车身三维测量的原理

合集下载

三坐标测量机在汽车整车检测中的应用

三坐标测量机在汽车整车检测中的应用

三坐标测量机在汽车整车检测中的应用摘要:目前我国的汽车制造业水平不断提升,汽车的质量好坏在进行出厂之前都需要通过检测合格后才能出厂,车身的检测是汽车零部件的重要部分,三坐标测量机主要是针对汽车整车进行检测,该检测机器具有高精度,高速度的特点,并且对于测量的数据也能很快的进行处理,能够满足大量的汽车整车检测任务的需求,因此越来越多的汽车整车检测中应用三坐标测量机进行检测。

关键词:三坐标;汽车;检测引言汽车整个生产过程中会有主观和客观上的误差出现,这些误差的出现会对于汽车未来的使用会有着一定的影响,因此在汽车整车检测中需要采用更加精端的设备进行检测,传统的测量方式和夹具检测无法检测到材料自然变形,同时这样的检测会有着较高的客观因素存在影响,检测效率低下,在长期的发展中逐渐的被淘汰,取而代之的高效率,高精度的三坐标测量机。

一,三维坐标测量原理随着我国的汽车生产水平逐渐提高,汽车生产线上更多的是使用智能化的生产设备,汽车车身的每一个零件在组装的过程中都有自身的坐标,我们统称为工件坐标系,对于工件的测量都是在工件的坐标系中进行测量的,但是车身整体测量由于体积较大,并且车身存在不规则的形状,很难应用简单的测量手段进行数据测量,而三坐标测量机能够有效的解决这个问题,由于三坐标测量机具有较高的灵活性,在汽车车身检测过程中起到了很大的作用,检测过程中通过对于各个零件的坐标进行定位,从而确定是否完全符合预计效果。

三坐标测量机普遍具有高精度、高速度、很好的柔性、很强的数据处理和适应现场环境的能力,尤其是丰富的、不断扩展的软件功能,目前愈来愈多的应用于汽车车身检测中。

车身检测的特点汽车车身测量是保证汽车质量的重要检测手段,由于汽车车身在加工和工艺装配的过程中可能会出现车身发生改变,导致汽车规格尺寸不达标,当然除了这些主观因素的影响,同时也有测量仪器产生的误差,导致车身数据测量不准确,长期以来在工作中发现普遍存在的两种误差产生原因,首先是传统测量技术存在缺陷,由于汽车车身多数是由各种类型的钣金焊接而成,在自然环境下使用传统的测量技术所得到的数据有着较高的误差,进而影响到整个测量。

课件-4-1学习车身数据图的识读

课件-4-1学习车身数据图的识读

图4-1-8 三维测量的宽度基准面
使用通用测量系统让找中心面时,要在车身中部 没有变形的部位找到两个测量孔,将底部测量头对准 要测量的孔,通过尺上的宽度读数可以知道两个孔到 中心线的宽度,调整米桥尺(有时可能需要调整车辆 的中心面与测量系统中心面对齐),。直到两个宽度 读数相同并与标准数值一致。再找另外两个测量孔, 重复以上操作,通过两队左右对称的测量孔就能把车 辆的中心面找到。
车身数据图的识读
授课教师--徐 诞
知识目标:
1、熟悉汽车车身的各项基本尺寸; 2、掌握车身尺寸三维测量的基本原理; 3、掌握车身测量的方法。
能力目标:
结合所学内容,能够正确地进行车身数据图的识读。
建议学时:
4学时
车身的测量工作是车身修复程序中必须进行的操作, 事故车的损伤评估、校正、板件更换及安装调整等工序都 要用到测量工作。为保证汽车使用性能良好,总成的安装 位置必须正确,因此在修复后要求车身尺寸配合公差不能 超过3mm。
图4-1-5 车身控制点的基本位置
图4-1-6 车身按控制点分布
由于车身设计和制造是以这些控制点左位组焊和 加工的定位基准。这些控制点实在生产工艺上留下来的 基准孔,同样可以作为车身测量时的定位基准。此外, 汽车各主要总成在车身上的装配连接部位,也必须作为 控制点来对待。因为,这些装配连接部位的位置都有严 格的尺寸要求,这对汽车各项技术性能的发挥有着十分 重要的影响。例如:汽车前悬架支承点的位置正确与否, 会直接影响前轮定位角和汽车的轴距尺寸,发动机支承 点与车身控制点的相对位置,则会影响到发动机和传动 系统的正确装配,如有偏差,会造成异响甚至零件损坏。
要将车身的尺寸恢复到标准值,对原车的尺寸掌握 是最基本的。如果没有原车车身的尺寸数据,对测量来说 会有很大的难度,后续的车身修复也是不准确的。这样对 修复后汽车的各项性能产生一定的影响。所以在进行车身 测量和调整之前,掌握车身数据知识是十分必要的。

