2018年苏州市中考数学试题(含答案)

合集下载

2018年江苏省苏州市中考数学试卷有答案

2018年江苏省苏州市中考数学试卷有答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前江苏省苏州市2018年初中学业水平考试数 学(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在下列四个实数中,最大的数是( ) A .3-B .0C .32D .342.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为( ) A .33.8410⨯B .43.8410⨯C .53.8410⨯D .63.8410⨯3.下列四个图案中,不是轴对称图案的是( )ABCD4.在实数范围内有意义,则x 的取值范围在数轴上表示正确的是 ( ) A . B .C .D .5.计算21211+x x x x ++⎛⎫÷ ⎪⎝⎭的结果是( )A .+1xB .11x + C .1x x + D .1x x+ 6.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是 ( )A .12B .13C .49D .59(第6题)(第7题)(第8题)7.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点D 是AC 上的点.若40BOC ∠=︒,则D ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30︒方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( ) A .40海里B .60海里C .D .9.如图,在ABC 中,延长BC 至D ,使得12CD BC =,过AC 中点E 作EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( ) A .3B .4C .D .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)(第9题)(第10题)10.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数ky x =在第一象限内的图像经过点D ,交BC 于点E .若4AB =,2CE BE =,3tan 4AOD ∠=,则k 的值为( ) A .3B.C .6D .12二、填空题(本大题共8小题,每小题3分,共24分)11.计算:4a a ÷= .12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 .13.若关于x 的一元二次方程220x mx n ++=有一个根是2,则m n += . 14.若4a b +=,1a b -=,则()()2211a b +--的值为 .15.如图,ABC 是一块直角三角板,90BAC ∠=︒,=30B ∠︒.现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若20CAF ∠=︒,则BED ∠的度数为 ︒.(第15题) (第16题)16.如图,88⨯的正方形网格纸上有扇形OAB 和扇形OCD ,点,,,,O A B C D 均在格点上,若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为1r ;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12rr 的值为 .17.如图,在Rt ABC 中,=90B ∠︒,AB BC =将ABC 绕点A 按逆时针方向旋转90︒得到AB C '',连接B C ',则sin ACB '∠= .(第17题) (第18题)18.如图,已知=8AB ,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,60.DAP ∠=︒M ,N 分别是对角线AC ,BE 的中点,当点P 在线段AB 上移动时,点M ,N 之间的距离最短为 (结果保留根号).三、解答题(本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题满分5分)计算:21||.2-⎝⎭20.(本题满分5分)解不等式组:()32,4221.x x x x ≥+⎧⎪⎨+<-⎪⎩21.(本题满分6分)如图,点A ,F ,C ,D 在一条直线上,,,.AB DE AB DE AF DC ==∥ 求证:.BC EF ∥22.(本题满分6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 .;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两数学试卷 第5页(共24页) 数学试卷 第6页(共24页)个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(本题满分8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(本题满分8分)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和每台B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?25.(本题满分8分)如图,已知抛物线24y x =-与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点.直线y x m =+经过点A ,与y 轴交于点D . (1)求线段AD 的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.26.(本题满分10分)如图,AB 是O 的直径,点C 在O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直于AB ,垂足为E .延长DA 交O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .(1)求证:CD CE =;(2)若AE GE =,求证:CEO 是等腰直角三角形.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)27.(本题满分10分)问题1:如图①,在ABC △中,4AB =,D 是AB 上一点(不与A ,B 重合),DE BC ∥,交AC 于点E ,连接CD .设ABC △的面积为S ,DEC △的面积为S '. (1)当3AD =时,S S'= . (2)设AD m =,请你用含字母m 的代数式表示S S'. 问题2:如图②,在四边形ABCD 中,4AB =,AD BC ∥,12AD BC =,E 是AB 上一点(不与A ,B 重合),EF BC ∥,交CD 于点F ,连接CE .设AE n =,四边形ABCD 的面积为S ,EFC △的面积为S '.请即利用问题1的解法或结论,用含字母n 的代数式表示S S'.28.(本题满分10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设=AE x 米(其中0x >),GA y =米,已知y 与x 之间的函数关系如图②所示. (1)求图②线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即EFG △)是否可以使一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.数学试卷 第9页(共24页) 数学试卷 第10页(共24页)江苏省苏州市2018年初中学业水平考试2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。

