气动基础知识(二)

合集下载

气动技术基本知识

气动技术基本知识
其它
速度控制阀
C)控制元件速度控制阀d)执行元件
节流阀
摆动缸
回转执行件
逻辑阀
空气马达
管子接头
消音器
e)辅助元件压力计
其它
污染物质的去除能力
污染物质
过滤器
油雾分离器
干燥器
水蒸气
微小水雾
微小油雾
水滴
固体杂质
×
×
×


×






×

×
表1
二、空气处理元件
压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。
6.油雾器
气动系统中有很多装置都有滑动部分如:气缸体与活塞,阀体与阀芯等。为了保证滑动部分的正常工作需要润滑,油雾器是提供润滑油的装置
三、控制元件
一、方向控制阀
方向控制阀是气动控制回路中用来控制气体流动方向和气流通断,从而使气路中的执行元件能按要求方向进行动作的元件。在各类元件中,方向控制阀的种类最多。主要有换向阀和单向阀两大类。前者包括电磁阀,气控阀等,后者主要有单向阀,梭阀等,应用都很广泛。
流量控制阀分为节流阀,速度控制阀和排气节流阀数种等。
1.节流阀
可调式节流阀依靠改变的流通面积来调节气流。
2.速度控制阀
速度控制阀由节流阀和单向阀组合而成。故而又叫单向节流阀,通过调节流量达到控制执行元件速度的目的。
三、压力控制阀
压力控制阀是利用阀芯上的气压作用力和弹簧力保持平衡来进行工作的,平衡状态的任何破坏都会使阀芯位置产生变化,其结果不是改变阀口开度的大小(例如溢流阀、减压阀),就是改变阀口的通断(例如安全阀,顺序阀)。

气动原理基础知识【14页】

气动原理基础知识【14页】

三通路
• 说明:
• 3-通路 • 2-位置 • 常闭 • 按钮,弹簧复归 • 3 气口
• 三种流向 ---

三种流向 作动/不作动 启始状态 操作方式 1,2,和3
不通, 由 2流到 3, 由 1流到 2.
3/2
2 13

弹簧决定启始状态.

参个气口 ---没有一定的标示标准,可能标示为P,C,E或 P,C,
1,2,3,4,和 5
EB = B的排气
12
24
3 15
14
当驱动器14作动后流体通 常由
1 流到 4
出入口的辨别
5/2

BA B
EB P EA
24 B
13 5
AB A
EA P EB
标示的"标准“
24
A 传统式 12
31 5
A Numatrol
其它自动系列
B
14 ISO
2/2 常闭
一般多用途配管
电磁气导
电磁气导
主阀
14
42
12
5 13
注意 : 内部通路连接气压源到电磁 气导部分.只需要一极小 压力来推动主阀.
优点: 主阀由气压源气压推动 --- 典型的,其推动力 量比直接作动来得大,力量的大小由密封件 的磨擦力与阀的设计方式决定之. 可使用较小的电磁线圈(只需要较小的电流) --- 小的三通路阀,不需太大的流量. 动作可能比小尺寸的直动式阀要快 --- 速度 决定于气压源大小和心轴的净移动力 --- 但 不像一般原理所述那么快.
四种流向
2-位置弹簧中位
启动,中位,启动
中位所有出入口关闭
不作动状态
双电磁头

气动元件基础知识ppt课件

气动元件基础知识ppt课件
②电磁阀:利用电气信号对压缩空气进行开、关处理,或改变 其流动方向。
③消音器:安装于方向切换阀的排气口上,以减弱进行切换时的排气噪音。 ④速度控制阀:调整压缩空气的流量、调节气缸的速度。 ⑤减压阀:对空压机送来的压缩空气进行减压处理,将2次侧的空气压力设定、 调整到规定的压力。
6
1.2气动元件的代码含义
11
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
12
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
13
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
14
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
15
1.2气动元件的代码含义
二、气动元件在饲料行业的运用
5
1.1气动元件的基本工作原理及构成
三、构成气动系统的主要元件
所谓气动系统,是指汇总了以气压为动力的装置元件的设备。构成该系 统的元件有气缸、速度控制阀、换向阀(电磁阀 )、减压阀、过滤器、 气管接头、干燥器、空压机等。
①气缸:将气压的能量转换为有效的力和动能(推动或搬运物体)。
22
谢谢!
23
快插式
快换式
快拧式管接头
倒钩式管接头
18
1.3常见的气动辅件
五、气动辅件—辅助元件 ③ 感应开关 磁性开关是用来检测气缸活塞位置的:即检测活塞的运动行程的。它可分 为有触点式和无触点式两种。
19
1.3常见的气动辅件
五、气动辅件—辅助元件 ④ 缓冲器 用来吸收冲击能量,并能降低机械撞击噪声的液压元件称为油压缓冲 器。 油压缓冲器主要用于吸收冲击能量,同时也能降低噪声。油压缓冲器 可吸收较多的动能,还可限制移动件的位置,提高劳动生产率。但不能 把它当作止动器使用。