车身三维测量的原理

车身三维测量的原理
车身三维测量的原理
• 1.车身测量的意义 • 2.车身测量基准的选择 • (1)控制点的选择 • (2)基准面 • (3)中心面 • (4)零平面 • (5)车身测量基准的选择 •
三、任务实施
• 1.车身底部数据图 • (1)数据图的识读
• 利用俯视图和侧视图来表达的车身底部数据图
• ① 宽度数据 • ② 高度数据 • ③ 长度数据
• (2)对比测量法 • ① 数据的选取 • ② 误差的控制 • ③ 在进行对比法测量时,经常要利用车身的左
右对称性
• 对角线测量
2.用三维坐标法测量车身尺寸

• 桥式三维坐标测量架
• 红外线测量台

• 坐标法测量原理 • α—平行于XOZ平面 β1、β2—平行
于YOZ平面 1—α截面交线 2—β截 面交线 •
(二)点对点的机械式车身测量
• 1.钢直尺和卷尺
• • 用钢卷尺测距
• A = B + (R−r)或A = C −(R−r)
(2)车身数据图的识读

• 车身底部数据图
• ① 宽度数据 • ② 高度数据 • ③ 长度数据。
2.车身上部数据图
(2)车身上部的三维数据

任务二 车身尺寸的机械测量法
• 【学习目标】 • 1.熟悉车身机械法测量的种类和方法 • 2.明白机械测量法的优缺点 • 3.能够正确的用机械法进行车身测量
一、任务分析

机械法测量车身尺寸主要是手工利用
机械工具对车身尺寸进行测量,使用的手
工工具有钢板尺、卷尺和车身测量规等。
机械法测量车身尺寸简单、快捷,测量精
பைடு நூலகம்
度不如电子测量方法高。

车身三坐标测量及制图技术详解

车身三坐标测量及制图技术详解
当确认欲打印的报告后,最好进行打印 预览。若需打印则只在工具栏上选择“打印 ”按钮。
第4章 车身三坐标测量 主要讲授内容
反求工程; 测量机分类; 几何元素拟合; 作用和类型;
28
CMM软件—常用几何元素 拟合与测量
最小二乘法; 平面内直线的拟合; 空间直线的拟合; 平面的拟合;
圆的拟合; 球的拟合; 椭圆的拟合; 圆柱的拟合;
在加亮当前的“测 头文件”方框中, 键入新的文件名。
定义测头角度
A角(绕X轴转动的角度,顺时针为负, 逆时针为正。)
B角(绕Z转动的角度)
2
B 1 A (a)
2 1 (b)
添加测头角度
点击上图中的“添加角度”,在相应栏框 内输入所需测头角度或在图表中选择所需 测头角度,然后点击确定。
4、建立坐标系
6、进行公差比对
形位公差包括形状公差和位置公差 。形状公差指的是单一实际要素形状所 允许的变动量;位置公差是指关联实际 要素的方向或位置对基准所允许的变动 量。 路径:插入—尺寸—选择你所要得到的 形位公差。
7、打印输出报告
PC-DMIS既可以在编辑窗口也可以在检 测报告中显示检测程序。检测报告包含所有 检测运行的尺寸结果(包括名义尺寸及公差 信息),还包括测头信息及给报告加的注释 。
在精确的测量工作 中,正确地建立坐标 系与具有精确的测量 机、校验好的测头一 样重要。
建坐标系三步曲: 建坐标系有三步
,而且很重要的是不 要搞乱它的顺序。
(1)零件的找正
所有建立坐标系的第一步是在零件上 测量一个平面来把零件找正。其目的是保 证测量时总是垂直零件表面而不是垂直于 机器坐标轴。
蓝图告诉你哪一个是基准平面,不然 可以选一个精加工的表面,而且把测量点 尽量分开。

