直线的参数方程及其应用(学案)
高二数学教案:直线的参数方程学案-学习文档
高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则 =︱︱ ;3、经过点,倾斜角为的直线的普通方程为。
二、新课导学◆探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。
如图,在直线上任取一点,则 = ,而直线的单位方向向量因为,所以存在实数,使得 = ,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。
(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则 =( )A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。
三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。
2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。
直线的参数方程和应用(学案)
直线的参数方程及应用目标点击:1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义;2.熟悉直线的参数方程与普通方程之间的互化;3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击:1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,x又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y - ∴ 0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t|①当t>0时,点P 在点P 0的上方;②当t =0时,点P 与点P 0重合;③当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线⎧+=0t x x ④当t>0时,点P 在点P 0的右侧; ⑤当t =0时,点P 与点P 0重合;⑥当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义, ∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) ) 基础知识点拨:x x1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α= π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数)t 是直线1l 上定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1)231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t 31(1) 3y t x (1)代入(2)消去参数t ,得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t 313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t 331y t x 是非标准形式,参数t 不具有上述的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y t x 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00 (t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2的点为M 点,且M 点对应的参数为t,则| M 0M |=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点的下方,其坐标为(-2+2,3-2).点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式: ⎩⎨⎧-+=-+=οο110sin )(4110cos )(3t y t t x (-t 为参数) ∴此直线的倾斜角为110°基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程. 2、 直线l 的方程:⎩⎨⎧+=-=οο25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 521511(t 为参数)的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 . 5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣ C2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.二、直线参数方程的应用例6:已知直线l 过点P (2,0),斜率为34和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P (2,0),斜率为3434 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中, 整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM |=221t t + =1615∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M (1641,43) (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷.例7:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t |=| PQ |,∴| PQ |=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点 A, B 所对应的参数值,则|t 1|=| PA |,|t 2|=| PB |,所以| PA |·| PB |=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为(a ,2)方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B (-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2, α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511(t 为参数) ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得: 75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣=222114)(t t t t -+=410 4354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
直线的参数方程及其应用学案
直线的参数方程及其应用学案一、直线的参数方程定义:直线是平面上的一种图形,可以用直线上的一个点和方向来唯一确定。
通过参数方程,可以将直线的方程转化为参数的形式。
x = x0 + aty = y0 + bt其中(x0,y0)为直线上的一个点,a和b为直线的方向向量。