2018年江苏省苏州市中考数学试卷含答案

2018年江苏省苏州市中考数学试卷含答案

【考点】科学记数法。
3.【答案】B 【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部
分能否重合即可.四个选项中,A、C、D 三个选项中的图形都能沿着某一条直线折 叠以后,直线两旁的部分能互相重合,只有 B 选项中图形无法沿着某一条直线折叠 以后,直线两旁的部分互相重合.故选 B. 【考点】轴对称图形的识别。
对应的函数表达式.
26.(本题满分 10 分)
如图, AB 是 O 的直径,点 C 在 O 上, AD 垂直于过点 C 的切线,垂足为 D , CE 垂 直于 AB ,垂足为 E .延长 DA 交 O 于点 F ,连接 FC , FC 与 AB 相交于点 G ,连接 OC . (1)求证: CD CE ; (2)若 AE GE ,求证: CEO 是等腰直角三角形.
27.(本题满分 10 分)
问题 1:如图①,在 △ABC 中, AB 4 , D 是 AB 上一点(不与 A , B 重合), DE∥ BC ,
交 AC 于点 E ,连接 CD .设 △ABC 的面积为 S , △DEC 的面积为 S .
(1)当 AD 3 时, S
.
S
(2)设 AD m ,请你用含字母 m 的代数式表示 S . S
成另一个圆锥的侧面,记这个圆锥的底面半径为
r2
,则
r1 r2
的值为
.
17.如图,在 Rt ABC 中, B=90 , AB 2 5, BC 5. 将 ABC 绕点 A 按逆时针方向
旋转 90 得到 ABC ,连接 BC ,则 sin ACB
.
(第 17 题)
(第 18 题)
解不等式组:
3x x 2,

苏州市2018中考真题(附答案解析)

苏州市2018中考真题(附答案解析)
B.
x
1 1
C.
x
x
1
D. x 1 x
A. 1 2
A.40海里
x
14. 若a1+4b=4,a-b=1,则(a-1)²-(b-1)²的值为( )
17. 如图,在R心/\HC中,乙H = 90勹AH = 2石,DC = 怎 .将6AJ3C绕点A按逆时针方向
旋转9矿得到6/\B'C勹迕接甘(沁则sin乙八CB' = .A. .
D
B
F
27. (本题满分10分)
(第26题)
悯题l : 如图心,在6/\BC中,AH=4,D足AH上 一 点(不与A心重合),DE//HC, 父AC
s'. 丁点E, 连核CD. 设丛AJ3C的血积为S心DEC的面积为
s s (1)当J\0=3时, —= � ; ss' (2)设/\0=111'请你用含宁母m的代数式表不 一.
21. (本归满分6分) 如图,点A,F,c.o在 — 条直线1-. ,A13 II DE ,A13 = DE,/\F= DC. 求证: 13CII EF.
B
A F
D
E (第21题)
22. (本题满分6分) 如图,在 — 个可以自巾转动的转盐中,指针位置固定.二个扇形的血积都相等,H分别标有 数宁l.2,3. (l)小明转动轧益— 次.当转盘件止转动时,指针所指扇形中的数字是奇数的概伞为 .... (2)小明先转动转盘一 次,当转称停止转动时,记录下指针所指扇形中的数字;按着百转动
个等腰一角形?如果可以.求出相应 1 的伯:如果小可以.说明则由.
y
F

西 E< A
D (图(D)
....._

(完整word版)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

(完整word版)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是( )A.﹣3 B.0 C.D.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3。

84×104C.3.84×105D.3。

84×1063.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(3分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3分)计算(1+)÷的结果是( )A.x+1 B.C.D.6.(3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )A.100°B.110°C.120°D.130°8.(3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.310.(3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为( )A.3 B.2C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3分)计算:a4÷a= .12.(3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .14.(3分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E 在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(本题共10小题,共76分)19.(5分)计算:|﹣|+﹣()2.20.(5分)解不等式组:21.(6分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC 的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【考点】2A:实数大小比较.菁优网版权所有【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( )A.3。