浅析三坐标测量机在白车身测量方式中的应用

浅析三坐标测量机在白车身测量方式中的应用

浅析三坐标测量机在白车身测量方式中的应用摘要:车辆设计时应该重视产品质量,特别是白车身的拼焊精度,缺少的便是对汽车白车身的质量检测。

本篇文章重点利用对三坐标测量机的工作原理和汽车白车身测量的定义的简单阐述,来讲解了在汽车白车身测量中广泛的使用三坐标测量机的基本原理和含义。

并详细分析了三坐标机在检测汽车白车身质量中的各个环节,把最先进的三维坐标检测技术运用于汽车白车身品质测试,可以提高白车身的制造精度,从而提升整车的装配精度。

关键词:三坐标测量机;白车身测量;制造精度;装配精度中图分类号: U461.22;T-651.1Analysis on the application of CMM in BIW measurementAuthor Name :Chen Yin Xiang、Xiao Yao、Zheng Zhi Hong、Liu Miao Miao、Mao Gan Ping、Jiang Chun Hua(GAC Passenger Car Co., Ltd., Guangzhou, Guangdong 511434)Abstract:The vehicle design should pay attention to the product quality, especially the welding precision of the body in white. Whatis missing is the quality inspection of the body in white. Thisarticle focuses on the working principle of CMM and the definition of auto body in white measurement, to explain the basic principle and meaning of the widespread use of CMM in auto body in white measurement. It also analyzes each link of the three coordinate machine in testing the quality of automobile body in white in detail. Applying the most advanced three-dimensional coordinate testing technology to thequality testing of automobile body in white can improve the manufacturing accuracy of the body in white and the assembly accuracy of the whole vehicle.Keywords: Coordinate measuring machine; BIW measurement; Manufacturing accuracy; Assembly accuracy0引言白车体是现代车辆制造与生产中的关键部分,白车体制造过程中包含了由多少个冲压单件连接成分的总成,再将各个部分总成连接成白车体的骨架系统总成,至白车体。

车身三坐标测量技术

车身三坐标测量技术

总结:车身三坐标测量技术的重要性和应用前景
车身三坐标测量技术的重要性 * 提高车身制造精度和产品质 量 * 降低生产成本和减少废品率 * 提升企业竞争力
* 提高车身制造业竞争力
车身三坐标测量技术的应用前景 * 未来将广泛应用于汽车制造领域 * 促进汽车行业的技术创新和发展 * 提高汽车产品的安全性和舒适性
三坐标测量系统组成:包括测量机、 测头、控制系统、测量软件等
三坐标测量原理
三坐标测量特点:高精度、高效率、 高可靠性
添加标题
添加标题
添加标题
添加标题
三坐标测量原理:通过测头接触被 测工件表面,获取三维坐标信息, 进而进行数据处理和分析
三坐标测量应用:汽车制造、航空 航天、模具制造等领域
测量误差来源及控制方法
,a click to unlimited possibilities
汇报人:
目录
定义与作用
定义:车身三坐标测量技术是一种通过测量车身各点在三维空间中的坐标位置,从而对车身进行精确测量和评价的技术。
作用:车身三坐标测量技术是汽车制造过程中不可或缺的环节,它能够提高车身制造的精度和质量,保证车身的几何尺寸和形状符合设计要求, 同时也有助于发现和解决车身制造过程中出现的问题。
数据分析与结果:对测量数据进行详细的分析,包括数据的准确性、可靠性等,并给出最终 的测量结果
结论与展望:总结该案例的测量结果,并探讨未来可能的应用和改进方向
案例二:某车型装配精度检测案例
案例背景:某车型在装配过程中出 现精度问题,需要进行三坐标测量 技术检测。
数据分析:对测量数据进行处理和 分析,找出装配精度问题所在,为 后续改进提供依据。
可重复性好:三坐标测量技术可以重复进行测量,保证测量结果的稳定性和可靠性。

车身修复项目十一车身测量

车身修复项目十一车身测量

项目十车身测量项目导入车辆碰撞后,需要对受损部位进行测量。

在路上发生交通事故,由于车速较快加上车辆本身的惯性力作用,造成车身前部变形严重,经汽车制造商指定的销售与维修企业检查发现,您的车需要测量检测,根据测量的测量的结果再进行修复作业。