二、直线参数方程的应用:1.直线的点线距离:直线的一般方程为Ax+By+C=0,点(x0,y0)到直线的距离为:d=,Ax0+By0+C,/√(A^2+B^2)利用直线的参数方程,可以将点线距离公式转化为参数的形式:d=,(a,b)×(x0-x,y0-y),/√(a^2+b^2)其中,(a,b)为直线的方向向量,(x,y)为直线上的点坐标。
2.直线的夹角:直线的夹角是指两条直线之间的夹角,可以通过直线的方向向量来求解。
直线的方向向量为(a,b)和(c,d),夹角θ的余弦公式为:cosθ = (a * c + b * d) / (√(a^2 + b^2) * √(c^2 + d^2))3.直线的平行与垂直关系:两条直线平行或垂直的条件为,它们的方向向量成比例或互相垂直。
假设直线的方向向量分别为(a,b)和(c,d),则有以下判断条件:-平行关系:a*d-b*c=0;-垂直关系:a*c+b*d=0。
4.直线的位置关系:两条直线的位置关系可以通过它们的方向向量和一个公共点来判断。
-相交关系:两条直线的方向向量不成比例,且它们通过一个公共点;-重合关系:两条直线的方向向量成比例,且它们通过无穷多个公共点;-平行关系:两条直线的方向向量成比例,且它们不通过任何公共点。
三、直线参数方程的解题步骤:1.根据已知条件确定直线的方向向量(a,b);2.根据直线上的一个点(x0,y0)和方向向量(a,b),写出直线的参数方程;3.根据具体的问题要求,进行参数的取值范围限制;4.根据参数方程求解具体的点坐标,或利用参数方程进行相关计算。
四、直线参数方程的例题分析:例题1:已知直线L1的一个点为A(2,3),方向向量为(1,-2),求直线L1与直线L2:x=3t+1,y=2t-1的夹角。
直线参数方程教案
直线参数方程教案教案标题:直线参数方程教案教学目标:1. 理解直线的参数方程表示方法;2. 掌握求解直线参数方程的方法;3. 能够应用直线参数方程解决实际问题。
教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、直尺、计算器等;2. 学生准备:纸、铅笔、直尺、计算器等。
教学过程:一、导入(5分钟)1. 教师通过引入直线方程的概念,提醒学生之前学习过的直线方程形式;2. 引导学生思考,直线是否可以用参数方程来表示。
二、讲解直线参数方程的概念(10分钟)1. 教师通过示意图,引导学生理解参数方程的概念;2. 解释直线参数方程的定义和意义;3. 提供直线参数方程的一般形式:x = x₁ + at, y = y₁ + bt,并解释各个参数的含义。
三、求解直线参数方程的步骤(15分钟)1. 教师通过示例,详细讲解求解直线参数方程的步骤;2. 强调确定直线上的一点和直线的方向向量的重要性;3. 指导学生如何通过已知条件确定直线上的一点和直线的方向向量。
四、练习与讨论(15分钟)1. 学生个人或小组完成练习题,求解给定直线的参数方程;2. 学生互相讨论解题思路和答案,教师进行指导和纠正。
五、应用实例(10分钟)1. 教师提供一个实际问题,引导学生将其转化为直线参数方程的求解;2. 学生个人或小组完成实际问题的求解,并展示解题过程和答案。
六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调直线参数方程的重要性和应用;2. 引导学生思考,直线参数方程在其他数学领域的应用。
七、作业布置(5分钟)1. 布置相关作业,巩固直线参数方程的求解方法;2. 鼓励学生自主拓展,寻找更多直线参数方程的应用实例。
教学反思:教案中通过导入、讲解、练习、应用等环节,全面引导学生理解和掌握直线参数方程的概念、求解方法和应用实例。
通过练习和应用实例的训练,能够提高学生对直线参数方程的理解和运用能力。
同时,鼓励学生自主拓展,培养学生对数学知识的独立思考和应用能力。
直线的参数方程及应用
直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。
参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。
1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。
假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。
2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。
当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。
3.直线的长度直线的长度可以通过参数方程和积分来求解。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。
将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。
4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。
直线的参数方程 教案
直线的参数方程教案教案标题:直线的参数方程教案目标:1. 理解直线的参数方程的定义和概念;2. 掌握求解直线的参数方程的方法;3. 能够应用直线的参数方程解决实际问题。
教学重点:1. 直线的参数方程的定义和概念;2. 求解直线的参数方程的方法。
教学难点:1. 运用直线的参数方程解决实际问题。
教学准备:1. 教师准备:教学投影仪、白板、黑板、彩色粉笔、教案、课件;2. 学生准备:课本、笔记本。
教学过程:一、导入(5分钟)1. 引入直线的概念,复习直线的一般方程和斜率截距方程。
二、知识讲解(15分钟)1. 介绍直线的参数方程的概念和定义;2. 讲解直线的参数方程的一般形式和求解方法;3. 通过示例演示如何将直线的一般方程或斜率截距方程转化为参数方程。
三、示范演练(15分钟)1. 给出一些直线的一般方程或斜率截距方程,要求学生转化为参数方程;2. 学生跟随教师的指导进行演练。
四、拓展应用(15分钟)1. 提供一些实际问题,要求学生运用直线的参数方程解决;2. 学生独立或小组合作完成拓展应用题。
五、讲评与总结(10分钟)1. 教师对学生的演练和拓展应用进行讲评;2. 总结直线的参数方程的求解方法和应用。
六、作业布置(5分钟)1. 布置课后作业:完成课后习题中与直线的参数方程相关的题目。
教学反思:本节课通过引入直线的概念,再结合直线的一般方程和斜率截距方程,引出了直线的参数方程的概念和定义。
通过示例演示和学生的跟随指导进行演练,加深了学生对直线的参数方程求解方法的理解和掌握。
通过拓展应用,培养了学生运用直线的参数方程解决实际问题的能力。
在讲评与总结环节,对学生的答案进行了讲评,巩固了学生的学习成果。
最后,布置了课后作业,巩固学生的学习效果。
整节课教学内容紧凑,学生参与度高,达到了预期的教学目标。
高中数学直线参数方程教案
高中数学直线参数方程教案
目标:学习如何用参数方程表示直线
一、直线方程的一般形式
在平面直角坐标系中,一条直线可以用一般形式的方程表示为:
Ax + By + C = 0
其中A、B、C为常数,A和B不同时为0。
二、直线的参数方程
一个方程组可以用参数形式表示为:
x = x0 + at
y = y0 + bt
其中x0、y0分别是直线上的一个点的坐标,a、b为实数。
三、如何求直线的参数方程
1.已知直线上的两个点P(x1, y1)和Q(x2, y2),可以先求出直线的斜率:
m = (y2 - y1) / (x2 - x1)
然后,根据直线的斜率和一个已知点的坐标,可以得出直线的参数方程。
2.已知直线的一般形式方程Ax + By + C = 0,可以先求出一个点P(x0, y0):
x0 = -C / A
y0 = 0
然后,根据这个点和直线的斜率,可以得出直线的参数方程。
四、练习题
1.已知直线L过点P(1, 2)和Q(-2, 5),求直线L的参数方程。
2.已知直线L的一般形式方程2x - 3y + 6 = 0,求直线L的参数方程。
五、思考题
1.直线的参数方程和一般形式方程有何区别?
