气动原理基础知识

合集下载

气动工作原理

气动工作原理

气动工作原理
气动工作原理是指利用气体压缩和膨胀的力量来实现机械运动和执行工作的原理。

在工业生产中,气动工作原理被广泛应用于各种机械设备和生产线上,其简单、高效、可靠的特点受到了广泛的认可和应用。

首先,气动工作原理的基础是气体的压缩和膨胀。

通过压缩空气,可以将气体
储存于气源中,当需要时,通过控制气源的释放,使气体膨胀并产生动力,从而驱动机械设备进行工作。

这种基于气体压缩和膨胀的原理,使得气动设备在能量转换和传递方面具有独特的优势。

其次,气动工作原理的应用范围非常广泛。

在工业自动化生产线上,气动工作
原理被应用于各种传动装置、执行机构和控制系统中,如气动缸、气动阀、气动执行器等。

通过气动工作原理,可以实现机械设备的运动和控制,从而完成各种生产工艺和操作任务。

此外,气动工作原理还具有许多优点。

首先,气动设备具有响应速度快、动力
密度高、结构简单、维护成本低等优点,适用于各种恶劣的工作环境和条件。

其次,气动系统的控制和调节相对简单,可以通过气动元件的组合和调节,实现对机械设备的精确控制和灵活操作。

再次,气动设备具有较好的安全性能,不易发生火灾和爆炸等危险情况,因此在一些特殊的工业场合得到了广泛的应用。

总的来说,气动工作原理作为一种重要的能量转换和传递原理,在工业生产中
具有重要的地位和作用。

通过对气体的压缩和膨胀,可以实现机械设备的运动和控制,从而完成各种生产任务和操作工艺。

同时,气动设备具有响应速度快、动力密度高、结构简单、维护成本低等优点,适用于各种工业场合和环境。

因此,气动工作原理在工业生产中具有广阔的应用前景,将继续发挥重要的作用。

气动技术基本知识

气动技术基本知识
其它
速度控制阀
C)控制元件速度控制阀d)执行元件
节流阀
摆动缸
回转执行件
逻辑阀
空气马达
管子接头
消音器
e)辅助元件压力计
其它
污染物质的去除能力
污染物质
过滤器
油雾分离器
干燥器
水蒸气
微小水雾
微小油雾
水滴
固体杂质
×
×
×


×






×

×
表1
二、空气处理元件
压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。
6.油雾器
气动系统中有很多装置都有滑动部分如:气缸体与活塞,阀体与阀芯等。为了保证滑动部分的正常工作需要润滑,油雾器是提供润滑油的装置
三、控制元件
一、方向控制阀
方向控制阀是气动控制回路中用来控制气体流动方向和气流通断,从而使气路中的执行元件能按要求方向进行动作的元件。在各类元件中,方向控制阀的种类最多。主要有换向阀和单向阀两大类。前者包括电磁阀,气控阀等,后者主要有单向阀,梭阀等,应用都很广泛。
流量控制阀分为节流阀,速度控制阀和排气节流阀数种等。
1.节流阀
可调式节流阀依靠改变的流通面积来调节气流。
2.速度控制阀
速度控制阀由节流阀和单向阀组合而成。故而又叫单向节流阀,通过调节流量达到控制执行元件速度的目的。
三、压力控制阀
压力控制阀是利用阀芯上的气压作用力和弹簧力保持平衡来进行工作的,平衡状态的任何破坏都会使阀芯位置产生变化,其结果不是改变阀口开度的大小(例如溢流阀、减压阀),就是改变阀口的通断(例如安全阀,顺序阀)。

气动原理基础知识【14页】

气动原理基础知识【14页】

三通路
• 说明:
• 3-通路 • 2-位置 • 常闭 • 按钮,弹簧复归 • 3 气口
• 三种流向 ---

三种流向 作动/不作动 启始状态 操作方式 1,2,和3
不通, 由 2流到 3, 由 1流到 2.
3/2
2 13

弹簧决定启始状态.

参个气口 ---没有一定的标示标准,可能标示为P,C,E或 P,C,
1,2,3,4,和 5
EB = B的排气
12
24
3 15
14
当驱动器14作动后流体通 常由
1 流到 4
出入口的辨别
5/2

BA B
EB P EA
24 B
13 5
AB A
EA P EB
标示的"标准“
24
A 传统式 12
31 5
A Numatrol
其它自动系列
B
14 ISO
2/2 常闭
一般多用途配管
电磁气导
电磁气导
主阀
14
42
12
5 13
注意 : 内部通路连接气压源到电磁 气导部分.只需要一极小 压力来推动主阀.
优点: 主阀由气压源气压推动 --- 典型的,其推动力 量比直接作动来得大,力量的大小由密封件 的磨擦力与阀的设计方式决定之. 可使用较小的电磁线圈(只需要较小的电流) --- 小的三通路阀,不需太大的流量. 动作可能比小尺寸的直动式阀要快 --- 速度 决定于气压源大小和心轴的净移动力 --- 但 不像一般原理所述那么快.
四种流向
2-位置弹簧中位
启动,中位,启动
中位所有出入口关闭
不作动状态
双电磁头