请根据要求进行测量操作。

学习目标技能目标…1能通过咨询获取车辆信息2能根据故障特征制定维修计划。

3能组织实施维修作业。

4能正确选择测量工具。

5能掌握分析、判断受损区域的技巧。

6能分析各种修复结果并对修复结果进行检查且能对本次项目实践活动给于合理评价。

7根据环保要求,正确处理对环境和人体有害的废料和损坏的零部件。

知识目标1了解测量工作的重要性。

2掌握车身数据图的识读。

3了解车身测量系统有哪些4会用超声波测量系统测量底盘。

知识准备1汽车测量的实际意义车身的测量工作是车身修复程序中必须进行的操作,在事故车的损伤评估、校正、板件更换及安装调整等工序时都要用到测量工作。

2车身测量的重要性。

对整体式车身来说,测量工作对于损伤修复更为重要,因为转向系和悬架大都装在车身上,而有的悬架则是依据装配要求设计的。

齿轮齿条式转向器通常装配在车身梁上,形成与转向臂固定的联系,而发动机、变速器及差速器等装置,也直接装配在车身构件或车身构件支撑的支架(钢板或整体钢梁)上。

车身上这些构件一旦变形都会使转向器或悬架工作性能失常。

为保证汽车使用性能良好,总成的安装位置必须正确,因此在修理后要求车身尺寸的配合公差不能超过±3㎜.测量点和测量公差要通过对损坏区域的检查来确定。

在碰撞发生严重的位置,必须进行大量的测量以保证适当的修理调整顺序。

不论车架式车身还是整体式车身,在修理过程中。

测量工作都是非常重要的。

必须对受伤部位上的所有主要加工控制点对照车身的标准尺寸进行检查。

3常用机械式测量系统的分类。

量规测量系统、专用测量系统和通用测量系统。

随着现代电子技术的发展,各类传感器和计算机的广泛应用,在各种机械测量系统的基础上,发展出多种电子测量系统,使得车身测量工作变得更准确、更高效。

三坐标测量报告

三坐标测量报告

三坐标测量报告引言三坐标测量是一种先进的精密测量技术,广泛应用于工业制造中。

它通过测量物体的三维坐标数据,可以精确地描述物体的形状、尺寸及其与设计要求之间的差异。

本报告将介绍三坐标测量的基本原理、应用范围以及样例分析。

一、三坐标测量原理三坐标测量系统由测量机、测头及软件组成。

测量机通过精密的导轨系统实现运动,测头则通过接触或非接触方式获取物体的坐标数据。

软件则通过数据处理和分析,提供测量结果。

三坐标测量的原理基于数学几何学和激光测距等技术,能够实现高精度的测量。

二、三坐标测量的应用1. 制造业三坐标测量在制造业中具有重要的应用价值。

它可以用于检测零部件的尺寸是否符合设计要求,以及表面质量是否达到标准。

通过三坐标测量,制造商可以及时发现产品的问题,保证产品质量,提高生产效率。

2. 航空航天在航空航天工业中,三坐标测量可用于检测飞机零部件的尺寸和形状。

通过与CAD模型的比对,可以及时发现制造过程中的误差,确保零部件的精确度。

三坐标测量还可用于测量飞机表面的曲率,以评估飞机的空气动力学性能。

3. 汽车工业在汽车制造过程中,三坐标测量可以帮助检测车身零部件的质量。

通过精确测量车身结构的尺寸,制造商可以确保车身的合理结构,提高车辆的安全性和乘坐舒适度。

同时,三坐标测量还可用于汽车外观件的检测,确保外观质量符合设计要求。

三、三坐标测量报告示例分析以某汽车零部件的三坐标测量为例,以下是报告中的关键内容:1. 尺寸测量报告详细记录了零部件的各个尺寸参数,如长度、宽度、高度等。

将测量结果与设计要求进行对比,评估尺寸差异,以判断零部件的质量是否符合标准。

2. 形状测量通过各个点的坐标数据,报告描述了零部件的形状特征,如曲率、曲面度,以及边缘的平直度等。

这些数据可以帮助制造商判断零部件的加工精度和几何形状,及时发现问题并进行调整。

3. 表面质量测量报告还包括了零部件表面质量的评估。

通过测量点的位置和表面均方差等数据,可以判断零部件的光洁度、表面平整度等质量指标,以确保零部件表面符合设计要求。

三维坐标测量技术在汽车车身检测中的应用

三维坐标测量技术在汽车车身检测中的应用

2
主动测量系统分析
图 2 所示为某直升机螺旋桨桨叶表面贴附碳纤 维的自动拉制设备, 技术要求为碳纤维的每毫米质 量差不超过 0.01g, 直径变化量不超过 0.005mm, 任 意截面圆度误差不超过 0.002mm。
图1
主动测量系统作为整个加工设备的基础单元, 初始测量单元对被加工工件进行动态测量, 收集工 件任一时刻的状态参数 (尺寸、 转速、 温度、 应力等) , 测量子单元分别依据各自既定的数学模型对各传感 器采集数据进行采样、 过滤、 分频、 放大、 编码, 最后 传输到中央控制计算机。根据测得数据与预设数据 的比较, 计算机自动调整加工设备的相应参数, 将调 整后的参数传输到其他测量子单元, 对工件进行后 续的跟踪测量, 在采集设备里调整参数后, 将加工中 的数据与原数据和预设参数进行对照, 比较机床调 整的效果, 使加工—测量—分析—调整—加工, 实现
Zheng Jun Zhu Jigui Ye Shenghua
Abstract:The 3D coordinate measuring principle and application of 3D coordinate, vision examining system and measuring robot are discussed by taking three examine means of automobile online measuring technology as examples. Keywords: 3D coordinate measuring, vision examining, robot, bodywork
参考文献 1 2 3 熊有伦等 . 机器人学 . 机械工业出版社 王植槐等 . 汽车制造检测技术 . 北京理工大学出版社 熊春宝 . 经纬仪工业测量系统的模型研究 . 武汉测绘科技 大学学报, (9) 1998