2.如果已知直线的参数方程x = 2t - 1,y = 3t + 4,如何表示这条直线的斜率?
六、作业
1.完成练习题。
2.思考题中的问题,并写下自己的回答。
本节课重点:学习如何用参数方程表示直线,以及如何根据已知条件求出直线的参数方程。
直线的参数方程教案
直线的参数方程教案直线的参数方程教案一、教学目标1. 知识与技能(1)掌握直线的参数方程的概念;(2)掌握直线的一般方程与参数方程的互相转化方法;(3)能够根据直线的参数方程绘制直线的图像。
2. 过程与方法(1)引导学生通过观察、实验等方式发现直线的参数方程的特点;(2)通过讲解和举例引导学生理解直线的参数方程的定义及其性质;(3)通过练习题巩固学生对直线的参数方程的掌握程度;(4)通过绘制直线的图像帮助学生加深对直线的参数方程的理解。
3. 情感、态度和价值观培养学生观察、发现、分析和解决问题的能力,培养学生的数学思维能力和创新能力。
二、教学重点与难点1. 教学重点掌握直线的参数方程的概念和性质,掌握直线的一般方程与参数方程的互相转化方法。
2. 教学难点能够根据直线的参数方程绘制直线的图像。
三、教学过程1. 导入新课通过展示几何平面坐标系上的一条直线图像,引导学生观察,思考直线的方程与参数方程之间的关系,并提问学生:你对直线的参数方程有什么了解?2. 探究活动(1)教师用实物或几何软件展示一条直线和坐标系,并选取直线上两个点A(x1, y1)和B(x2, y2)。
(2)教师引导学生观察并发现直线上每个点都可以由参数t确定,并写出该点的坐标为(x, y),并尝试找出x和y与t之间的关系。
(3)学生根据已知的两个点的坐标、点A和点B的参数t值,写出点A和点B的参数方程。
(4)通过实际计算验证参数方程是否正确。
3. 理论总结通过探究活动,引导学生总结直线的参数方程的定义和性质,并帮助学生理解直线的参数方程与一般方程的转化方法。
4. 拓展(1)教师提问:已知直线的参数方程x = 2 + 3t,y = -1 + t ,如何将其转化为一般方程?(2)学生尝试将参数方程转化为一般方程,并进行实际计算和验证。
5. 练习巩固(1)教师出示几道直线的参数方程的题目,要求学生逐步转化为一般方程,并进行计算验证。
(2)学生独立完成练习题,并核对答案。
直线的参数方程教案(新的)优秀教案
课题:直线的参数方程<第一课时>课型:新授课教学目的要求:1、知识与技能:掌握直线的参数方程,明确参数t的几何意义会灵活应用。
2、过程与方法:通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合等数学思想3、情感态度与价值:通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度教学重点:分析直线的几何条件,选择适当的参数写出直线的参数方程教学难点:从直线的几何条件联系到向量法,并选择“有向线段的数量”为参数。
关键:参数的选择课时进度:第一课时教学方法:先学后教,当堂训练教具:多媒体课件步骤及时间分配内容备注教学构想教学流程阶段教师活动学生活动教学素材达成目标导入出示学习目标提问:我们学过经过定点,倾斜角为的直线的普通方程,那么怎样建立直线的参数方程呢?学习目标1.怎样选择参数t,建立直线的参数方程?2.直线的方向向量与MM有怎样的关系?3.直线的参数方程是什么?4.参数t的几何意义是什么?5.参数t的几何意义的应用.1名学生回答学生明确学习目标阅读教材完成【自学指导1】导学案教材导学案教材导学案通过回忆所学知识,为学生推导直线的参数方程做好准备让学生明确学习任务把新知识化成小问题逐一突破教学流程探究新知当堂训练例题解读1.当点M在直线上运动时,根据直线的几何条件,你认为应当怎样选择参数?2.你能写出直线的参数方程吗?板书1. 直线的参数方程教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数的取值范围是什么?③参数的几何意义是什么?板书2 t 的几何意义当堂训练例题解读(1)已知直线与抛物线交于A,B两点,(1)判断点)2,1(M是否在直线l上,倾斜角为多少?(2)写出直线l的参数方程(3)线段AB的长度(4)点到A,B两点的距离之积通过例题我们得到哪些结论?板书3 t的几何意义的应用思考,讨论,研究2名同学回答针对性训练11名同学回答多名同学回答阅读教材完成【自学指导2】并总结参数的几何意义针对性训练21名同学回答学生练习小组合作相互交流根据学生做题情况可采取兵教兵环节学生通过做题小组合作讨论总结出结论2名同学回答导学案导学案导学案教材导学案综合运用所学知识,获取直线的方向向量,把向量坐标化,得到直线的参数方程,培养学生探索精神,体会数形结合思想.通过对点M的拖拽,体会参数的几何意义通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关问题,培养学生从分析问题和解决问题能力以及动手能力.通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.使学生对本节课所学知识有一个系统全面的认识。
教案直线的参数方程
课题:直线的参数方程(1)教学设计教学目标:(一)知识目标1.了解直线参数方程的建立过程,会与普通方程进行互化;2. 初步掌握运用参数方程解决问题,理解其中参数t 的几何意义. (二)能力目标1.通过思考引入,让学生感受学习直线参数方程的必要性;2.通过学习直线的参数方程探究直线与圆锥曲线的位置关系,培养学生数形结合以及运算求解能力. (三)情感目标1.培养学生的探究,研讨,综合自学应用能力;2.培养学生分析问题,解决问题的能力. 教学重点:1.联系数轴、向量积等知识;2.求出直线的参数方程. 教学难点:通过向量法,建立参数t 与点在直角坐标系中的坐标y x ,之间的联系. 教学过程: 一、学前准备(1)若由a b →→与共线,则存在实数λ,使得 . (2)设e →为a →方向上的 ,则a →=︱a →︱e →.(3)已知=AB y x B y x A 则),,(),,(2211.==y x ),( . (4)经过点00(,)M x y ,倾斜角为()2παα≠的直线的普通方程为 .(5)直线0=++C By Ax 的斜率=k ,倾斜角α与斜率k 的关系为 . 二、新课讲授探究新知(预习教材P35~P36,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”和“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程. 