气动工作原理

气动工作原理

气动工作原理气动工作原理是指利用气体压力来驱动机械装置进行工作的基本原理。

在工业生产中,气动工作原理被广泛应用于各种机械设备和生产线中,其简单、高效、安全的特点受到了广泛的青睐。

首先,气动工作原理的基础是气体的压缩和膨胀。

当气体被压缩时,其分子间的距离减小,从而增加了气体分子的碰撞频率和压力,这种压缩气体可以存储在气缸中,通过控制气源和阀门,可以将压缩气体释放到气动执行器中,从而驱动机械装置进行工作。

而当气体膨胀时,其分子间的距离增大,压力减小,这种原理被应用在气动制动系统中,通过控制气源和阀门,使气体膨胀产生制动力,实现机械装置的停止和控制。

其次,气动工作原理的关键是气动执行器。

气动执行器是将压缩气体的能量转换为机械能的装置,包括气缸、气动马达等。

气缸是气动执行器中最常见的一种,其工作原理是通过控制气源和阀门,使压缩气体进入气缸,推动活塞运动,从而驱动连杆、活塞杆等机械装置进行工作。

而气动马达则是将压缩气体的能量转换为旋转运动的装置,通过控制气源和阀门,使压缩气体进入气动马达,驱动转子、齿轮等旋转部件进行工作。

最后,气动工作原理的应用范围非常广泛。

在工业生产中,气动工作原理被应用于各种机械设备和生产线中,如气动钻、气动切割机、气动输送机等,其简单、高效、安全的特点使其成为工业生产中不可或缺的一部分。

同时,在汽车制造、航空航天、医疗设备等领域,气动工作原理也有着重要的应用,如气动制动系统、飞机起落架、呼吸机等,其稳定、可靠的特点为这些领域的发展提供了有力支持。

综上所述,气动工作原理是利用气体压力来驱动机械装置进行工作的基本原理,其应用范围广泛,对工业生产和其他领域的发展起着重要的作用。

随着科学技术的不断进步,相信气动工作原理将会在未来发挥更加重要的作用,推动着各行各业的发展和进步。

2024年气动基础知识培训课件

2024年气动基础知识培训课件

2024年气动基础知识培训课件一、教学内容本次教学内容选自《气动技术基础》教材第1章至第3章,详细内容主要包括气动系统的基本概念、气动元件的原理与功能、气动系统的设计及应用。

重点掌握气动系统的组成、工作原理及常见气动元件的选用与维护。

二、教学目标1. 理解气动系统的基本概念,掌握气动系统的工作原理。

2. 掌握常见气动元件的原理、功能及选用方法。

3. 学会分析气动系统的实际应用案例,具备一定的气动系统设计能力。

三、教学难点与重点教学难点:气动元件的选用与维护、气动系统设计。

教学重点:气动系统的组成、工作原理、常见气动元件的功能及选用。

四、教具与学具准备1. 教具:气动元件实物、气动系统演示装置、多媒体教学设备。

2. 学具:教材、笔记本、计算器。

五、教学过程1. 导入:通过一个实际气动系统应用案例,引发学生对气动技术的兴趣。

2. 理论讲解:1) 气动系统的基本概念及组成。

2) 气动系统的工作原理。

3) 常见气动元件的原理、功能及选用。

3. 实践操作:1) 观察气动元件实物,了解其结构特点。

2) 演示气动系统的工作过程,让学生直观地理解气动系统的运行原理。

4. 例题讲解:选用一个简单的气动系统设计案例,讲解气动元件的选用与系统设计方法。

5. 随堂练习:1) 分析气动系统的实际应用案例,让学生选用合适的气动元件。

2) 让学生设计一个简单的气动系统,并进行讨论。

对本节课的主要内容进行回顾,强调气动系统的组成、工作原理及气动元件的选用。

六、板书设计1. 气动系统的组成2. 气动系统的工作原理3. 常见气动元件的功能及选用4. 气动系统设计案例七、作业设计1. 作业题目:1) 解释气动系统的组成及其作用。