什么是三坐标测量技术

什么是三坐标测量技术

什么是三坐标测量技术1. 引言三坐标测量技术是一种基于三维坐标体系的测量方法,用于测量并描述物体的几何形状、位置和尺寸。

它是制造业中常用的精密测量技术之一,广泛应用于航空航天、汽车工业、机械制造等领域。

本文将介绍三坐标测量技术的原理、应用以及优点。

2. 原理三坐标测量技术基于三维直角坐标体系,通过测量物体在空间中的三个坐标值来描述其几何形状和位置。

通常使用三坐标测量机进行测量,三坐标测量机由工作台、测头和坐标轴组成。

在测量过程中,工作台固定待测物体,测头可沿三个坐标轴上下左右移动,并能够在三个坐标方向上测量物体的位置。

测头可以是机械触探式的或光学非触探式的,具体选择根据实际需求而定。

测量时,测头将接触或照射待测物体的表面,通过测量探头的运动,得到物体在三个坐标方向上的坐标值。

由于测头的精度和稳定性,三坐标测量技术能够提供高精度的测量结果。

3. 应用三坐标测量技术广泛应用于制造业中的质量控制和产品检验。

以下是一些常见的应用领域:3.1 航空航天在航空航天领域,对航空发动机、飞机结构件等关键零部件的尺寸和位置要求非常严格。

三坐标测量技术可以快速、准确地测量这些零部件的尺寸和位置,确保其符合设计要求。

3.2 汽车工业在汽车制造过程中,需要对发动机、车身结构等各个部件进行测量和检验。

三坐标测量技术可以帮助工程师了解零部件的几何形状和位置,及时发现和解决制造偏差和问题。

3.3 机械制造在机械制造领域,对零件的尺寸和位置要求也非常严格。

三坐标测量技术可以帮助制造商检查零件的制造精度,并进行必要的调整和改进。

4. 优点三坐标测量技术具有以下几个优点:•高精度:三坐标测量技术可以实现亚微米级别的测量精度,适用于高精度测量需求。

•高效率:三坐标测量技术可以在短时间内完成对物体各个尺寸和位置的测量,提高了工作效率。

•全面性:三坐标测量技术可以对物体的各个尺寸和位置进行全面测量,提供详细准确的数据。

•可追溯性:三坐标测量技术的测量结果可追溯到国际标准,保证了测量的准确性和可靠性。

汽车车身整体变形的测量与矫正

汽车车身整体变形的测量与矫正

汽车车身整体变形的测量与矫正
1.1 汽车车身整体变形的测量
车身的基准面、中心线、中心面、零平面
汽车车身整体变形的测量与矫正
1.1 汽车车身整体变形的测量
3)中心线和中心面
利用一个假想的具有空间概念的直线和平 面,能够将车身沿宽度方向截为对称的两半, 则这一直线和平面即为基准中心线和中心面。
车身上各点通常是沿中心面对称分布的, 因此所有宽度方向上的尺寸参数及测量,都是 以该中心线或中心面为基准的。
1.2 汽车测量方法及应用
(2)链式中心量规 链式中心量规一般悬挂在车身壳体的基准
孔上,通过检查中心销、垂链及平行尺是否平 行,以及中心销是否对中,就可以十分容易地 判断出车身壳体是否有变形
汽车车身整体变形的测量与矫正
1.2 汽车测量方法及应用
链式中心量规的结构
链式中心量规检查车身壳体
汽车车身整体变形的测量与矫正
汽车车身整体变形的测量与矫正
1.2 汽车测量方法及应用
1) 三维坐标测 量系统
(1)米桥式测量系统 (2)电子式测量系统 (3)激光测量系统 (4)超声波测量系统
汽系统
汽车车身整体变形的测量与矫正
1.2 汽车测量方法及应用
电子式测量系统
1.2 汽车测量方法及应用
基准孔的变形情况
基准孔不称时量规的悬挂
汽车车身整体变形的测量与矫正
1.2 汽车测量方法及应用
(3)用中心量规测量车身下部尺寸 用定中规法测量车身下部尺寸时,应先查阅车
身尺寸手册,以确定中心量规的位置和高度。并根 据具体情况,有针对性地进行对称性调整。当其中 一个中心量规的高度确定后,应以参数表规定的数 据为准,对其他中心量规吊杆的长度按高低差进行 增减调整,使悬挂高度符合标准。