气动基础知识培训课件

气动基础知识培训课件

气动基础知识培训课件一、教学内容本节课我们将学习气动基础知识,内容涉及《机械基础》第四章第三节:气动系统的组成与原理。

详细内容包括气源装置、执行元件、控制元件、辅助元件等气动元件的工作原理及功能,以及气动系统的基本控制原理。

二、教学目标1. 理解气动系统的基本组成,掌握各气动元件的作用及工作原理。

2. 学会分析气动系统的控制原理,具备简单的气动系统设计能力。

3. 能够运用所学知识解决实际问题,提高实践操作能力。

三、教学难点与重点教学难点:气动系统的控制原理,气动元件的选型及应用。

教学重点:气动系统的基本组成,各气动元件的工作原理及功能。

四、教具与学具准备1. 教具:气动基础知识课件、气动系统演示模型、气压表、气源处理器、气动执行元件、控制阀等。

2. 学具:笔、纸、计算器等。

五、教学过程1. 导入:通过展示气动系统在实际应用中的案例,引起学生对气动知识的兴趣。

2. 理论讲解:(1)介绍气动系统的基本组成,包括气源装置、执行元件、控制元件、辅助元件等。

(2)讲解各气动元件的工作原理及功能。

3. 实践操作:(1)演示气动系统的工作过程,让学生直观地了解气动元件的相互作用。

(2)指导学生进行气动元件的拆装、调试,提高学生的动手能力。

4. 例题讲解:分析一个简单的气动系统控制实例,引导学生学会分析气动系统的控制原理。

5. 随堂练习:布置一些关于气动基础知识的习题,让学生巩固所学内容。

六、板书设计1. 气动系统的基本组成:气源装置执行元件控制元件辅助元件2. 气动元件工作原理及功能:气源装置:提供压缩空气执行元件:将压缩空气转化为机械动作控制元件:控制气流的通断、方向和压力辅助元件:辅助实现气动系统的功能七、作业设计1. 作业题目:(1)简述气动系统的基本组成及各元件的作用。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课通过理论讲解、实践操作、例题讲解等方式,使学生掌握了气动基础知识。

但在教学过程中,要注意关注学生的学习反馈,及时调整教学方法和节奏。

气动基础知识试题及答案

气动基础知识试题及答案

气动基础知识试题及答案一、选择题(每题2分,共20分)1. 气动系统中,以下哪个部件用于控制气流的方向?A. 气缸B. 气动开关C. 气动阀门D. 气动马达答案:C2. 气动系统中,压缩空气的压力通常是多少?A. 0.5MPaB. 0.8MPaC. 1.0MPaD. 1.5MPa答案:B3. 气动系统中,以下哪个部件用于将电信号转换为气信号?A. 气动传感器B. 气动放大器C. 气动控制器D. 电磁阀答案:D4. 气动系统中,以下哪个部件用于过滤压缩空气中的杂质?A. 气动过滤器B. 气动减压阀C. 气动继电器D. 气动开关答案:A5. 气动系统中,以下哪个部件用于调节气流的大小?A. 气动阀门B. 气动开关C. 气动传感器D. 气动放大器答案:A6. 气动系统中,以下哪个部件用于储存压缩空气?A. 气动储气罐B. 气动过滤器C. 气动减压阀D. 气动继电器答案:A7. 气动系统中,以下哪个部件用于测量气流的大小?A. 气动传感器B. 气动放大器C. 气动控制器D. 气动开关答案:A8. 气动系统中,以下哪个部件用于降低压缩空气的压力?A. 气动储气罐B. 气动过滤器C. 气动减压阀D. 气动继电器答案:C9. 气动系统中,以下哪个部件用于控制气缸的行程?A. 气动传感器B. 气动放大器C. 气动控制器D. 气动行程开关答案:D10. 气动系统中,以下哪个部件用于将气信号转换为电信号?A. 气动传感器B. 气动放大器C. 气动控制器D. 电磁阀答案:A二、填空题(每题2分,共20分)1. 气动系统中,压缩空气的流量通常用______单位来表示。