2018年江苏省苏州市中考数学试题含答案

2018年江苏省苏州市中考数学试题含答案

江苏省苏州市2018年中考数学试卷一、选择题<共10小题,每小题3分,共30分)1.<3分)<2018?苏州)<﹣3)×3的结果是<)A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.<3分)<2018?苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为<)A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.<3分)<2018?苏州)有一组数据:1,3,3,4,5,这组数据的众数为<)A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选 B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.<3分)<2018?苏州)若式子在实数范围内有意义,则x的取值范围是<)A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子<a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.<3分)<2018?苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是<)b5E2RGbCAPA.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.<3分)<2018?苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为<)p1EanqFDPwA.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.<3分)<2018?苏州)下列关于x的方程有实数根的是<)A.x2﹣x+1=0 B.x2+x+1=0 C.<x﹣1)<x+2)=0 D.<x﹣1)2+1=0 考点:根的判别式.专计算题.题:分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=<﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、<x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0<a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.<3分)<2018?苏州)二次函数y=ax 2+bx﹣1<a≠0)的图象经过点<1,1),则代数式1﹣a﹣b的值为<)DXDiTa9E3dA.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点<1,1)代入函数解读式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1<a≠0)的图象经过点<1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣<a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.<3分)<2018?苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离<即AB的长)为<)RTCrpUDGiTA.4km B.2km C.2km D.<+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离<即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.<3分)<2018?苏州)如图,△AOB为等腰三角形,顶点A的坐标<2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为<)5PCzVD7HxAA.<,)B.<,)C.<,)D.<,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A<2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为<,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题<共8小题,每小题3分,共24分)11.<3分)<2018?苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.<3分)<2018?苏州)已知地球的表面积约为510000000km 2,数510000000用科学记数法可表示为 5.1×108.jLBHrnAILg 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为: 5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.<3分)<2018?苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.<3分)<2018?苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.xHAQX74J0X考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240<人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.<3分)<2018?苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.LDAYtRyKfE考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角<或余角)的三角函数关系式求三角函数值.16.<3分)<2018?苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则<x+y)的值为20.Zzz6ZB2Ltk 考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.<3分)<2018?苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE?ED=,则矩形ABCD的面积为5.dvzfvkwMI1考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE?ED=,∴4x?x=,解得:x=<负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.<3分)<2018?苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点<不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则<x﹣y)的最大值是2.rqyn14ZNXI考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x 2=﹣x2+x=﹣<x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP=∠APB ,∴△APC ∽△PBA ,∴=,∵PA=x ,PB=y ,半径为 4 ∴=,∴y=x 2,∴x ﹣y=x ﹣x 2=﹣x 2+x=﹣<x ﹣4)2+2,当x=4时,x ﹣y 有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题<共11小题,共76分)19.<5分)<2018?苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.<5分)<2018?苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.<5分)<2018?苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷<+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.<6分)<2018?苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.<6分)<2018?苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC 上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.EmxvxOtOco<1)求证:△BCD≌△FCE;<2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:<1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;<2)由<1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:<1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE<SAS).<2)解:由<1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.<7分)<2018?苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P<a,0)<其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.SixE2yXPq5<1)求点A的坐标;<2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:<1)先利用直线y=x上的点的坐标特征得到点M的坐标为<2,2),再把M<2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解读式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为<6,0);<2)先确定B点坐标为<0,3),则OB=CD=3,再表示出C点坐标为<a,﹣a+3),D点坐标为<a,a),所以a﹣<﹣a+3)=3,然后解方程即可.解答:解:<1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为<2,2),把M<2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解读式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为<6,0);<2)把x=0代入y=﹣x+3得y=3,∴B点坐标为<0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为<a,﹣a+3),D点坐标为<a,a)∴a﹣<﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.<7分)<2018?苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法<画树状图或列表)求A、C两个区域所涂颜色不相同的概率.6ewMyirQFL考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解解:画树状图,如图所示:答:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.<8分)<2018?苏州)如图,已知函数y=<x>0)的图象经过点A、B,点A的坐标为<1,2),过点A作AC∥y轴,AC=1<点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.kavU42VRUs<1)求△OCD的面积;<2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:<1)根据待定系数法,可得函数解读式,根据图象上的点满足函数解读式,可得D 点坐标,根据三角形的面积公式,可得答案;<2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;<1)y=<x>0)的图象经过点A<1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为<1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为<2,1).∴.<2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解读式,图象上的点满足函数解读式.27.<8分)<2018?苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.y6v3ALoS89<1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;<2)求证:BF=BD;<3)设G是BD的中点,探索:在⊙O上是否存在点P<不同于点B),使得PG=PF?并说明PB与AE的位置关系.M2ub6vSTnP考点:圆的综合题.分析:<1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;<2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;<3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF<SAS),求出PG=PF.解答:<1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;<2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;<3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF<SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.<9分)<2018?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t<s)0YujCfmUCw<1)如图①,连接OA、AC,则∠OAC的度数为105°;<2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离<即OO1的长);eUts8ZQVRd<3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d<cm),当d<2时,求t的取值范围<解答时可以利用备用图画出相关示意图).sQsAEJkW5T考点:圆的综合题.分析:<1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;<2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:<1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;<2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由<2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣<2﹣)=t2﹣<+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.<10分)<2018?苏州)如图,二次函数y=a<x 2﹣2mx﹣3m2)<其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B<点A位于点B的左侧),与y轴交于C<0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.GMsIasNXkA<1)用含m的代数式表示a;<2)求证:为定值;<3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.TIrRGchYzg考点:二次函数综合题.分析:<1)由C在二次函数y=a<x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.<2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.<3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且<2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:<1)解:将C<0,﹣3)代入二次函数y=a<x2﹣2mx﹣3m2),则﹣3=a<0﹣0﹣3m2),解得 a=.<2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a<x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A<﹣m,0),B<3m,0).∵CD∥AB,∴点D的坐标为<2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为<x,),∴=,∴x=4m,∴E<4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.<3)解:如图2,记二次函数图象顶点为F,则F的坐标为<m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年江苏省苏州市中考数学试卷