3d轮廓测量仪原理

3d轮廓测量仪原理

3d轮廓测量仪原理
3D轮廓测量仪的原理是通过光学或激光技术来捕捉物体表面的三维轮廓信息。

具体原理如下:
1. 光学原理:通过光学传感器或相机,测量物体表面上不同点的距离,并将这些距离信息转化为三维坐标点,从而重构物体的三维轮廓。

2. 激光原理:使用激光束照射到物体表面,利用光电传感器接收反射光,并测量激光光程差,即激光束从发射到接收的时间差,从而计算出物体表面上不同点的距离,最终得到物体的三维轮廓。

3. 结构光原理:通过投射结构光,即由主投影仪产生的特定图案,如條纹或网格,通过光电传感器接收物体表面反射回的结构光,并根据结构光的形变来计算得到物体表面上各点的三维坐标。

3D轮廓测量仪可以利用以上原理来非接触地测量物体的形状和尺寸,并用于工业制造、产品设计、质量检测和逆向工程等领域。

第6章车身测量(162).ppt.Convertor

第6章车身测量(162).ppt.Convertor

车身测量技术1、车身测量测量工作的重要性测量工作是顺利完成各种车身修复所必需的程序之一。

对整体式车身来说,测量对于成功的损伤修复更为重要,因为转向系和悬架大都装在车身上,而有的悬架则是依据装配要求设计的。

汽车主销后倾角和车轮外倾角是一个固定不可调的值,这样车架损伤就会严重影响到悬架结构。

齿轮齿条式转向器通常装配在钢梁上,形成与转向臂固定的联系,而机械零件、发动机、变速器、差速器等也被直接装配在车身构件支撑的支架上。

所有这些测定元件的变形都会使转向器或悬架变形,使机械元件错位,导致转向失灵,传动系的振动和噪声,连杆端头、轮胎、齿轮齿条、常用接头或其他转向装置的过度磨损。

测量注意事项:为保证汽车正确的转向及操纵驾驶性能,关键尺寸的配合公差必须不超过3MM。

精确的损伤情况可用车身尺寸图相对出身上具体点测量估测出来。

测量注意事项:测量点和测量公差要通过对损伤区域的检查来确定,一般引起车门轻微下垂的前端碰撞,其损伤不会扩展而越过汽车的中心,因而后部的测量就没有太多必要。

在碰撞发生较严重的位置,必须进行大量的测量以保证适当的调整顺序。

在整个修理过程中,不论车架式车身还是整体式车身,测量是非常重要的。

必须对受伤的部位上的所有主要加工控制点对照厂家说明书进行复查。

2、常规的车身测量工具卷尺测量可以测量两个测量点之间的距离量规测量系统轨道式量规一次只能测量一对测量点式量规测量的最佳位置为悬架和机械元件上的焊点、测量孔等用轨道式量规还可以对车身下部和侧面车身尺寸进行测量小的碰撞损伤中,用这种方法既快速又有效用轨道式量规进行点对点测量的方法轨道式量规的测量头小于测量孔时的测量方法同缘测量法不同孔径的测量孔的测量方法使用轨道式量规测量时的注意事项汽车上固定点如螺栓、孔的测量位置是中心。

点至点测量为两点间直线的距离测量。

量规臂应与汽车车身平行,这就要求量规臂上的指针在测量某些尺寸时要设置成不同长度某些标准车身数据要求平行测量,有些则只要求点至点之间的长度测量按车身标准数据测量损伤车辆上所有点平行测量与点对点直接测量中心量规自定心量规安装在汽车的不同位置量规上有两个由里向外滑动时总保持平行的横臂每一个横臂相对于量规所附着的车身结构都是平行的四个中心量规分别安置在汽车最前端、最后端、前轮的后部和后轮的前部麦弗逊撑杆式中心量规可以测量出减震器拱形座或车身上部部件相对中心线平面和基准面的不对中情况麦弗逊撑杆式中心量规有一根上横梁和一根下横梁下横梁有一个中心销上横杆上有二个测量指针3、机械式三维测量系统专用测量系统原理来源于车身的制造过程可以对板件进行快速定位、安装、焊接等工作包含主要测量控制点的测量头(也称为定位器)测量控制点的位置与专用测量头完全配合一套测量头一般可用来测量同一个型号车身类型的汽车4、米桥式通用测量系统测量精度达到±1 mm~±1.5 mm使用过程中操作必须小心,轻拿轻放测量前首先找基准根据数据图要求选择测量头按照数据图测量车身控制点5、电子式车身测量系统半机械半电子测量系统类似轨道式量规的测尺量规上安装了位移传感器在测尺上可以电子显示测量的高度、长度两个方向的数值一次只能测量两个测量点之间的高度和长度或高度和宽度测量点数据的变化不能及时的反映出来半自动电子测量系统自由臂方式进行测量自由臂转动可以实现空间三维的移动每次只能测量一个控制点,不能做到多点同步进行测量只能做到适时测量(合适的时间进行测量)而不是实时测量(随时可以显示当时的测量数据)。