如图,在直线上任取一点(,)M x y ,则0MM = ,而直线l 的单位方向向量e →=( , )因为M 0//e,所以存在实数t R ∈,使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα当堂训练(1)经过点)5,1(0M ,倾斜角为3π的直线l 的参数方程为 . (2)直线)(20cos 20sin 3为参数t s t y t x ⎝⎛=+=︒︒的倾斜角是( )︒20.A ︒70.B ︒110.C ︒160.D2、直线l 的参数方程的几种形式直线的参数方程形式不是唯一的,令ααsin ,cos ==b a ,则直线参数方程的标准形式可以是)1,0,(22200=+≥⎩⎨⎧+=+=b a b t bty y atx x 为参数直线的参数方程的一般式可以写成)(00为参数t dt y y ctx x ⎩⎨⎧+=+=,这里R d c ∈,,其中122=+d c 时,t有明确的几何意义,当122≠+d c 时,t 没有明确的几何意义. 直线的参数方程的一般式化为直线的参数方程的标准式的方法:),,0,,0()()(2222222222222222022220b dc da d c c t t d c db dcd a d c c t t d c d t d c d c d y y t d c d c c x x =+-=+-'=⋅+-≤=+=+'=⋅+≥⎪⎪⎩⎪⎪⎨⎧⋅+++=⋅+++=时,令,时,令其中,3、直线的参数方程中参数的几何意义x参数t 的绝对值表示参数t 所对应的点M 到定点M 0t =.由于α为直线的倾斜角,且),0[πα∈,α是第二象限角,0sin ≥α.所以e的方向总是向上的,当M M 0与e (直线的单位方向向量)同向时,0>t ,当M M 0与e反向时,0<t ,当M 与M 0重合时,0=t .4、用直线l 的参数方程求弦长和弦的中点坐标的方法①已知直线l 过),(00y x M ,倾斜角为α,l 与圆锥曲线相交于B A ,两点,则求弦长AB 的方法如下:将直线l 的参数方程)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα代入圆锥曲线的方程,消去y x ,得到关于t 的一元二次方程,由判别式∆和韦达定理得到21t t +,21t t 的值,代入弦长公式21221214)(t t t t t t AB -+=-=,M 到两交点的距离之积为21t t MB MA =∙. ②弦的中点坐标对应的参数221t t t +=,先计算221tt t +=,再把t 代入直线l 的参数方程,即得到弦中点的坐标.三、知识应用例.已知直线:10l x y +-=与抛物线2y x =交于A 、B 两点,求线段AB 的长和点(1,2)M -到A ,B 两点的距离之积.四、课堂检测直线)(,2333,211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+-=+=和圆1622=+y x 交于B A ,两点,则B A ,的中点坐标为( ))3,3.(-A )3,3.(--B )3,3.(-C )3,3.(-D五 、课堂小结(1)经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(s i n c o s 00为参数t t y y t x x ⎩⎨⎧+=+=αα,其中参数t 具有明确的意义. (2)直线的标准方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离,它可以避免求交点时解方程组的繁琐运算,但是应用直线的参数方程时,应先判别是否是标准形式,再考虑t 的几何意义.(3)弦长公式21221214)(t t t t t t AB -+=-=,定点M 到两交点的距离之积为21t t MB MA =∙.弦的中点坐标对应的参数221t t t +=. 六、高考衔接(2016江苏)在平面直角坐标系xoy 中,已知直线l 的参数方程为)(23211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=,椭圆C 的参数方程为)(sin 2cos 为参数θθθ⎩⎨⎧==y x .设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.七、作业布置课本p39 习题2.3第3题 八、课后反思。
直线的参数方程教学设计[全文5篇]
直线的参数方程教学设计[全文5篇]第一篇:直线的参数方程教学设计《直线的参数方程》教学设计教学目标:1.联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3.通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数(数轴上的点坐标)与点在直角坐标系中的坐标之间的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、回忆旧知,做好铺垫教师提出问题:1.在平面直角坐标系中,确定一条直线的几何条件是什么?2.根据直线的几何条件,你认为应当怎样选择参数,如何建立直线的参数方程?这些问题先由学生思考,回答,教师补充完善。
【设计意图】引导学生从几何条件思考参数的选择,为学生推导直线的参数方程做好准备.二、直线参数方程探究1.问题:数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2.问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.3.问题(1):当点M在直线L上运动时,点M满足怎样的几何条件?【设计意图】明确参数.问题(2):如何确定直线L的单位方向向量?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.4.问题:如何建立直线的参数方程?(得出直线的参数方程)【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.三、例题讲解例1.(题略)先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解。
直线的参数方程教案
直线的参数方程教案一、教学目标1.理解直线的参数方程的概念和基本思想;2.掌握直线的参数方程的求解方法;3.能够应用直线的参数方程解决相关问题。