2) 分析一个实际气动系统应用案例,选用合适的气动元件,并说明理由。

3) 设计一个简单的气动系统,绘制系统原理图。

2. 答案:1) 气动系统的组成包括气源、执行元件、控制元件、辅助元件等,它们分别负责提供动力、执行动作、控制气流方向和压力等。

气动元件基础知识ppt课件

气动元件基础知识ppt课件
②电磁阀:利用电气信号对压缩空气进行开、关处理,或改变 其流动方向。
③消音器:安装于方向切换阀的排气口上,以减弱进行切换时的排气噪音。 ④速度控制阀:调整压缩空气的流量、调节气缸的速度。 ⑤减压阀:对空压机送来的压缩空气进行减压处理,将2次侧的空气压力设定、 调整到规定的压力。
6
1.2气动元件的代码含义
11
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
12
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
13
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
14
1.2气动元件的代码含义
四、各气动元件代码含义。 (2)阀类代码
15
1.2气动元件的代码含义
二、气动元件在饲料行业的运用
5
1.1气动元件的基本工作原理及构成
三、构成气动系统的主要元件
所谓气动系统,是指汇总了以气压为动力的装置元件的设备。构成该系 统的元件有气缸、速度控制阀、换向阀(电磁阀 )、减压阀、过滤器、 气管接头、干燥器、空压机等。
①气缸:将气压的能量转换为有效的力和动能(推动或搬运物体)。
22
谢谢!
23
快插式
快换式
快拧式管接头
倒钩式管接头
18
1.3常见的气动辅件
五、气动辅件—辅助元件 ③ 感应开关 磁性开关是用来检测气缸活塞位置的:即检测活塞的运动行程的。它可分 为有触点式和无触点式两种。
19
1.3常见的气动辅件
五、气动辅件—辅助元件 ④ 缓冲器 用来吸收冲击能量,并能降低机械撞击噪声的液压元件称为油压缓冲 器。 油压缓冲器主要用于吸收冲击能量,同时也能降低噪声。油压缓冲器 可吸收较多的动能,还可限制移动件的位置,提高劳动生产率。但不能 把它当作止动器使用。

气动基础知识培训课件

气动基础知识培训课件

气动基础知识培训课件一、教学内容本节课我们将学习气动基础知识,内容涉及《机械基础》第四章第三节:气动系统的组成与原理。

详细内容包括气源装置、执行元件、控制元件、辅助元件等气动元件的工作原理及功能,以及气动系统的基本控制原理。

二、教学目标1. 理解气动系统的基本组成,掌握各气动元件的作用及工作原理。

2. 学会分析气动系统的控制原理,具备简单的气动系统设计能力。

3. 能够运用所学知识解决实际问题,提高实践操作能力。

三、教学难点与重点教学难点:气动系统的控制原理,气动元件的选型及应用。

教学重点:气动系统的基本组成,各气动元件的工作原理及功能。

四、教具与学具准备1. 教具:气动基础知识课件、气动系统演示模型、气压表、气源处理器、气动执行元件、控制阀等。

2. 学具:笔、纸、计算器等。

五、教学过程1. 导入:通过展示气动系统在实际应用中的案例,引起学生对气动知识的兴趣。

2. 理论讲解:(1)介绍气动系统的基本组成,包括气源装置、执行元件、控制元件、辅助元件等。

(2)讲解各气动元件的工作原理及功能。

3. 实践操作:(1)演示气动系统的工作过程,让学生直观地了解气动元件的相互作用。

(2)指导学生进行气动元件的拆装、调试,提高学生的动手能力。

4. 例题讲解:分析一个简单的气动系统控制实例,引导学生学会分析气动系统的控制原理。

5. 随堂练习:布置一些关于气动基础知识的习题,让学生巩固所学内容。

六、板书设计1. 气动系统的基本组成:气源装置执行元件控制元件辅助元件2. 气动元件工作原理及功能:气源装置:提供压缩空气执行元件:将压缩空气转化为机械动作控制元件:控制气流的通断、方向和压力辅助元件:辅助实现气动系统的功能七、作业设计1. 作业题目:(1)简述气动系统的基本组成及各元件的作用。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课通过理论讲解、实践操作、例题讲解等方式,使学生掌握了气动基础知识。