答案:立方米/小时(m³/h)2. 气动系统中,气缸的行程是指气缸的______运动距离。

答案:活塞3. 气动系统中,电磁阀的工作原理是利用______来控制气路的通断。

答案:电磁铁4. 气动系统中,气动放大器的作用是将______信号放大。

答案:小幅度5. 气动系统中,气动继电器的作用是将______信号转换为多个输出信号。

气动基础知识执行元件

气动基础知识执行元件
注意为了提高可靠 性,应根据温度范 围选择合适的密封 材料。
7
气缸安装方式
气缸安装方式由气 缸与设备之间连接 形式决定。若在任 何时候都不需要变 换气缸安装方式, 则可将安装方式设 计为固定式,相反, 应将安装方式设计 为非固定式,即按 模块式构造准则, 通过采用安装附件, 可以改变气缸安装 方式。
2
双作用气缸
在无负载条 件下,气缸 活塞运动速 度是相当稳 定的。
3
双作用气缸
双作用气缸 在两个运动 方向上均可 作功,其结 构与单作用 气缸大体相 同。
参见其它气 缸,其具有 不同的结构 与材质等。
4
双作用气缸,带终端缓冲
当由气缸移动大 惯性物体时,通 常在气缸终端增 加缓冲装置。在 缓冲段外,压缩 空气直接从出气 口排出。在缓冲 段内,由于缓冲 装置的作用,从 而使气缸活塞运 动速度减慢,减 小了活塞对缸盖 的冲击。 讨论与排气节流 方式的不同之处, 排气节流采用单 向可调节流阀。
单作用气缸
单作用气缸具有一个进气口和 一个出气口。出气口必须洁净, 以保证气缸活塞运动时无故障。 通常,将过滤器安装在出气口 上。 讨论缸径与负载大小之间匹配 的重要性。
1
双作用气缸
在气缸轴套前端 有一个防尘环, 以防止灰尘等杂 质进入气缸腔内。 前缸盖上安装的 密封圈用于活塞 杆密封,轴套可 为气缸活塞杆导 向,其由烧结金 属或涂塑金属制 成。 指出缸防尘环。
10
摆动气缸
可调止动装置与旋转叶 片相互独立,从而使得 挡块可以限制摆动角度 大小。在终端位置,弹 性缓冲环可对冲击进行 缓冲。 讨论摆动气缸的应用。
11
气马达
气马达是一种作连续 旋转运动的气动执行 元件,其可将气体压 力能转变为机械能。 气马达可分为活塞式 气马达,叶片式气马 达,齿轮式气马达和 涡轮式气马达。 讨论气马达的应用。