二、教学内容1.直线的参数方程的定义和思想;2.直线的参数方程的求解方法;3.直线参数方程的应用。
三、教学重难点1.直线参数方程的概念和思想;2.直线参数方程的求解方法。
四、教学过程1. 引入教师可以通过一个生活中的例子引入直线的参数方程,如一辆汽车在直线道路上的行驶。
引导学生思考,如何用一个参数来描述汽车在直线上的位置。
2. 知识讲解2.1 直线的参数方程的定义直线的参数方程是指用参数的形式来表示直线上的点的坐标。
一般形式为:x = x0 + t * ay = y0 + t * b其中,(x0, y0)为直线上的一点,(a, b)为直线的方向向量,t为参数。
2.2 直线参数方程的求解方法求解直线的参数方程,可以根据直线上的已知点和方向向量来确定参数方程的具体形式。
步骤如下:1.确定直线上的一点(x0, y0)和方向向量(a, b);2.应用参数方程的定义,写出直线的参数方程。
3. 实例演练教师可以选择一些具体实例,引导学生运用直线的参数方程解决问题。
例如,求直线L上距离(1, 2)最近的点。
解:已知直线L的参数方程为:x = 3 + ty = -1 + t点(1, 2)到直线L上的任意点(3 + t, -1 + t)的距离可以表示为:d = sqrt((1 - 3 - t)^2 + (2 + 1 - t)^2)为了求d最小,可以对d求导,令导数为零。
通过求导和解方程,可得t = 1。
代入参数方程,得(4, 0)。
故直线L上距离(1, 2)最近的点为(4, 0)。
4. 拓展应用教师可以引导学生思考直线参数方程在其他几何问题中的应用,如求两直线的交点、求直线与平面的交点等。
五、教学本节课我们学习了直线的参数方程的概念、基本思想和求解方法。
通过实例演练,我们掌握了如何应用直线的参数方程解决相关问题。
直线参数方程教案
直线参数方程教案一、教学目标1. 理解直线参数方程的概念及意义。
2. 学会将直线的标准参数方程和一般参数方程进行转换。
3. 能够运用直线参数方程解决实际问题。
二、教学内容1. 直线参数方程的定义及表示方法。
2. 直线参数方程与直角坐标方程的互化。
3. 直线参数方程的应用。
三、教学重点与难点1. 重点:直线参数方程的概念、表示方法及应用。
2. 难点:直线参数方程与直角坐标方程的互化。
四、教学方法1. 采用讲授法,讲解直线参数方程的概念、表示方法及应用。
2. 利用数形结合法,引导学生直观地理解直线参数方程与直角坐标方程的关系。
3. 运用实例分析法,让学生学会运用直线参数方程解决实际问题。
五、教学准备1. 投影仪或黑板。
2. 直线参数方程的相关教案、PPT等教学资源。
3. 练习题及答案。
教案一、导入(5分钟)1. 复习直线的直角坐标方程。
2. 提问:如何用参数表示直线上的一点?二、新课讲解(20分钟)1. 讲解直线参数方程的概念。
参数方程:对于一条直线,设其上任意一点P的坐标为(x, y),参数为t,则直线上的点P可以表示为(x=x0+at, y=y0+bt),其中a、b、t为常数。
2. 讲解直线参数方程的表示方法。
标准参数方程:对于直线y=kx+b,其标准参数方程为x=x0+at,y=y0+bt,其中a=1/k,b=y0-bx0。
一般参数方程:对于直线ax++c=0,其一般参数方程为x=x0+at,y=y0+bt,其中a、b、t为常数,且满足at+by0+c=0。
3. 讲解直线参数方程与直角坐标方程的互化。
将直线参数方程中的t表示为x或y的函数,代入直角坐标方程中,即可得到直线参数方程与直角坐标方程的互化关系。
三、实例分析(10分钟)1. 分析直线参数方程在实际问题中的应用。
举例:一辆火车以每小时60公里的速度沿着直线轨道行驶,从原点出发,经过3小时后,离原点的距离为180公里,求火车的行驶路线方程。
4.4.12直线参数方程(1) 学案
问题1已知一条直线过点 ,倾斜角 ,求这条直线方程。
问题2在直线 上,任取一个点 ,求 坐标。
问题3试用直线 的倾斜角 表示直线 的方向单位向量 。
问题4设 ,则 与 具有什么位置关系?用 能否表示出这种关系。
问题5通过坐标运算,用 , , 把在直线 上,任取一点 的坐标表示出来,即过定点 倾斜角为 的直线的参数方程:
问题6在直线 的参数方程中,哪些是变量,哪些是常量?
问题7
问题8参数 的取值范围是什么?分别代表什么含义?
练习:A1、直线 ( 为参数)的倾斜角是( )
A, B, C, D,
A2、求直线 的一个参数方程。
A3、若点 是极坐标方程为 的直线与参数方程为 ( 为参数)的曲线的交点,则 点的坐标为.
B例1:已知直线 与抛物线 交与 两点,求线段 的长度和点 到 的距离之积.
高二数学学案
时间
第周第学案年月日
课题
学案12直线参数方程(1)
学习目标
1.了解直线参数方程的条件及参数的意义
2.能根据直线的几何条件,写出直线的参数方程及参数的意义
学习重点
参数 的含义,直线单位方向向量 的含义。
学习难点
如何引入参数 ,理解和写直线单位方向向量
学习过程
学前准备
我们学过的直线的普通方程都有哪些?
问题9直线与曲线 交于 两点,对应的参数分别为 ,
(1)曲线的弦 的长是多少?
(2)线பைடு நூலகம் 的中点 对应的参数 的值是多少?
高中数学第17课直线的参数方程3学案新人教A版选修4_42
第17课直线的参数方程(3)
一、学习要求
1.掌握直线的参数方程;了解直线的参数方程中的参数的意义;
2.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究
■合作探究
例1.经过点作直线,交椭圆于,两点,如果点恰好为,中点,求直线的方程。
解:设直线的参数方程为(为参数),
把直线的参数方程中的,代入椭圆方程,整理得
,
设,两点对应的参数分别为,,则
,
∵为线段的中点,∴,即,
∴直线的斜率,
∴直线的方程是:,即。
三、问题过关
1.经过点作直线交双曲线于,两点,如果点为线段的中点,求直线的方程。
解:设直线的参数方程为(为参数),
把直线的参数方程中的,代入双曲线方程,整理得
,
设,两点对应的参数分别为,,则
,
∵为线段的中点,∴,即,
∴直线的斜率,
∴直线的方程是:,即。
2.求以椭圆内一点为中点的弦所在直线的方程。
解:设以点为中点的弦所在直线的参数方程为:
(为参数),
把直线参数方程中的,代入椭圆方程,整理得
,设直线与椭圆的交点对应的参数分别为,,则
,
∵为弦的中点,∴,即,
∴直线的斜率,
∴所求直线的方程是:,即。
直线的参数方程的应用学案