但在教学过程中,要注意关注学生的学习反馈,及时调整教学方法和节奏。

气动原理基础知识

气动原理基础知识

气动原理基础知识气动原理是研究空气运动规律的一门科学,涉及到空气的流动、压力、速度和力的转换等方面。

了解气动原理的基础知识可以帮助我们更好地理解和应用气流控制、飞行、空气动力学等相关领域的知识。

首先,气体是由大量分子组成,具有分子间碰撞的性质,这使得气体在流动过程中会发生压缩和膨胀。

气体流动具有连续性,即质点流体的密度在任何时刻都是存在的,而不会出现断裂和空隙。

气体的流动是由于压差引起的,即高压区向低压区流动,利用这个原理可以实现气动元件的控制,如风门和活塞。

其次,气流具有速度和方向,可以通过空气流速和风向来进行描述。

空气流速一般使用速度单位来表示,常用的单位有米/秒和千米/小时。

气流的方向一般指的是气流运动的方向,如气流的进出口分别是进气口和出气口。

气动原理中的重要概念之一是气压,指的是气体分子对单位面积的撞击力。

气压越大,分子的数量和撞击力就越大,而气体密度会随着气压的增加而增大。

气压从高压区到低压区传播,这就是气压差引起的气流流动。

在气动原理中,还有一个关键概念是气流速度和静压力的关系。

当气流速度增加时,静压力会下降,这是由于流体动能增加所引起的。

静压力是气体分子撞击物体表面产生的力,当气流速度增加时,气体分子的动能增加,导致静压力降低。

在设计和应用气动设备时,能量转换也是一个重要的概念。

气动元件通过将气体的压力能和动能转换为机械能来实现其功能。

例如,喷气发动机利用燃烧产生的高温高压气体流动转化为机械能,推动飞机等载具进行运动。

此外,气动原理中还有一些常见的气流现象和定律。

例如,伯努利定理指出在稳态流动过程中,气流中的总能量保持不变。

当气流通过流道时,流速增大则静压力减小,流速减小则静压力增加。

此外,还有代表气流运动方向的斯托克斯定律和牛顿定律等。

总结来说,气动原理是研究空气运动规律的一门科学,涉及到气体流动、压力、速度和力的转换等方面。

了解气动原理的基础知识可以帮助我们更好地理解和应用气流控制、飞行、空气动力学等相关领域的知识。

《气动基础知识》课件

《气动基础知识》课件

02
03
过滤器
用于清除压缩空气中的尘 埃和水分,保证气动系统 的清洁度。
减压阀
调节压缩空气的压力,使 其稳定在所需的工作压力 范围内。
油雾器
将润滑油混入压缩空气中 ,为气动元件提供润滑, 延长使用寿命。
气缸与活塞
气缸
气动系统的执行元件,通过压缩 空气驱动活塞运动,实现机械能 输出。
活塞
气缸中的关键部件,在气缸内往 复运动,将压缩空气的能量转化 为机械能。
THANKS
《气动基础知识》ppt课件
目 录
• 气动系统概述 • 气动元件与装置 • 气动回路与控制 • 气动系统设计 • 气动系统维护与故障排除
01
气动系统概述
气动系统的定义与组成
总结词
气动系统的定义、组成和工作原理
详细描述
气动系统是以压缩空气为工作介质,通过气动元件和气动控制阀等组成的系统 ,实现气体的压缩、传输、分配和消耗等过程。气动系统通常由气源、气动执 行元件、控制元件和辅助元件等部分组成。
则将使用过的压缩空气排出到大气中。
逻辑控制回路
总结词
逻辑控制回路用于实现气动逻辑控制功能,通过逻辑门电路和继电器等控制元件实现复 杂的逻辑关系。
详细描述
逻辑控制回路利用逻辑门电路和继电器等控制元件,通过组合不同的逻辑关系,实现复 杂的控制功能。例如,通过使用与门、或门和非门等逻辑门电路,可以实现各种复杂的 逻辑控制关系,如顺序控制、条件控制等。同时,通过使用继电器等控制元件,可以实
气动马达
气动马达
一种将压缩空气的能量转化为机械能的装置,用于驱动设备 运转。
马达类型
包括叶片式、活塞式和旋转式等,根据不同的应用需求选择 合适的类型。

《气动基础知识》课件

《气动基础知识》课件

《气动基础知识》课件一、教学内容本节课主要围绕《气动基础知识》教材的第一章“气动系统概述”进行展开。

详细内容包括气动系统的基本组成、工作原理、气动元件的功能及分类等。

具体章节为1.1节“气动系统简介”,1.2节“气动系统的基本组成”及1.3节“气动元件的分类及功能”。

二、教学目标1. 了解气动系统的基本组成,掌握气动系统的工作原理。

2. 掌握气动元件的分类及功能,能够正确区分和应用各种气动元件。

3. 能够分析并解决简单的气动系统故障。

三、教学难点与重点教学难点:气动元件的分类及功能,气动系统的故障分析。

教学重点:气动系统的基本组成,气动系统的工作原理。

四、教具与学具准备1. 教具:气动系统演示模型、PPT课件、视频资料。

2. 学具:气动元件实物、气动系统图解、练习题。

五、教学过程1. 实践情景引入:通过展示气动系统演示模型,让学生直观地了解气动系统的实际应用,激发学习兴趣。

2. 理论讲解:1) 介绍气动系统的基本组成,解释工作原理。

2) 讲解气动元件的分类及功能,结合实物进行展示。

3. 例题讲解:分析一个简单的气动系统故障,引导学生运用所学知识解决问题。

4. 随堂练习:分发练习题,让学生现场解答,巩固所学知识。

六、板书设计1. 气动系统的基本组成2. 气动系统的工作原理3. 气动元件的分类及功能4. 气动系统故障分析及解决方法七、作业设计1. 作业题目:1) 列出气动系统的基本组成,并简述其工作原理。

2) 画出气动元件的分类图,并说明各类型元件的功能。

2. 答案:1) 气动系统的基本组成为:气源装置、执行元件、控制元件、辅助元件。

2) 气动元件分类图略。

3) 故障分析及解决方法略。

八、课后反思及拓展延伸1. 反思:本节课学生对气动系统的基本概念和组成有了较为清晰的认识,但对气动元件的分类及功能掌握不够扎实,需要在下节课进行巩固。

2. 拓展延伸:引导学生了解气动系统在现代工业中的应用,探索气动技术的前沿发展。

2024年气动基础知识培训课件

2024年气动基础知识培训课件

2024年气动基础知识培训课件一、教学内容本次教学内容选自《气动技术基础》教材第1章至第3章,主要涉及气动元件的基础理论、气动系统的基本构成及工作原理。

详细内容包括:气动元件的分类及功能、气动系统的设计原则、气动控制阀的类型及选用、气缸的结构及性能参数、气动马达的应用、气动系统故障诊断与维护。

二、教学目标1. 掌握气动元件的分类、功能及选型原则,能够根据实际需求设计气动系统;2. 了解气动系统的基本构成和工作原理,能够分析气动系统故障并进行简单维护;3. 培养学生的动手实践能力和团队协作精神,提高解决实际问题的能力。