气动原理基础知识

气动原理基础知识

气动原理基础知识气动原理是研究空气运动规律的一门科学,涉及到空气的流动、压力、速度和力的转换等方面。

了解气动原理的基础知识可以帮助我们更好地理解和应用气流控制、飞行、空气动力学等相关领域的知识。

首先,气体是由大量分子组成,具有分子间碰撞的性质,这使得气体在流动过程中会发生压缩和膨胀。

气体流动具有连续性,即质点流体的密度在任何时刻都是存在的,而不会出现断裂和空隙。

气体的流动是由于压差引起的,即高压区向低压区流动,利用这个原理可以实现气动元件的控制,如风门和活塞。

其次,气流具有速度和方向,可以通过空气流速和风向来进行描述。

空气流速一般使用速度单位来表示,常用的单位有米/秒和千米/小时。

气流的方向一般指的是气流运动的方向,如气流的进出口分别是进气口和出气口。

气动原理中的重要概念之一是气压,指的是气体分子对单位面积的撞击力。

气压越大,分子的数量和撞击力就越大,而气体密度会随着气压的增加而增大。

气压从高压区到低压区传播,这就是气压差引起的气流流动。

在气动原理中,还有一个关键概念是气流速度和静压力的关系。

当气流速度增加时,静压力会下降,这是由于流体动能增加所引起的。

静压力是气体分子撞击物体表面产生的力,当气流速度增加时,气体分子的动能增加,导致静压力降低。

在设计和应用气动设备时,能量转换也是一个重要的概念。

气动元件通过将气体的压力能和动能转换为机械能来实现其功能。

例如,喷气发动机利用燃烧产生的高温高压气体流动转化为机械能,推动飞机等载具进行运动。

此外,气动原理中还有一些常见的气流现象和定律。

例如,伯努利定理指出在稳态流动过程中,气流中的总能量保持不变。

当气流通过流道时,流速增大则静压力减小,流速减小则静压力增加。

此外,还有代表气流运动方向的斯托克斯定律和牛顿定律等。

总结来说,气动原理是研究空气运动规律的一门科学,涉及到气体流动、压力、速度和力的转换等方面。

了解气动原理的基础知识可以帮助我们更好地理解和应用气流控制、飞行、空气动力学等相关领域的知识。

《气动基础知识》课件

《气动基础知识》课件

02
03
过滤器
用于清除压缩空气中的尘 埃和水分,保证气动系统 的清洁度。
减压阀
调节压缩空气的压力,使 其稳定在所需的工作压力 范围内。
油雾器
将润滑油混入压缩空气中 ,为气动元件提供润滑, 延长使用寿命。
气缸与活塞
气缸
气动系统的执行元件,通过压缩 空气驱动活塞运动,实现机械能 输出。
活塞
气缸中的关键部件,在气缸内往 复运动,将压缩空气的能量转化 为机械能。
THANKS
《气动基础知识》ppt课件
目 录
• 气动系统概述 • 气动元件与装置 • 气动回路与控制 • 气动系统设计 • 气动系统维护与故障排除
01
气动系统概述
气动系统的定义与组成
总结词
气动系统的定义、组成和工作原理
详细描述
气动系统是以压缩空气为工作介质,通过气动元件和气动控制阀等组成的系统 ,实现气体的压缩、传输、分配和消耗等过程。气动系统通常由气源、气动执 行元件、控制元件和辅助元件等部分组成。
则将使用过的压缩空气排出到大气中。
逻辑控制回路
总结词
逻辑控制回路用于实现气动逻辑控制功能,通过逻辑门电路和继电器等控制元件实现复 杂的逻辑关系。
详细描述
逻辑控制回路利用逻辑门电路和继电器等控制元件,通过组合不同的逻辑关系,实现复 杂的控制功能。例如,通过使用与门、或门和非门等逻辑门电路,可以实现各种复杂的 逻辑控制关系,如顺序控制、条件控制等。同时,通过使用继电器等控制元件,可以实
气动马达
气动马达
一种将压缩空气的能量转化为机械能的装置,用于驱动设备 运转。
马达类型
包括叶片式、活塞式和旋转式等,根据不同的应用需求选择 合适的类型。