三维测量技术的原理及应用

三维测量技术的原理及应用

三维测量技术的原理及应用一、引言三维测量技术是指通过测量目标对象各个方向上的空间坐标信息,实现对目标对象外形、尺寸或位置的精确测量的一种技术。

三维测量技术在许多领域都有广泛的应用,例如工业制造、建筑工程、机械设计等。

本文将介绍三维测量技术的原理及其在实际应用中的各个方面。

二、三维测量技术的原理三维测量技术的原理主要包括以下几个方面:1. 视觉测量原理视觉测量是通过相机获取目标对象的图像信息,然后通过图像处理和计算,推导出目标对象的三维坐标信息。

视觉测量常用的方法包括立体视觉测量、结构光测量和投影仪测量等。

2. 激光测距原理激光测距是利用激光束发射器发射的激光束,通过测量激光束发射和接收的时间差,计算出目标对象与激光测距仪之间的距离。

激光测距技术精度高,适用于近距离和远距离测量。

3. 光干涉测量原理光干涉测量是利用光的波动性,在目标对象与光源之间形成干涉条纹,通过测量条纹的变化来计算目标对象的三维形状和尺寸。

光干涉测量常用的方法有干涉比较法、光栅投影法和激光条纹投影法等。

4. 三角测量原理三角测量是通过测量目标对象与测量仪器之间的几何关系来计算目标对象的空间位置信息。

三角测量常用的方法有空间三角测量法、光束平差法和三角测距法等。

三、三维测量技术的应用三维测量技术在各个领域都有广泛的应用,以下列举了部分常见的应用领域:1. 工业制造三维测量技术在工业制造领域中广泛应用于产品质量检测、尺寸测量和装配精度控制等。

例如,在汽车制造过程中,三维测量技术可用于检测车身外形的偏差、零部件的尺寸精度以及车身与零部件之间的装配精度。

2. 建筑工程在建筑工程中,三维测量技术可用于土地测量、建筑物测量和结构变形监测等。

通过三维测量技术,可以准确获取土地的地形、地貌信息,帮助设计师进行合理的土地开发规划;同时,在建筑物的测量和监测中,三维测量技术也起到了重要的作用,可以保证建筑物的安全性。

3. 机械设计在机械设计领域中,三维测量技术被广泛应用于机械零部件的测量和装配。

汽车车身检测与校正技术 (4)

汽车车身检测与校正技术 (4)

车身损伤的测量——车身数据图识读---车身数据图的识读
1.车身底部数据图 不同公司提供的数据图在形式上可能有所不同,但是基本的数据信息是相同的,都要
反映出车身上测量点的长、宽、高的三维数据。下面以几种常见的数据图来解读车身数据 图中的内容。(1)图2-6所示的数据图的识读。
图2-6 利用俯视图和侧视图来表达的车身底部数据图
不论非承载式车身还是承载式车身,在修理过程中,测量工作都是非常重要的。必 须对受伤部位上的所有主要加工控制点对照车身的标准尺寸(生产商提供)进行检查。在对 车身进行修理前(目测、与当事人或保险评估人沟通)、中(修理过程中)、后(修理 完成后的验收)三个阶段,都需要准确、多次、反复核对的测量。以确保测量数据的准 确可靠。
图2-1 车身控制点的基本位置
车身损伤的测量——车身数据图识读---车身三维测量原理
对车身进行整体矫正时,可根据上述控制点的分布,将车身分为前、中、 后三部分,如图2-2所示。这种划分方法主要基于车身壳体的刚度等级和区别 损伤程度,分析并利用好各控制点在车身测量基准中的作用和意义。
图2-2 车身按吸收能量强弱的分段
现代车身的测量系统可以分为机械式车身测量系统和电子测量系统。修理中常用 的机械式车身测量系统大致可分为三种基本类型:量规测量系统、专用测量系统和通用 测量系统。随着现代电子技术的发展,各类传感器和计算机的广泛应用,在各种机械测 量系统的基础上,发展出多种电子测量系统,使得车身测量工作变得更准确、更高效。
目录 / CONTENTS
1 一、车身三维测量原理图纸的认知
2 二、车身数据—车身数据图识读---车身三维测量原理
1.控制点的选择 车身测量的控制点,用于检测车身损伤及变形的程度。车身设计与制造中设有多个控 制点,检测时可以测量车身上各个控制点之间的尺寸,如果测量值超出规定的极限尺寸时,就应对 其进行矫正,使之达到技术标准规定范围。 承载式车身的控制点如图2-1所示。第一个控制点①通常是在前保险杠或前车身水箱支撑部位;第 二个控制点②在发动机室的中部,相当于前横梁或前悬架支承点;第三个控制点③在车身中部,相 当于后车门框部位;第四个控制点④在车身后横梁或后悬架支承点。