三、教学难点与重点教学难点:气动系统的设计原则、气动控制阀的类型及选用、气动系统故障诊断与维护。

教学重点:气动元件的分类及功能、气动系统的基本构成及工作原理、气缸的结构及性能参数。

四、教具与学具准备教具:气动元件实物、气动系统模型、PPT课件、黑板、粉笔。

学具:教材、笔记本、计算器、画图工具。

五、教学过程1. 导入:通过展示气动系统在实际应用中的图片和视频,引起学生的兴趣,引导学生进入学习状态。

2. 理论讲解:(1)讲解气动元件的分类、功能及选型原则;(2)介绍气动系统的基本构成和工作原理;(3)分析气动控制阀的类型及选用;(4)阐述气缸的结构及性能参数;(5)介绍气动马达的应用;(6)讲解气动系统故障诊断与维护。

3. 实践操作:(1)分组讨论,设计一个简单的气动系统,并选用合适的气动元件;(2)利用气动元件实物,搭建气动系统模型,观察并分析系统的工作状态;(3)进行气动系统故障诊断与维护的实践操作。

4. 例题讲解:结合教材,讲解气动系统设计的相关例题。

5. 随堂练习:布置一些气动系统设计的练习题,让学生巩固所学知识。

六、板书设计1. 气动元件的分类及功能;2. 气动系统的基本构成及工作原理;3. 气动控制阀的类型及选用;4. 气缸的结构及性能参数;5. 气动系统故障诊断与维护。

七、作业设计1. 作业题目:(1)简述气动元件的分类及功能;(2)阐述气动系统的基本构成和工作原理;(3)分析一个气动系统的故障原因,并提出解决方法。

气动基础知识培训

气动基础知识培训

大型
大型缸 CS1
φ125 ~ φ300
NEXT MENU
单作用气缸
CJ1
特点:极为小巧,安装空间很小
NEXT MENU
单作用气缸 CJP
特点:轴向短,安装空间小
NEXT MENU
单作用气缸 CJ2
特点:密封圈耐磨性高,寿命是CJ1的1.5倍,驱动 速度快
NEXT MENU
单作用气缸 CM2
介质不花钱(介质压缩、处理要花钱),不污染环境 可集中供气(可压缩),能远距离输送(流动阻力小)
使用维护简单
广泛的工作适应性(与机械、液压、电气自动化相比)
易于实现快速的直线往返运动,摆动和高速转动 输出力、运动速度的调节方便,改变运动方向简单 安装和控制(控制方式、控制距离、信号转换等)的自由度高 有过载保护能力(保护机械设备) 恶劣环境下工作安全可靠(防火、防爆、耐潮等)
NEXT MENU
CQ2
特点:
(1)行程短,缸体为方形 (2)缸筒与无杆侧端盖压铸 为一体,杆侧用弹性挡圈固 定 (3)多种安装形式
NEXT
MENU
CP95气缸
NEXT
MENU
气源系统:空压机,后冷却器,气罐等 真空系统:真空发生器,真空泵等
NEXT
MENU
空气处理元件
除去空气中的固态、液态、气态的杂质,不同等级适应不同的工 作场所(包括各种过滤器、干燥器、排水器等)
气源系统:空压机,后冷却器,气罐等 真空系统:真空发生器,真空泵等
NEXT
MENU
AC
NEXT
MENU
过滤减压阀AW系列
NEXT
MENU
油雾器 AL
1.是否使用油雾器要根据气缸的使用情况确定 2.建议使用ISO VG32透平油(30#),用油不当会损坏密封圈

气动技术第一讲气动基础知识

气动技术第一讲气动基础知识
15
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
8
间接控制,已驱动
• 只要按下按钮,
控制口(12)就
有气信号,这是
一个按钮阀控制
单作用气缸的举
例。若松开按钮
,则在弹簧作用
下,按钮阀复位
,控制口(12)
上的气信号消失

9
“与”逻辑(双压阀)
• 将双压阀输入与按 钮阀和滚轮杠杆阀 的输出相连接,当 按钮阀(1S1)动 作时,双压阀只有 左边输入口(1) 有气信号,由于双 压阀阻断了这个气 信号,所以,其输 出口(2)上没有 气信号输出。
10
“与”逻辑(双压阀)
• 若滚轮杠杆阀( 1S2)也动作, 则双压阀输出口 (2)上就有气信 号输出,从而驱 动换向阀(1V1 )换向,使气缸 活塞杆伸出。
11
“或”逻辑(梭阀)
• 当要求二个按钮阀中任 何一个动作,气缸活塞
杆都伸出时,无经验设
计者也许会将两个按钮 阀(1S1和1S2)的工 作口连接起来。在这种
化 5、气动系统在恶劣工作环境中,安全可靠性优于液压等系
统 6、气动系统可实现过载保护,可压缩性气体便于贮存能量 7、气动设备可以自动降温,长期运行也不会发生过热现象 8、空气取之不尽,节省购买、贮存、运输的费用
21
气压传动
气压传动的缺点: 1、工作压力较低,输出功率较小 2、气信号传递的速度慢,不宜用于高速传递

