高考数学重点题型复习:函数综合题重点题型归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学重点题型复习:函数综合题重

点题型归纳

函数综合题重点题型归纳

已知函数.

(Ⅰ)求曲线在点M()处的切线方程;

(Ⅱ)设a0. 如果过点(a,b)时作曲线y=f(x)的三条切线,证明:

设函数.

(Ⅰ)证明:的导数;(Ⅱ)若对所有都有,求的取值范围.

已知函数,.()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围.

设函数.

(Ⅰ)求的单调期间;(Ⅱ)如果对任何,都有,求a的取值范围. 设函数有两个极值点,且

(I)求的取值范围,并讨论的单调性;(II)证明:

已知,其中是自然常数,

(1)讨论时,的单调性、极值;(2)求证:在(1)的条件下,;

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.已知函数(R)的一个极值点为.方程的两个实根为,函数在区间上是单调的.

(1) 求的值和的取值范围;(2) 若,证明:

设函数在两个极值点,且

(I)求满足的约束条件,并在坐标平面内,画出满足这些条件的点的区域;

(II)证明:

、是定义在上且满足如下条件的函数组成的集合:①对任意的,都有;②存在常数,使得对任意的,都有.

(I)设,证明:

(II)设,如果存在,使得,那么这样的是唯一的;

(III) 设,任取,令,,证明:给定正整数,对任意的正整数,成立不等式函数综合题重点题型归纳解:(Ⅰ)求函数的导数:曲线处的切线方程为:即

(Ⅱ)如果有一条切线过点(a,b),则存在使

于是,若过点(a,b)可作曲线的三条切线,则方程有三个相异的实数根,记则

当t变化时,变化情况如下表:

t(-,0)0(0,a)a(a,+)+0-0+↗极大值a+b↘极小值b-↗由的单调性,当极大值或极小值时,方程最多有一个实数根;

当时,解方程,即方程只有两个相异的实数根;

当时,解方程,即方程只有两个相异的实数根

综上,如果过可作曲线三条曲线,即有三个相异的实数根,则

即解:(Ⅰ)的导数.由于,故.(当且仅当时,等号成立). (Ⅱ)令,则,

(ⅰ)若,当时,,故在上为增函数,所以,时,,即.

(ⅱ)若,方程的正根为,

此时,若,则,故在该区间为减函数.

所以,时,,即,与题设相矛盾.

综上,满足条件的的取值范围是.

解:(1)求导:

当时,,,在上递增当,求得两根为

即在递增,递减,递增

(2),且解得:

解:(Ⅰ)当()时,,即;

当()时,,即.

因此在每一个区间()是增函数,

在每一个区间()是减函数.6分(Ⅱ)令,则故当时,.又,所以当时,,即.当时,令,则.故当时,因此在上单调增加.故当时,,即于是,当时,.

当时,有.因此,的取值范围是.12分

解: (I)

令,其对称轴为。由题意知是方程的两个均大于的不相等的实根,其充要条件为,得

⑴当时,在内为增函数;

⑵当时,在内为减函数;

⑶当时,在内为增函数;

(II)由(I),

设,则

⑴当时,在单调递增;

⑵当时,,在单调递减。

故.

解:(1),1分

当时,,此时单调递减

当时,,此时单调递增3分

的极小值为4分

(2)的极小值为1,即在上的最小值为1,,

令,,6分

当时,,在上单调递增7分

在(1)的条件下,(3)假设存在实数,使()有最小值3,

①当时,,所以,所以在上单调递减,

,(舍去),所以,此时无最小值. 10分

②当时,在上单调递减,在上单调递增

,,满足条件. 11分

③当时,,所以,所以在上单调递减,,(舍去),所以,此时无最小值.

综上,存在实数,使得当时有最小值3.14分

(本小题主要考查函数和方程、函数导数、不等式等知识,考查函数与方程、化归与转化的数学思想方法,以及抽象概括

能力、推理论证能力和运算求解能力)

(1) 解:∵,.

∵的一个极值点为,.

当时,;当时,;当时,;

函数在上单调递增,在上单调递减,在上单调递增.

∵方程的两个实根为,即的两根为,

∵函数在区间上是单调的,区间只能是区间,,之一的子区间.

由于,故.

若,则,与矛盾..

方程的两根都在区间上. 6分

令,的对称轴为,

则解得.实数的取值范围为.

说明:6分至8分的得分点也可以用下面的方法.

∵且函数在区间上是单调的,由即解得. 实数的取值范围为(2)证明:由(1)可知函数在区间上单调递减,

函数在区间上的最大值为,最小值为.

. 10分

令,则,.

设,则. ∵,.

.函数在上单调递增.

8、分析(I)这一问主要考查了二次函数根的分布及线性规划

作可行域的能力。

大部分考生有思路并能够得分。由题意知方程有两个根

则有故有

右图中阴影部分即是满足这些条件的点的区域。

(II)这一问考生不易得分,有一定的区分度。主要原因是含字母较多,不易找到突破口。此题主要利用消元的手段,消去目标中的,(如果消会较繁琐)再利用的范围,并借助(I)中的约束条件得进而求解,有较强的技巧性。

解:由题意有①又②

消去可得.又,且

9、解:对任意,,,,所以

对任意的,,

,所以0,

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。令=,,,所以

相关文档
最新文档