2018年江苏省苏州市中考数学试卷

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1. 在下列四个实数中,最大的数是()A.−3B.0C.32D.342. 地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063. 下列四个图案中,不是轴对称图案的是()A. B. C. D.4. 若√x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A. B.C. D.5. 计算(1+1x )÷x2+2x+1x的结果是()A.x+1B.1x+1C.xx+1D.x+1x6. 如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.597. 如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC⌢上的点,若∠BOC=40∘,则∠D的度数为()A.100∘B.110∘C.120∘D.130∘8. 如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30∘方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20√3海里D.40√3海里9. 如图,在△ABC中,延长BC至D,使得CD=12BC,过AC中点E作EF // CD(点F位于点E右侧),且EF= 2CD,连结DF.若AB=8,则DF的长为()A.3B.4C.2√3D.3√210. 如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图象经过点D,交BC于点E若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3B.2√3C.6D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11. 计算:a4÷a=________.12. 在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是________.13. 若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.14. 若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为________.15. 如图,△ABC是一块直角三角板,∠BAC=90∘,∠B=30∘,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20∘,则∠BED的度数为________∘.16. 如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则r1r2的值为________.17. 如图,在Rt△ABC中,∠B=90∘,AB=2√5,BC=√5.将△ABC绕点A按逆时针方向旋转90∘得到[Math Processing Error],连接[Math Processing Error],则sin∠ACB′=________45.18. 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60∘.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为________(结果保留根号).三、解答题(本题共10小题,共76分)19. 计算:|−12|+√9−(√22)2.20. 解不等式组:{3x≥x+2x+4<2(2x−1)21. 如图,点A,F,C,D在一条直线上,AB // DE,AB=DE,AF=DC.求证:BC // EF.22. 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23. 为庆祝新中国成立70周年,某校计划在今年5月份开展一场体育竞赛活动,每个学生可以从乒乓球、羽毛球、篮球、足球四个体育活动项目中任选一项(规定每人必须并且只能选择其中的一个项目),为了估计全校学生对这四个活动项目的选择情况,体育老师从全校学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24. 某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25. 如图,已知抛物线y=x2−4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26. 如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27. 问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE // BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,[Math Processing Error]________;(2)设AD=m,请你用含字母m的代数式表示[Math Processing Error].BC,E是AB上一点(不与A,B重合),问题2:如图②,在四边形ABCD中,AB=4,AD // BC,AD=12EF // BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示[Math Processing Error].28. 如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D 在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.参考答案与试题解析2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.