直线的参数方程及应用(第1课时)【学习目标】1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化.【学习重点】1. 直线参数方程的标准形式和一般形式,理解参数的几何意义;2. 直线参数方程的一般形式转化为标准形式. 【学习难点】1. 直线参数方程的标准形式和一般形式,理解参数的几何意义;2. 利用直线的参数解决相关的数学问题. 【学习过程】一.基础知识1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是t 的几何意义:2.直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)二. 直线参数方程的应用 1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.【变式】化直线2l 的参数方程⎩⎨⎧+=+-= t313y tx (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.2.直线参数方程的标准形式例2:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.【变式1】直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t的代换.(构造勾股数,实现标准化)【变式2】直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .【知识归纳】一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y atx x 00 (t 为参数), 斜率为a b tg k ==α(1) 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量. (2) 当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.【基础知识测试】1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115° 3、直线l 的方程: ⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣4. 直线l 过点M 0(1,5),倾斜角为3π,M 在直线l 上,则M 的坐标(x,y )应满足( ) ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=-=⎪⎪⎩⎪⎪⎨⎧-=+=t y t x t y t x t y t x t y t x 235211D. 23521C. 235211B. 23521.A 5.设直线方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 2332212 (t 为参数),求它的斜截式方程.直线的参数方程及应用(第2课时)【学习目标】1. 掌握直线参数方程的标准形式和一般形式,理解参数的几何意义;2. 利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题;【学习重点】1. 直线参数方程的标准形式和一般形式,理解参数的几何意义;2. 利用直线的参数方程解决有关数学问题; 【学习难点】1. 直线参数方程的标准形式和一般形式,理解参数的几何意义;2. 利用直线的参数方程解决有关数学问题; 【学习过程】一.基础知识2、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是t 的几何意义:2.直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)二、直线参数方程的应用 1.求直线上的点的坐标例1.求点A (−1,−2)关于直线l :2x −3y +1 =0的对称点A ' 的坐标。
高中数学 第二讲 参数方程 三 直线的参数方程学案(含解析)4-4
三直线的参数方程1.直线的参数方程(1)过点M0(x0,y0),倾斜角为α的直线l的参数为错误!(t为参数).(2)由α为直线的倾斜角知,α∈已知直线l的方程为3x-4y+1=0,点P(1,1)在直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距离.由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正弦值、余弦值,从而得到直线参数方程.由直线方程3x-4y+1=0可知,直线的斜率为错误!,设直线的倾斜角为α,则tan α=错误!,sin α=错误!,cos α=错误!.又点P(1,1)在直线l上,所以直线l的参数方程为错误!(t为参数).因为3×5-4×4+1=0,所以点M在直线l上.由1+错误!t=5,得t=5,即点P到点M的距离为5.理解并掌握直线参数方程的转化,弄清参数t的几何意义,即直线上动点M到定点M0的距离等于参数t的绝对值,是解决此类问题的关键.1.一直线过P0(3,4),倾斜角α=错误!,求此直线与直线3x+2y=6的交点M与P0之间的距离.解:由题意设直线的参数方程为错误!(t为参数),将它代入已知直线3x+2y-6=0,得3错误!+2错误!=6。
解得t=-错误!,∴|MP0|=|t|=错误!。
2.已知直线l的参数方程为错误!求直线l的倾斜角.解:将参数方程化成另一种形式错误!若2t为一个参数,则错误!在α∈已知直线l经过点P(1,1),倾斜角α=错误!,(1)写出直线l的参数方程;(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.(1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.(1)∵直线l过点P(1,1),倾斜角为错误!,∴直线的参数方程为错误!即错误!(t为参数)为所求.(2)∵点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为A错误!,B错误!,将直线l的参数方程代入圆的方程x2+y2=4整理得到t2+(错误!+1)t-2=0,①又∵t1和t2是方程①的解,从而t1t2=-2。
高中数学4.4.3第1课时直线的参数方程的应用学案苏教版选修44