气动元件基础知识大全

气动元件基础知识大全

气动元件是指以空气为介质,通过压缩空气来传递能量和动作的机械元件。

以下是一些气动元件的基础知识:
1.气源:气动系统的主要能量来源是空气压缩机,它将空气压缩
并储存到气罐中,为气动元件提供动力。

2.气动元件的分类:气动元件包括气缸、气阀、气动马达、气动
控制器等。

其中气缸是执行动作的元件,气阀是控制气体流动的元件,气动马达是将压缩空气转化为机械能的元件,气动控制器则是控制气动系统运行的元件。

3.气缸的种类:气缸可以根据不同的需求和应用场景分为多种类
型,如单作用气缸、双作用气缸、增压气缸、缓冲气缸等。

4.气阀的种类:气阀也可以根据不同的需求和应用场景分为多种
类型,如普通气阀、安全气阀、调节气阀等。

5.气动马达的种类:气动马达可以根据不同的需求和应用场景分
为多种类型,如高速气动马达、低速气动马达、定量马达、变量马达等。

6.气动控制器的种类:气动控制器也可以根据不同的需求和应用
场景分为多种类型,如气动逻辑控制器、气动程序控制器等。

7.气动系统的特点:气动系统具有动作迅速、结构简单、维护方
便、安全可靠等优点,但同时也具有能量密度低、噪音大等缺点。

8.气动系统的应用领域:气动系统在工业、汽车、航空航天、电
子、医疗等多个领域得到广泛应用,如自动化生产线、机器人、汽车刹车系统、飞机起落架等。

气动基础知识

气动基础知识

第二章 气动基础知识2.1 气动技术常用单位换算各换算关系入表2.1所示:表2-1 单位换算表一、长度(Length )cm m in ft 1 0.01 0.39370.0328 100 1 39.3713.2809 2.54 0.0254 1 0.0833 30.48 0.3048 12 1 二、质量(Mass)kg lb1 2.20.4536 1三、面积(Area ) cm 2 m 2 in 2 ft 2 1 0.01 0.15500.001076 四、重量或力(Force) Kgf(千克力) Kp (千克力) N(Newton) lbf (磅-力)1 1 9.812.2 五、压力(Pressure) kg /cm 2atm lb/in 2(psi) bar MPa(N/m 2) l 0.9678 14.2230.9807 0.09807六 、流量(Flow) m 3/hr Ft 3/hr l /Min 1 35.317 16.6667七、体积(Volume)m 3 dm 3或l ft 3 1 1000 35.317 0.0283228.315l2.2 气动技术常用公式:一、基本单位:长度l:m ,质量m :kg ,时间t :S ,体积:m 3或l 一、基本公式:(一) 力(Force): a m F ⋅= (2s m kg N ⋅=); 牛顿定律 (二) 重量(weight):g m G ⋅= (2smkg N ⋅=);(三) 压力:A F P =(2mN Pa =); 1Pa=10-5bar 上式为巴斯卡原理(Pascal ’s theory)(四) 波义尔定律:见图2.1(说明压力与体积成反比)2211V P V P =(五) 查理定律(charle ’s Law ):图2.1波义尔定律222111T V P T V P = 说明压力与体积的变 化与温度成正比。

(六) 流量公式:V A Q ⋅= (smm s m ⋅=23)说明了流量为管路截面积与流速之乘积,见图2.2。

气动技术基本知识

气动技术基本知识

⽓动技术基本知识⼀、⽓动技术基本知识1. ⽓动技术中常⽤的单位1个⼤⽓压=760mmHg =1.013bar =101kpa 压⼒单位换算1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡=0.1Mpa 2. ⽓动控制装置的特点⑴空⽓廉价且不污染环境,⽤过的⽓体可直接排⼊⼤⽓⑵速度调整容易⑶元件结构紧凑,可靠性⾼⑷受湿度等环境影响⼩⑸使⽤安全便于实现过载保护⑹⽓动系统的稳定性差⑺⼯作压⼒低,功率重量⽐⼩⑻元件在⾏程中途停⽌精度低3. ⽓动系统的组成⽓动系统基本由下列装置和元件组成(1)⽓源装置——⽓动系统的动⼒源提供压缩空⽓ (2)空⽓处理装置——调节压缩空⽓的洁净度及压⼒ (3)控制元件⽅向控制元件——切换空⽓的流向流量控制元件——调节空⽓的流量 (4)逻辑元件——与或⾮(5)执⾏元件——将压⼒能转换为机械功(6)辅助元件——保证⽓动装置正常⼯作的⼀些元件压缩机 a )⽓源装置储⽓罐后冷却器过滤器油雾分离器减压阀 b )空⽓调节油雾器处理装置空⽓净化单元⼲燥器其它电磁阀⽓缸⽓压控制阀带终端开关⽓缸⽅向控制阀机械操作阀带制动器⽓缸⼿动阀⽓缸带锁⽓缸其它带电磁阀⽓缸其它速度控制阀C )控制元件速度控制阀 d )执⾏元件节流阀摆动缸回转执⾏件逻辑阀空⽓马达管⼦接头消⾳器 e )辅助元件压⼒计其它⼆、空⽓处理元件压缩空⽓中含有各种污染物质。