气动技术基本知识

气动技术基本知识

⽓动技术基本知识⼀、⽓动技术基本知识1. ⽓动技术中常⽤的单位1个⼤⽓压=760mmHg =1.013bar =101kpa 压⼒单位换算1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡=0.1Mpa 2. ⽓动控制装置的特点⑴空⽓廉价且不污染环境,⽤过的⽓体可直接排⼊⼤⽓⑵速度调整容易⑶元件结构紧凑,可靠性⾼⑷受湿度等环境影响⼩⑸使⽤安全便于实现过载保护⑹⽓动系统的稳定性差⑺⼯作压⼒低,功率重量⽐⼩⑻元件在⾏程中途停⽌精度低3. ⽓动系统的组成⽓动系统基本由下列装置和元件组成(1)⽓源装置——⽓动系统的动⼒源提供压缩空⽓ (2)空⽓处理装置——调节压缩空⽓的洁净度及压⼒ (3)控制元件⽅向控制元件——切换空⽓的流向流量控制元件——调节空⽓的流量 (4)逻辑元件——与或⾮(5)执⾏元件——将压⼒能转换为机械功(6)辅助元件——保证⽓动装置正常⼯作的⼀些元件压缩机 a )⽓源装置储⽓罐后冷却器过滤器油雾分离器减压阀 b )空⽓调节油雾器处理装置空⽓净化单元⼲燥器其它电磁阀⽓缸⽓压控制阀带终端开关⽓缸⽅向控制阀机械操作阀带制动器⽓缸⼿动阀⽓缸带锁⽓缸其它带电磁阀⽓缸其它速度控制阀C )控制元件速度控制阀 d )执⾏元件节流阀摆动缸回转执⾏件逻辑阀空⽓马达管⼦接头消⾳器 e )辅助元件压⼒计其它⼆、空⽓处理元件压缩空⽓中含有各种污染物质。

由于这些污染物质降低了⽓动元件的使⽤寿命。

并且会经常造成元件的误动作和故障。

表1列出了各种空⽓处理元件对污染物的清除能⼒。

1.空⽓滤清器空⽓滤清器⼜称为过滤器、分⽔滤清器或油⽔分离器。

它的作⽤在于分离压缩空⽓中的⽔分、油分等杂质,使压缩空⽓得到初步净化。

2.油雾分离器油雾分离器⼜称除油滤清器。

它与空⽓滤清器不同之处仅在于所⽤过滤元件不同。

空⽓滤清器不能分离油泥之类的油雾,原因是当油粒直径⼩于2~3цm 时呈⼲态,很难附着在物体上,分离这些微粒油雾需⽤凝聚式过滤元件,过滤元件的材料有:1)活性炭2)⽤与油有良好亲和能⼒的玻璃纤维、纤维素等制成的多孔滤芯 3.空⽓⼲燥器为了获得⼲燥的空⽓只⽤空⽓滤清器是不够的,空⽓中的湿度还是⼏乎达100%。

气动培训课件

气动培训课件
定期检查并紧固气动元件的螺丝 ,以确保其稳定性和安全性。
气动元件的保养与维修
油雾器保养
定期更换油雾器中的润滑油,清洗油杯和滴油嘴 ,确保润滑油能够均匀滴入气缸。
气缸保养
定期检查气缸的密封圈、导向环和防尘圈等易损 件,如有损坏应及时更换。
电磁阀维修
定期检查电磁阀的工作状态,如有异常应及时维 修或更换。
气瓶与压力调节器
气源装置是气动系统的能源装置,主 要功能是为系统提供稳定、洁净的压 缩空气。
储存压缩空气的气瓶和调节气瓶出口 压力的压力调节器是气源装置的重要 部分。
气源处理组件
包括空气过滤器、油雾器和气源调节 装置等,用于过滤空气中的杂质、水 分和油分,以及调节压缩空气的压力 和流量。
气动控制元件
阀的选择
根据流量、控制精度、工作压力等要求,选 择合适的阀类型和规格。
其他元件的选择
根据系统需要,选择合适的其他气动元件, 如传感器、过滤器等。
气动系统的优化与调试
系统优化
根据实际运行情况,对气动系统 进行必要的优化,如调整元件参
数、改进布局等。
系统调试
对气动系统进行调试,确保系统正 常运行并满足性能要求。
包括单作用气缸、双作用 气缸、回转式气缸等,每 种类型都有其特定的应用 场景和优势。
气缸的工作原理
通过压缩空气驱动气缸内 的活塞或叶片运动,实现 机械能的输出。
气缸的选择与使用
根据实际需求选择合适的 气缸,并了解其安装、调 试和使用注意事项。
气动辅助元件
管道与接头
用于连接气动元件,保证 压缩空气在系统中顺畅流 动。
气动系统的故障诊断与排除
压力异常
01
当系统压力异常时,应检查气源压力、调压阀、气动元件等是