【答案】C【考点】实数大小比较【解析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:−3<0<34<32,则最大的数是:32.故选C.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6−1=5.【解答】384 000=3.84×105.3.【答案】B【考点】轴对称图形【解析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.4.【答案】D【考点】二次根式有意义的条件在数轴上表示不等式的解集【解析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥−2.故选D.5.【答案】B【考点】分式的混合运算【解析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1,6.【答案】C【考点】几何概率【解析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,7.【答案】B【考点】圆周角定理【解析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40∘,∴∠AOC=180∘−40∘=140∘,∴∠D=12×(360∘−140∘)=110∘,故选B.8.【答案】D【考点】解直角三角形的应用-方向角问题【解析】首先证明PB=BC,推出∠C=30∘,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30∘,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60∘,∴∠C=30∘,∴PC=2PA,∵PA=AB⋅tan60∘,∴PC=2×20×√3=40√3(海里).故选D.9.【答案】B【考点】三角形中位线定理平行四边形的应用【解析】此题暂无解析【解答】此题暂无解答10.【答案】A【考点】反比例函数图象上点的坐标特征矩形的性质解直角三角形【解析】本题主要考查反比例函数图象上点的坐标特征【解答】解:∵tan∠AOD=ADOA=34,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a, 3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a, a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3,故选A.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.【答案】a3【考点】同底数幂的除法【解析】根据同底数幂的除法解答即可.【解答】a4÷a=a3,12.【答案】8【考点】众数【解析】根据众数的概念解答.【解答】在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,13.【答案】−2【考点】一元二次方程的解【解析】此题暂无解析【解答】此题暂无解答14.【答案】12【考点】因式分解-运用公式法【解析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】∵a+b=4,a−b=1,∴(a+1)2−(b−1)2=(a+1+b−1)(a+1−b+1)=(a+b)(a−b+2)=4×(1+2)=12.15.【答案】80【考点】平行线的判定与性质【解析】依据DE // AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20∘+60∘=80∘,进而得出∠BED=80∘.【解答】如图所示,∵DE // AF,∴∠BED=∠BFA,又∵∠CAF=20∘,∠C=60∘,∴∠BFA=20∘+60∘=80∘,∴∠BED=80∘,16.【答案】23【考点】圆锥的展开图及侧面积弧长的计算圆的有关概念勾股定理【解析】此题暂无解析【解答】解:由题知OB=√22+42=2√5,OD=√32+62=3√5,令∠AOB=n,∴AB̂=nπ×OB180,CD̂=nπ×OD180,由题知AB̂=2πr1,CD̂=2πr2,∴r1r2=AB̂CD̂=OBOD=23.故答案为:23.17.【答案】4【考点】解直角三角形旋转的性质【解析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】在Rt△ABC中,由勾股定理得:AC=√(2√5)2+(√5)2=5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2√5,∠B′AB=90∘,即∠CMA=∠MAB=∠B=90∘,∴CM=AB=2√5,AM=BC=√5,∴B′M=2√5−√5=√5,在Rt△B′MC中,由勾股定理得:[Math Processing Error],∴ [Math Processing Error],∴5×AN=2√5×2√5,解得:AN=4,∴sin∠ACB′=ANAC=45,18.【答案】2√3【考点】二次函数的性质 菱形的性质 勾股定理 【解析】连接PM 、PN .首先证明∠MPN =90∘设PA =2a ,则PB =8−2a ,PM =a ,PN =√3(4−a),构建二次函数,利用二次函数的性质即可解决问题; 【解答】解:连接PM 、PN .∵ 四边形APCD ,四边形PBFE 是菱形,∠DAP =60∘, ∴ ∠APC =120◦,∠EPB =60◦,∵ M ,N 分别是对角线AC ,BE 的中点,∴ ∠CPM=12∠APC =60◦,∠EPN =12∠EPB =30◦, ∴ ∠MPN =60◦+30◦=90◦,设PA =2a ,则PB =8−2a ,PM =a ,PN =√3(4−a),∴ MN =√a 2+[√3(4−a)]2=√4a 2−24a +48=√4(a −3)2+12, ∴ a =3时,MN 有最小值,最小值为2√3, 故答案为:2√3.三、解答题(本题共10小题,共76分) 19.