车辆三维损伤测量方案

车辆三维损伤测量方案

车辆三维损伤测量方案在汽车保险、车辆维修以及事故鉴定中,精准的车辆损伤测量是非常重要的。

现如今,三维测量技术已经在汽车维修、车身工程等领域得到广泛应用。

本文将介绍一款车辆三维损伤测量方案,给出其优势和应用场景。

方案介绍该方案采用一种叫做三维扫描仪的设备,利用光学原理在三维空间内获取车身表面的点云数据,再通过软件处理,得到车身表面的三维模型。

当车身发生碰撞或其它事故时,使用该设备进行测量,可以高精度地获取车身变形、损伤等信息,为保险赔偿、维修修复和事故鉴定提供有力的技术支撑。

该设备并不单单只能测量车身,也可用于内饰、发动机、底盘等部位的测量。

优势和应用场景相比于传统车辆损伤测量方式——尺子、卡尺等,三维扫描仪的优点显而易见:•测量速度更快:传统测量方法需要一遍遍地测量,而三维扫描仪只需要扫描一遍即可获取数万至数百万个像素点的车身表面数据。

节省了时间,提高了效率。

•测量精度更高:三维扫描仪可以获取物体表面的微小变化,且精度高于传统测量工具。

在车辆维修和事故鉴定中,精准的测量数据非常重要。

•可测量区域更广:三维扫描仪可以测量车身各个角度,也可以对内部零部件和成组部件进行测量。

基于以上优点,该方案适用于:•汽车保险:为了确定车辆损失,保险公司需要进行车辆损伤评估。

三维扫描仪能够高度还原事故发生前的状态,给出一个科学合理的价格定价方案。

•车辆维修:在维修车辆时需要确保车辆的完整性,三维扫描仪通过高精度的测量数据可以检测出车辆是否有变形、裂缝等问题。

此外,还可以进行车身激光修复,还原车身形状。

•事故鉴定:通过三维模型的测量和对比,可以精准判断车辆是否发生过事故,并判断事故的程度以及肇事方和受害方的责任分配。

结论车辆损伤测量是汽车保险、车辆维修和事故鉴定的重要环节。

三维扫描仪的出现,大大提高了测量的速度和精度,同时拓展了可测量的区域。

通过三维扫描仪测量车身,我们可以更好地还原事故发生前的车辆状态,为保险赔偿、维修修复和事故鉴定提供有力的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车身三维测量的原理
• • • • • • • • 1.车身测量的意义 2.车身测量基准的选择 (1)控制点的选择 (2)基准面 (3)中心面 (4)零平面 (5)车身测量基准的选择
三、任务实施
• 1.车身底部数据图 • (1)数据图的识读
• 利用俯视图和侧视图来表达的车身底部数据图
• ① 宽度数据 • ② 高度数据 • ③ 长度数据
(二)点对点的机械式车身测量

1.钢直尺和卷尺

• 用钢卷尺测距 • A = B + (R−r)或A = C −(R−r)
(2)车身数据图的识读

• 车身底部数据图
• ① 宽度数据 • ② 高度数据 • ③ 长度数据。
2.车身上部数据图
(2)车身上部的三维数据

任务二 车身尺寸的机械测量法
• • • • 【学习目标】 1.熟悉车身机械法测量的种类和方法 2.明白机械测量法的优缺点 3.能够正确的用机械法进行车身测量
一、任务分析
• 机械法测量车身尺寸主要是手工利用 机械工具对车身尺寸进行测量,使用的手 工工具有钢板尺、卷尺和车身测量规等。 机械法测量车身尺寸简单、快捷,测量精 度不如电子来自量方法高。二、相关知识
• • • • • • (一)车身尺寸的测量方法 1.用点对点方法测量车身尺寸 (1)参数测量法 ① 车身前部尺寸的测量 ② 车身侧面尺寸的测量 ③ 车身后部尺寸的测量
• • • •
(2)对比测量法 ① 数据的选取 ② 误差的控制 ③ 在进行对比法测量时,经常要利用车身的左 右对称性
• 对角线测量
2.用三维坐标法测量车身尺寸

• 桥式三维坐标测量架

• •

红外线测量台

坐标法测量原理 α—平行于XOZ平面 β1、β2—平行 于YOZ平面 1—α截面交线 2—β截 面交线
相关文档
最新文档