气动原理基础知识试题

气动原理基础知识试题

气动原理基础知识试题# 气动原理基础知识试题## 一、选择题(每题2分,共20分)1. 以下哪项不是气动学研究的范畴?A. 流体静力学B. 流体动力学C. 热力学D. 材料力学2. 流体的连续性方程描述的是:A. 流体压力的变化B. 流体速度的变化C. 流体质量守恒D. 流体能量守恒3. 伯努利方程适用于哪种类型的流体?A. 理想气体N. 粘性流体C. 非理想气体D. 可压缩流体4. 以下哪个不是气动阻力的来源?A. 形状阻力B. 表面阻力C. 摩擦阻力D. 重力5. 马赫数是用来描述什么?A. 流体的密度B. 流体的速度C. 流体的压缩性D. 流体的相对速度## 二、填空题(每空2分,共20分)6. 流体的粘性会导致______阻力的产生。

7. 流体的______特性决定了流体是否容易压缩。

8. 气动学中的雷诺数是用来描述流体流动的______。

9. 流体的压强差可以导致______的产生。

10. 流体的密度和速度的乘积称为______。

## 三、简答题(每题15分,共30分)11. 请简述流体的不可压缩性条件是什么,并说明在哪些情况下可以认为流体是不可压缩的。

12. 描述一下什么是气动阻力,并简述其主要来源。

## 四、计算题(每题15分,共30分)13. 假设有一个管道,其横截面积从A1=0.1平方米变化到A2=0.05平方米,流体在管道中的流速从v1=10米/秒增加到v2。

假设流体是不可压缩的,求流体在管道中的压强变化。

14. 给定一个理想气体,其初始状态的压强为P1=2大气压,体积为V1=1立方米,温度为T1=300K。

若该气体经历一个绝热过程,压强变为P2=1大气压,求气体的最终体积V2。

## 五、论述题(10分)15. 论述气动原理在现代航空工程中的应用及其重要性。

注意:请根据试题要求,认真作答,确保答案的准确性和完整性。

气动工作原理

气动工作原理

气动工作原理气动工作原理是指利用气体压缩、膨胀及流动等特性来完成工作的一种工作原理。

在工业生产中,气动工作原理被广泛应用于各种机械设备和自动化生产线中,其具有结构简单、动力传递稳定、响应速度快等优点,因此备受青睐。

首先,气动工作原理的基础是气体的压缩和膨胀特性。

气体是一种物态较为特殊的物质,其分子间距较大,分子间作用力较小,因此具有较大的可压缩性。

当气体受到外部压力作用时,其分子间距会减小,体积减小,密度增加,压力增大;而当外部压力减小时,气体的体积会增大,密度减小,压力也随之减小。

这种特性使得气体可以被用来作为传递动力的介质,通过压缩气体来储存能量,然后释放气体来驱动机械设备完成工作。

其次,气动工作原理的关键在于气体的流动特性。

通过合理设计管路和阀门,可以控制气体的流动方向、速度和压力,从而实现对机械设备的精确控制。

比如,在气动执行元件中,通过控制气体的进出,可以实现对活塞、气缸等部件的运动控制,从而完成各种工作任务。

而在自动化生产线中,气动系统也被广泛应用于传送带、装配机械、夹具等设备中,实现自动化生产,提高生产效率。

此外,气动工作原理还具有响应速度快的特点。

由于气体的压缩和膨胀特性,气动系统可以在很短的时间内完成压力的建立和释放,从而实现对机械设备的快速响应。

这使得气动系统在需要频繁启停、速度要求较高的场合下具有明显的优势,比如在汽车制动系统、工业机械设备等领域中得到广泛应用。

总的来说,气动工作原理是一种利用气体压缩、膨胀及流动等特性来完成工作的工作原理。

其具有结构简单、动力传递稳定、响应速度快等优点,因此在工业生产中得到广泛应用。

通过合理设计气动系统,可以实现对机械设备的精确控制,提高生产效率,满足不同工况下的工作要求。

因此,深入理解气动工作原理,对于提高工程技术人员的技术水平,提升生产效率具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五口四通路
• 说明:
• • • • 4-通路 2-位置 常开 按钮式, 弹簧回复 四种流向 作动/不作动 不适用 操作方式 1,2,3,4,和 5
B A B 驱动器
5/2
A 驱动器 EB P EA
EA = A的排气 EB = B的排气
• 5 气口
当驱动器12作动后流体通常由 1到2
12
2
4
14
当驱动器14作动后流体通 常由 1 流到 4
2/2
2
1