第1课时 直线的参数方程的应用1.写出直线的参数方程.2.通过直线的参数方程的应用,感受参数的意义及其作用.[基础·初探]直线的参数方程直线参数方程的常见形式:过定点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α(l 为参数).其中参数l 的几何意义是有向线段P 0P 的数量,|l |表示P 0P 的长度.[思考·探究]1.怎样理解参数l 的几何意义?【提示】 参数l 的几何意义是P 0到直线上任意一点P (x ,y )的有向线段P 0P 的数量.当点P 在点P 0的上方或右方时,l 取正值,反之,l 取负值;当点P 与P 0重合时,l =0.2.如何由直线的参数方程求直线的倾斜角? 【提示】 如果直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos θ,y =y 0+t sin θ(t 为参数)的形式,由方程直接可得出倾斜角,即方程中的角θ,例如,直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos 15°,y =1+t sin 15°,则直线的倾斜角为15°.如果不是上述形式,例如直线⎩⎪⎨⎪⎧x =1+t sin 15°,y =1+t cos 15°(t 为参数)的倾斜角就不能直接判断了.第一种方法:把参数方程改写为⎩⎪⎨⎪⎧x -1=t sin 15°,y -1=t cos 15°,消去t ,有y -1=1tan 15°(x -1),即y -1=tan 75°(x -1),故倾斜角为75°.第二种方法:把原方程化为参数方程和标准形式,即⎩⎪⎨⎪⎧x =1+t cos 75°,y =1+t sin 75°,可以看出直线的倾斜角为75°.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________(1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点. 【自主解答】 (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 得两直线的交点为(3,4).[再练一题]1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A 、B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.【导学号:98990032】【解】 设直线AB 上动点P (x ,y ),选取参数λ=APPB, 则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数,λ≠-1).①把①代入y =x ,得1+3λ1+λ=3+λ1+λ,得λ=1,所以M 分AB 的比:AMMB=1.求直线⎩⎨⎧x =2+t ,y =3t(t 为参数)被双曲线x 2-y 2=1截得的弦长.【思路探究】 先求出直线和双曲线的交点坐标,再用两点间的距离公式,或者用直线参数方程中参数的几何意义求弦长.【自主解答】 令t =112+32t ′,即t ′=2t ,则直线的参数方程为⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ(其中sin θ=32,cos θ=12), 将⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ代入双曲线方程,得t ′2-4t ′-6=0,所以弦长=|t 1′-t 2′|=t 1′+t22-4t 1′t 2′=42+4×6=210.方程⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt中t 的几何意义为定点P 0(x 0,y 0)到动点P (x ,y )的有向线段的数量,有两个原则:其一为a 2+b 2=1,其二为b ≥0.这是因为α为直线的倾斜角时,必有sin 2α+cos 2α=1及sin α≥0.不满足上述原则时,则必须通过换元的方法进行转化后,才能利用直线参数方程的几何意义解决问题.[再练一题]2.(湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s(s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.【解析】 由⎩⎪⎨⎪⎧x =2s +1,y =s 消去参数s ,得x =2y +1.由⎩⎪⎨⎪⎧x =at ,y =2t -1消去参数t ,得2x =ay +a .∵l 1∥l 2,∴2a =12,∴a =4.【答案】 4[真题链接赏析](教材第57页习题4.4第6题)运用4.4.2小节中例3的结论:(1)求经过点P (1,-5),倾斜角是π3的直线的参数方程;(2)求(1)中的直线与直线x -y -23=0的交点到点P 的距离.(江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t为参数),曲线C的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.【命题意图】 本题考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化、分析问题的能力和运算能力.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =x -,y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.1.直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α=________.【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.【答案】 135° 2.曲线⎩⎪⎨⎪⎧x =-2+5t ,y =1-2t(t 为参数)与坐标轴的交点是________.【导学号:98990033】【解析】 当x =-2+5t =0时,解得t =25,可得y =1-2t =15,当y =1-2t =0时, 解得t =12,可得x =-2+5t =12,∴曲线与坐标轴的交点坐标为(0,15),(12,0).【答案】 (0,15),(12,0)3.点(-3,0)到直线⎩⎪⎨⎪⎧ x =2t ,y =22t (t 为参数)的距离为________.【解析】 直线⎩⎪⎨⎪⎧x =2t ,y =22t 化为普通方程为x -22y =0.