A , 由1111122BCB SB C BC BB CD =⋅=⋅可得32CD =, ∴四棱锥11C ABB A -的体积为111133123323ABB A V S CD =⋅=⨯⨯⨯=.【点睛】 方法点睛:证明空间中位置关系时,通常根据空间中线面、面面平行或垂直的判定定理及性质,直接证明即可;有时也可建立适当的空间直角坐标系,求出对应的直线的方向向量,以及平面的法向量等,根据空间位置的向量表示进行判断. 22.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD平面APC ,AP ⊂平面APC ,所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC . (3)因为AP ⊥平面PBC ,MDAP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高. 因为20AB =,M 为AB 的中点,PMB △为正三角形, 所以310,53PB MB MD MB ====. 由BC ⊥平面APC ,可得BC PC ⊥,在直角三角形PCB 中,由104PB BC =,=,可得221PC =. 于是1114221221222BCD BCP S S ⨯⨯⨯=△△==.112215310733D BCM M DBC BCD V V S MD --⨯⨯=△===【点睛】关键点睛:三棱锥的体积直接求不便时,常采用等积转换的方法,选择易求的底面积和高来求体积.23.(1)证明见解析;(2)点F 为PC 的中点,证明见解析. 【分析】(1)连接,DE PE ,可证明四边形DGBE 是平行四边形,得出//BG DE ,利用线面平行的判断定理即可证明;(2)猜想点F 为PC 的中点时,平面DEF ⊥平面ABCD ,再利用面面垂直的性质定理证明PG ⊥平面ABCD ,//OF PG ,可得OF ⊥平面ABCD ,利用面面垂直的判定定理即可证明. 【详解】。

高考数学(理)三年真题专题演练—立体几何(解答题)

高考数学(理)三年真题专题演练—立体几何(解答题)