• 两种流向 -- 即通与不通. • 启动状态(常态或不作动),系由弹簧来决定. • 两个气体出入口 -- 图例虽然显示了两种状态,但阀本身仅有两 出入口. 符号显示阀的常态(不通)与另一可能状态(通路). • 操作方式表现于流路符号的两端.
- 当操作正在进行时,于其驱动器旁的流路立即作动.
四通路
• 说明:
• • • • • 4-通路 2-位置 常开 按钮式,弹簧回复 4 气口 四种流向 作动/不作动 不适用 操作方式 1,2,3,和 4
3 2
4/2
4-口/ 2- 位置
4
1
• 四种流向 --- 1到2, 3到4, 1到3, 2到4 • 出入口可能以不同的方式标示.逐一验证每一出入口 --- 请勿猜测.
流路
• 关于气压符号,我们所关心的是气流路径(流路). • 气流路径 OUT 可称为开路或通路 如箭头所示为气流方向 • -- AND -• 无气流路径 可称为闭路或不通过 • 如图所示为封闭的流路 IN • 一个阀有两种状态:
二通路
• • • • • • 说明 2 通路 2 位置 常闭 按钮式,弹簧回复 2 气口 两种流向 作动/不作动 启动状态 操作方式 1与2
操作方式 1,2,3,4,和 5
驱动方式
4 2
手动 (直接动作)
机构提供力量推动阀---连杆 直接地作用在阀上.
3 1 5 4 2
电磁线圈 (直接动作)
电磁体推动阀力量源自于电 流---瓦特.
3 1 5 4 2
3 1 5
电磁气导 (直接电磁线圈驱动气 导阀)
电磁气导只需要很小的气压或由外部供应. 典型的,内部引导气源只适用于当气源由出 入口 #1所提供.使用空气压力推动阀.
缺点: 阀的切换力量由气压源大小决定 --- 可能需要外部气压源. 要成为多功能用途阀则需要外部气源引导供应. 电磁气导阀使用很小的空气通路及很轻的推动力 --- 容易 因阻塞而引起停置或动作不良. 手动开关,仅能控制气导部分. 更多的零件
3
15
出入口的辨别

B A B
EB P EA 2 4 B 1 3 5 A B A EA P EB B A
5/2

标示的"标准“
A
传统式
2 4 12 3 1 5 14
ISO
Numatrol
其它自动系列
一般多用途配管
2/2 常闭 2/2 常开 3/2 常闭
3/2 常开
压力转向器
2 种压力选择
R R
单压力
电磁气导
电磁气导 主阀
14 4 2 12 5 1 3
注意 : 内部通路连接气压源到电磁 气导部分.只需要一极小 压力来推动主阀.
优点: 主阀由气压源气压推动 --- 典型的,其推动力 量比直接作动来得大,力量的大小由密封件 的磨擦力与阀的设计方式决定之. 可使用较小的电磁线圈(只需要较小的电流) --- 小的三通路阀,不需太大的流量. 动作可能比小尺寸的直动式阀要快 --- 速度 决定于气压源大小和心轴的净移动力 --- 但 不像一般原理所述那么快.
三通路
• 说明:
• • • • • 3-通路 2-位置 常闭 按钮,弹簧复归 3 气口 三种流向 作动/不作动 启始状态 操作方式 1,2,和3 2
3/2
1
3
• 三种流向 --•
不通, 由 2流到 3, 由 1流到 2.
• • •
弹簧决定启始状态. 参个气口 ---没有一定的标示标准,可能标示为P,C,E或 P,C, X或其它不同系统的标示. 您必须应证其功能,不能只是猜测!
需要中间定位时,三位置阀是有用的.
三位置
3-位阀 ---气压源封闭,气压缸出入口同时排气.
2 12 3 1 5 4 14
5/3
注意 : 中间位置的描述
说明 : 4-通路 四种流向 3-位置,弹簧中间位置 气源封闭,气压缸出 入口同时排气 双电磁阀 5 气口 启动,中间位置,启动 如图所示于中间位置
气动原理基础知识
气动几种符号
手动杆 凸轮式滚轮
按钮
电磁
气导
弹簧
踏板/脚踏板
电磁气导
制动,定位
手动
何谓阀?
一机械组件直接使用于控制空气流体 --- 气流 方向控制阀是一种被使用来控制气流方向 的气压组件.
阀由下列因素来决定: • 气流方向 • 气流通或不通的状态 • 气流出入口的数目 • 操作方式 • 位置的数目
双压力
双倍流量, 2/2 常闭
R
R
双倍流量, 3/2 常闭
三位置
3-位置阀 --- 所有出入口关闭
2 12 3 1 5 4 14
5/3
3-位置阀有中间位置的功能 中间置位如图所示
说明:
当无外部信号时,阀心由 弹簧回复至中间位置
4-通路 四种流向 2-位置弹簧中位 启动,中位,启动 中位所有出入口关闭 不作动状态 双电磁头 操作方式 5 气口 1,2,3,4,和 5 注意:中位经常被视为中间位置
相关文档
最新文档