由于这些污染物质降低了⽓动元件的使⽤寿命。

并且会经常造成元件的误动作和故障。

表1列出了各种空⽓处理元件对污染物的清除能⼒。

1.空⽓滤清器空⽓滤清器⼜称为过滤器、分⽔滤清器或油⽔分离器。

它的作⽤在于分离压缩空⽓中的⽔分、油分等杂质,使压缩空⽓得到初步净化。

2.油雾分离器油雾分离器⼜称除油滤清器。

它与空⽓滤清器不同之处仅在于所⽤过滤元件不同。

空⽓滤清器不能分离油泥之类的油雾,原因是当油粒直径⼩于2~3цm 时呈⼲态,很难附着在物体上,分离这些微粒油雾需⽤凝聚式过滤元件,过滤元件的材料有:1)活性炭2)⽤与油有良好亲和能⼒的玻璃纤维、纤维素等制成的多孔滤芯 3.空⽓⼲燥器为了获得⼲燥的空⽓只⽤空⽓滤清器是不够的,空⽓中的湿度还是⼏乎达100%。

气动基础知识培训

气动基础知识培训

气缸的分类
? 5、按润滑方式分类 可分为给油气缸和不给油气缸两种。给油气缸使用的工 作介质是含油雾的压缩空气,对气缸内活塞、缸筒等相 对运动部件进行润滑。不给油气缸所使用的压缩空气中 不含油雾,是靠装配前预先添加在密封圈内的润滑脂使 气缸运动部件润滑的。
? 使用时应注意,不给油气缸也可以给油使用,但一旦给 油使用后,则必须一直给油使用 ,否则将引起密封件过快 磨损。这是因为压缩空气中的油雾已将润滑脂洗去 ,而 使气缸内部处于无油润滑状态了。(目前绝大部分气缸 都是免润滑气缸)
存,可以远距离传输
气动技术的特点
?与机械、液压、电气相比,气动技术具有广泛 的工作适应性
?易于实现快速的直线往返运动、摆动和高速移动 ?输出力、运动速度调节方便,改变运动方向简单 ?在恶劣环境下工作安全可靠,容易实现防潮、防爆 ?安装与控制有较高的自由度 ?具有过载保护能力
气动技术的缺点
?与机械、液压、电气相比,气动技术也具有 一定的缺点
气动基础培训
气动技术的含义
?气动技术是以压缩机为动力源,以压缩空气 为工作介质,进行能量传递或信号传递的工 程技术
?压缩空气经过一系列控制元件后,将能量传 递至执行元件,输出力(直线气缸)或者力 矩(摆缸或气马达)。
பைடு நூலகம்
气动技术的特点
?气动元件结构简单、紧凑、易于制造,价格 便宜
?介质取之不尽、对环境污染较少 ?可靠性高,使用寿命长 ?由于空气的可压缩性,因此可以实现能量贮
双压阀与快速排气阀
双压阀的工作原理 :
? 双压阀也相当于两个单向阀的组 合结构形式,其作用相当于“与门” 。它有两个输入口P1和P2、一个输 出口A。当P1和P2单独有输入时,阀 芯被推向另一侧,A无输出。只有当 P1和P2同时有输入时,A才有输出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、气压传动标准件供应商:
日本:SMC(中高端市场)、喜开理(CKD)、小金井(KOGANEI)等;
中国:台湾亚德客(AirTAC)、华能、台湾新恭(SHAKO)、气立可(CHELIC)等;
德国:费斯托(Festo)(高端市场)
美国:博世力士乐(Bosch-Rexroth)、Park等。