高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题07 立体几何中的推理证明问题
——立体几何是高考考查逻辑推理的重要知识点
数学抽象要求能够掌握常用逻辑推理方法的规则,理解其中所蕴含的思想.对于新的数学问题,能够提出不同的假设前提,推断结论,形成数学命题.对于较复杂的数学问题,通过构建过渡性命题,探索论证的途径,解决问题,并会用严谨的数学语言表达论证过程.能够理解建构数学体系的公理化思想.
立体几何是高中数学考查逻辑推理的重要载体,高考通常通过立体几何中的线面位置关系的证明来考查逻辑推理.
1.【2019全国Ⅰ理18】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
2. 【2019全国II文17】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE ⊥平面EB 1C 1;
(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.
一、空间中的平行问题
(1)证明线线平行,可以运用平行公理、中位线定理,也可以证明包含这两边的四边形是平行四边形,或者运用线面平行的性质定理来证明;将展开图还原成正方体,借助正方体模型,有利于我们看清问题.
(2) 要证明直线和平面平行,通常有两种方法:(1)利用线面平行的判定定理,只要在平面内找到一条直线与已知平面外直线平行即可;(2)由面面平行的性质:如果两个平面平行,那么其中一个平面内的任何一条直线和另外一个平面平行.第(1)种方法是常用方法,一般需要连接特殊点、画辅助线,再证明线线平行,从而得到线面平行.第(2)种方法常用于非特殊位置的情形.
(3)判定面面平行的主要方法:①利用面面平行的判定定理;②线面垂直的性质(垂直于同一直线的两平面平行).
(4)面面平行的性质定理:①两平面平行,则一个平面内的直线平行于另一平面;②若一平面与两平行平面相交,则交线平行.
(5)利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.
【典例1】【2020届河南省八市重点高中联盟高三9月“领军考试”】如图,在四棱锥S ABCD -中,底面ABCD 是平行四边形,SA ⊥平面ABCD ,22,
60,2BC AB ABC SE ED ︒==∠==,F 为SC 的中点.
(1)求证,//BF 平面ACE ;
(2)若2SA =,求三棱锥S AEC -的体积.
【典例2】【江苏省扬州中学2019届高三4月考试】已知三棱锥P ABC -中,AB AC ⊥,AB AP ⊥ .若平面α分别与棱PA PB BC AC 、、、相交于点,,,E F G H 且PC P 平面α.
求证:(1)∥EH FG ;
【典例3】【2020届云南省师范大学附属中学高三上学期第一次月考】如图甲,在直角梯形ABCD 中,
//AB CD ,AB BC ⊥,224CD AB BC ===,过A 点作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折
叠,使得DE EC ⊥.取AD 的中点F ,连接BF 、CF 、EF ,如图乙.
(1)求证:BC ⊥平面DEC ; (2)求三棱锥E FBC -的体积.
【典例4】【2020届安徽省江淮十校高三上学期第一次联考】如图,四面体ABCD 中,ABC ∆是正三角形,
ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.
(1)证明:平面ACD ⊥平面ABC ;
(2)若点E 为DB 中点,求二面角D AE C --的正弦值.
1.【2020届福建省厦门双十中学高三第一次月考】如图,四棱锥P —ABCD 的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点.
(1)证明PA//平面BDE ;
(2)求二面角B —DE —C 的平面角的余弦值;
(2)在棱PB 上是否存在点F ,使PB ⊥平面DEF ?证明你的结论.
2.【2020届年广东省珠海市高三9月数学理】如图,在直角梯形ABED 中,
//, AB ED AB EB ⊥,点C 是AB 中点,且,24AB CD AB CD ⊥==,现将三角形ACD 沿CD 折起,使点A 到达点P 的位置,且PE 与平面
PBC 所成的角为45.
(1)求证:平面PBC ⊥平面DEBC ; (2)求二面角D PE B --的余弦值.
3.【甘肃省张掖市2019届高三第三次诊断】如图,在三棱锥B ACD -中,1AB BD CD ===,AC =
BE AC ⊥,CD DE ⊥,30DCE ∠=︒.
(1)求证:平面BED ⊥平面ACD ; (2)求直线AC 与平面ABD 所成角的正弦值.
4.【河北省衡水市第十三中学2019届高三质检】已知在图1所示的梯形ACDE 中,//AE CD ,BC AE ⊥于点B ,且2A B B C C D
B E ===.将梯形ACDE 沿B
C 对折,使平面BCDE ⊥平面ABC ,如图2所示,
连接AD ,取AD 的中点M .
(1)求证:平面EMC ⊥平面ACD ;
(2)在线段AB 上是否存在点N ,使得直线//MN 平面BCDE ?若存在,试确定点N 的位置,并给予证明;若不存在,请说明理由;
(3)设BC a =,求三棱锥D CME -的体积.
5.【江西省南昌市2018届上学期高三摸底】如图,在四棱锥P-ABCD 中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA ⊥平面ABCD ,PA=2,AB=1.设M ,N 分别为PD ,AD 的中点.
(1)求证:平面CMN ∥平面PAB ; (2)求三棱锥P-ABM 的体积.
6.【湖南省衡阳市第八中学2020届高三上学期月考】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,
ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .
(1)证明://OF 平面ABE ;
(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.
7.【河北省邢台市2019-2020学年高三上学期第一次摸底】如图,在三棱柱111ABC A B C -中,侧面11ABB A 为菱形,D 为AB 的中点,ABC ∆为等腰直角三角形,2
ACB π
∠=
,13
ABB π
∠=
,且1AB B C =.
(1)证明:CD ⊥平面11ABB A .
(2)求CD 与平面1A BC 所成角的正弦值.
8.【江西省南昌市2020届高三上学期开学摸底】已知直三棱柱111ABC A B C -中,120BAC ︒∠=,
12,AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且13A F FE =.
(1)证明:AF ⊥平面1A BC ;
(2)求二面角11B A E B --余弦值的大小.。

相关文档
最新文档