∴点(-3,0)到直线的距离为|-3-0|1+-222=1.【答案】 1 4.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)被圆x 2+y 2=4截得的弦长为________.【答案】14我还有这些不足:(1)_____________________________________________________ (2)_____________________________________________________ 我的课下提升方案:(1)_____________________________________________________(2)_____________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的参数方程及应用目标点击:1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义;2.熟悉直线的参数方程与普通方程之间的互化;3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击:1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y - ∴ 0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t|①当t>0时,点P 在点P 0的上方;②当t =0时,点P 与点P 0重合;③当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线⎧+=0t x x ④当t>0时,点P 在点P 0的右侧; ⑤当t =0时,点P 与点P 0重合;⑥当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义, ∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) ) 基础知识点拨:x x1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α= π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数)t 是直线1l 上定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t 31(1) 3y t x (1)代入(2)消去参数t ,得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y t x 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bt y y at x x 00 (t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2的点为M 点,且M 点对应的参数为t,则| M 0M |=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点的下方,其坐标为(-2+2,3-2).点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式: ⎩⎨⎧-+=-+=110sin )(4110cos )(3t y t t x (-t 为参数) ∴此直线的倾斜角为110°基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程. 2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 521511(t 为参数)的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 . 5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣ C2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.二、直线参数方程的应用例6:已知直线l 过点P (2,0),斜率为34和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P (2,0),斜率为3434 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中, 整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM |=221t t + =1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M (1641,43) (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷.例7:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t |=| PQ |,∴| PQ |=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点 A, B 所对应的参数值,则|t 1|=| PA |,|t 2|=| PB |,所以| PA |·| PB |=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为(a ,2) 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B (-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2, α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511(t 为参数) ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得: 75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣=222114)(t t t t -+=410 4354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。