英国:诺冠
2、典型气动系统的组成:
气动系统一般有方向控制阀、气动执行元件、各种气动辅助元件及气源净化元件组成。

3、压缩空气的压强一般为0.5~0.7MPa。

4、工厂内对于耗气量比较大或需要稳定气压的设备一般需要为设备单独添置储气罐。

5、常用的气动元件:
1)气源处理组合单元:干燥机、干燥器、防湿气凝结管、空气过滤器、雾分离器、油雾分离器、除臭过滤器、自动排水器、电动式自动排水器、减压阀、过滤减压阀、缓
慢启动电磁阀、电气比例阀、增压阀等
2)气动控制元件:3通先到电磁阀、3通直动式电磁阀、3通气控阀、5通先导式电磁阀、5通气控阀、2通先导式电磁阀、2通直动式电磁阀、2通气控阀等
3)气动执行元件:气动马达、喷枪、微型气缸CJ1、针形气缸CJP2/CJP、标准型气缸CJ2、自由安装型气缸CU、机械接合式无杆气缸MY1、磁偶式无杆气缸CY3B/CY3R、气动滑台MXH、导向轴承双缸气缸MXQ、带导杆气缸MGJ、双联/基本型气缸CXS、
旋转夹紧气缸MK、止动气缸RSQ、行程可读出气缸CE1、叶片旋转气缸/齿轮齿条旋
转气缸、摆动气缸CRQ2、伸摆气缸MRQ、气爪(平行式、支点式)/阔型气爪等
4)电动执行元件
5)真空元件:真空发生器、真空负压表、真空吸盘等;
6)压力检测元件
7)除静电元件
8)辅助气动元件:空压机、储气罐、管接头
6、熟悉气缸的型号
1)(空间布局、动力特性、连接固定方式和配件信息等),熟悉标示和每个字母、数字的含义,并能快速查阅型录获得技术信息。

2)熟悉气缸的动力特性和空间布局。

像定位、夹紧等对于气缸输出力、速度和行程要求不高,或者要求停电不会造成安全事故隐患的场合,可考虑用单作用气缸,其他的
情况一般采用双作用气缸;需要大动力时可用串联增压气缸,运动有精度要求时刻用
带导杆气缸或滑台气缸。

3)搜集或积累一些经验数据。

4)两个平行安装的气缸缸筒间距应大于40mm,否则这两个气缸的磁性开关可能会互相干扰,造成误动作。

5)除非是防旋转的单轴气缸,否则单轴气缸的轴在运动过程中是会旋转的,这有可能会造成活塞杆头部螺栓的连接松动。

6)气缸动作过程中突然断电或者断气,可能造成搬运物的掉落,砸坏机台或损伤产品,可以选择双线圈的电磁阀,他能在断电的情况下保持气缸原本的动作。

7、气缸的分类
1)按动作分类:单作用气缸和双作用气缸。

单作用气缸分为弹簧压出或弹簧亚辉两种。

2)按功能分类:如标准气缸、复合型气缸、特殊用途气缸、摆动气缸、气爪等。

比较常用的有自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、
旋转气缸、夹爪气缸、阻挡气缸等。

气指气缸选用注意事项:需根据产品和工艺,设计相应的定位夹爪与气缸配合使用,
设计时尽可能设计的小巧灵活,并注意互换性和可靠性;确保气指气缸有足够的夹持力,在对夹持力有要求或对外观严格的场合,尽量选用电动夹爪(价格高,但夹持力可控)或者选用真空吸附的方式。

7、气缸的选型设计计算
1)确定气缸缸径
(1)根据实际负载大小、运行速度和系统工作压力来确定。

气缸输出力理论值:
F=π*D^2*P/4
式中:
F一气缸理论输出力,N;
D一气缸缸径,mm;
P一工作压力,MPa;根据气源供气条件,应小于减压阀进口压力的85%。

气缸缩回力理论值:
F’=π*(D^2-d^2)*P/4
式中:
F’一气缸理论缩回力,N;
d一气缸活塞杆杆径,mm;
气缸的工作阻力,主要来自于缸内密封件及导向部位的阻力F1和排气侧产生的阻力F2。

F2的大小与气缸的运行速度密切相关。

气缸实际输出力:
N=η*F
式中:
N一气缸的实际输出力或负载力,N;
η一安全系数或负载率η,有实际工况需求决定。

(2)根据负载的运动状态,确定气缸的负载率η;
负载率η的值与气缸的运动速度有关,一般推荐:
对于静载荷或低速时,F2阻力很小,η≤0.7;
对于气缸速度在50~500mm/s范围内的水平或垂直运动,η≤0.5;
对于气缸速度大于500mm/s的动作,F2影响很大,η≤0.3。

(3)根据供气条件确定气缸的工作压力。

对于N的大小的确定,设计者需要在平时多做积累,注意实际工况的分析和已知条件的拟定。

在进行机构设计时,对于垂直、水平布局的机构受力分析时不要遗漏了重力带来的影响。

2)确定气缸的工作行程注意事项
根据气缸操作距离及传动机构的行程比来预选气缸行程。

为了防止活塞与缸盖相碰撞,一般不选满行程。

像夹紧机构等,应按计算所需的行程增加1~2mm以上的余量;限
位要平稳可靠;应尽量选用标准行程,这样可缩短供货期和节省成本。

3)确定气缸类型:根据气缸使用的具体要求及其安装要求来选择气缸的品种。

4)气缸的缓冲装置:根据活塞的速度决定是否应采用缓冲装置,如果负载与速度较大或要求气缸到达行程终端无冲击现象和碰撞噪声时,紧靠气缸本身的缓冲时很难吸收
冲击能力的,因此必须设计缓冲回路或设计使用外部缓冲器以缓和冲击。

5)确定气缸是否带磁:根据实际情况,确定气缸是否带磁石,并选择相应的感应开关。

不同的气缸有不同的磁性开关,也有不同的安装方式,如T型槽、夹紧、顶紧、卡箍
锁紧等,设计者需灵活选用。

在进行机构设计时需考虑好磁性开关的安装方式,避免
让位不够或实际安装时无法走线。

气缸上的磁性开关在特殊场合下(如气缸的使用场
合为含铁粉,或处于磁场环境中)使用时还要采取必要防磁措施,否则容易失效,并
避免碰撞损坏。

6)选择气缸的安装方式:根据气缸使用和安装要求来选择气缸的安装方式,一般气缸的安装形式都有好几种,可根据实际使用灵活运动。

设计人员在平时的工作中应注意
积累某一系列的气缸的缸径、行程系列值,充分理解并能快速查阅产品样本。

7)选择气缸活塞杆连接方式:在气缸预选后,根据其不同的安置方式,有必要对气缸的活塞杆(特别是在细长比较大状态时的)稳定性进行验算;并且对气缸在实际使用
条件下的耗气量进行验算。

8)考虑是气缸的工作环境,是否需要安装活塞杆防尘罩。

如果是要求无污染的场合需要选择无给油或无油润滑的气缸等。

8、气缸配件的选型:
气缸配件主要有控制阀(电磁阀)、单向节流阀(调速接头或速度控制阀)、浮动接头、三联件、液压缓冲器、真空发生器、消声器、真空吸盘、管接头(注意螺纹类型)等;
电磁阀的选型一般是根据所需流量计驱动形式,选定电磁阀系列和控制机能、然后选
定电气规格(直流or交流及电压等级,还有接线方式如何)和配管形式及配管口径。

电磁阀的类型:两位五通阀等
电磁阀的选择依据是气缸工作所需的气体流量(即一方面要满足阀门的有效面积和工作气缸相吻合;另一方面要满足匹配气缸的工作速度)。

单向节流阀:
气缸的速度主要取决于气缸输入压缩空气的流量、气缸进排气口的大小及导管内径的大小。

气缸运行速度一般为50~1000mm/s,对于高速运动的气缸,应选择大内经的进气管道。

没有调速要求时,选用普通的快速接头,如果要调速,则一般选用调速接头。

调速接头分为进气节流和排气节流。

进气可调大小,出气不受控制的称为进气节流,反之为排气节流。

一般情况下使用的都是排气节流阀(具有低速平稳性好,阀的开度与速度成比例关系等优点),但在特殊场合如单作用气缸中靠弹簧力复位,要调节伸出速度,必然是希望进气能调节大小以克服弹簧力,此时就要使用进气节流阀。

调试注意事项:
1、气缸两端应安装调速阀,为了安全起见气缸调试时,其节流阀应从全闭状态逐渐打开,从低速慢慢地将气缸的驱动速度调整到所需要的速度。

2、节流阀的安装一般有排气节流和进气节流两种方式。

在气动系统中大多采用排气节流方式,是因为通过排气节流可使气缸在工作中产生背压而使气缸的行进速度或其速度的调节较稳定,而且能避免启动时活塞杆突然快速推进而装机缸盖。

3、带缓冲的气缸在气缸调试时,应根据负载与速度的大小对装在缸盖上的缓冲阀由小到大重新调整至气缸不产生反跳现象,注意在调节过程中不要用力调死缓冲,否则会出现缓冲不良或活塞在快速情况下损坏密封件。

连接注意事项:
1)气缸活塞杆螺纹:内螺纹还是外螺纹、粗牙还是细牙;
2)浮动接头注意螺纹的类型;
3)液压缓冲器的螺纹类型;
4、安装时,气缸的活塞杆不得承受偏心载荷可横向载荷,应使载荷方向与活塞杆轴线相一致。

相关文档
最新文档