【答案】原式=12+3−12=3【考点】 实数的运算 【解析】根据二次根式的运算法则即可求出答案. 【解答】原式=12+3−12=320.【答案】由3x ≥x +2,解得x ≥1,由x +4<2(2x −1),解得x >2, 所以不等式组的解集为x >2.【考点】解一元一次不等式组 【解析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可. 【解答】由3x ≥x +2,解得x ≥1,由x +4<2(2x −1),解得x >2, 所以不等式组的解集为x >2. 21.【答案】证明:∵ AB // DE , ∴ ∠A =∠D , ∵ AF =DC , ∴ AC =DF .∴ 在△ABC 与△DEF 中, {AB =DE ∠A =∠D AC =DF, ∴ △ABC ≅△DEF(SAS), ∴ ∠ACB =∠DFE , ∴ BC // EF . 【考点】全等三角形的性质与判定 【解析】由全等三角形的性质SAS 判定△ABC ≅△DEF ,则对应角∠ACB =∠DFE ,故证得结论. 【解答】证明:∵ AB // DE , ∴ ∠A =∠D , ∵ AF =DC , ∴ AC =DF .∴ 在△ABC 与△DEF 中, {AB =DE ∠A =∠D AC =DF, ∴ △ABC ≅△DEF(SAS), ∴ ∠ACB =∠DFE , ∴ BC // EF . 22. 【答案】 23列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【考点】概率公式列表法与树状图法【解析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为:23;列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.23.【答案】解:(1)根据表中数据可得:选择乒乓球的人数为14人,占比28%,∴参加这次调查的学生人数是14÷0.28=50(人). 则选择羽毛球的人数为:50−14−10−8=18(人). 补全条形统计图如下:(2)“篮球”项目所对的圆心角度数为:1050×360∘=72∘,答:扇形统计图中“篮球”项目所对应的扇形的圆心角度数是72∘.(3)根据条形图可得:选择“足球”项目的有8人,故该校选择“足球”项目的人数约为:600×850=96(人),答:估计该校选择“足球”项目的学生约有96人.【考点】条形统计图扇形统计图用样本估计总体【解析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360∘即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1)根据表中数据可得:选择乒乓球的人数为14人,占比28%,∴参加这次调查的学生人数是14÷0.28=50(人).则选择羽毛球的人数为:50−14−10−8=18(人).补全条形统计图如下:(2)“篮球”项目所对的圆心角度数为:1050×360∘=72∘,答:扇形统计图中“篮球”项目所对应的扇形的圆心角度数是72∘. (3)根据条形图可得:选择“足球”项目的有8人, 故该校选择“足球”项目的人数约为:600×850=96(人), 答:估计该校选择“足球”项目的学生约有96人. 24.【答案】每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元; 该学校至多能购买5台B 型打印机 【考点】二元一次方程组的应用——行程问题 一元一次不等式的运用【解析】(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a 台B 型打印机,则购买A 型电脑为(a −1)台,根据“(a −1)台A 型电脑的钱数+a 台B 型打印机的钱数≤20000”列出不等式,解之可得. 【解答】设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元, 根据题意,得:{x +2y =59002x +2y =9400 ,解得:{x =3500y =1200,答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元; 设学校购买a 台B 型打印机,则购买A 型电脑为(a −1)台, 根据题意,得:3500(a −1)+1200a ≤20000, 解得:a ≤5,答:该学校至多能购买5台B 型打印机. 25.【答案】解:(1)由x 2−4=0 解得,x 1=2,x 2=−2, ∵ 点A 位于点B 的左侧, ∴ A(−2, 0),∵ 直线y =x +m 经过点A , ∴ −2+m =0,∴ m =2,即直线AD 解析式为y =x +2, ∴ D(0, 2),∴ AD =√OA 2+OD 2=2√2;(2)设新抛物线对应的函数表达式为:y =x 2+bx +2, ∴ y =x 2+bx +2=(x +b2)2+2−b 24,∴ C′(−b2, 2−b 24),∵ 直线CC′平行于直线AD ,且经过C(0, −4),∴ 将点C′ 代入y =x −4,得直线[Math Processing Error]的函数表达式为y =x −4, ∴ 2−b 24=−b2−4,整理得b 2−2b −24=0,解得b 1=−4,b 2=6,∴ 新抛物线对应的函数表达式为:y =x 2−4x +2或y =x 2+6x +2. 【考点】一次函数图象上点的坐标特点 二次函数的性质二次函数图象上点的坐标特征 二次函数图象与几何变换 待定系数法求二次函数解析式 抛物线与x 轴的交点【解析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y =x 2+bx +2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可. 【解答】解:(1)由x 2−4=0 解得,x 1=2,x 2=−2, ∵ 点A 位于点B 的左侧, ∴ A(−2, 0),∵ 直线y =x +m 经过点A , ∴ −2+m =0,∴ m =2,即直线AD 解析式为y =x +2, ∴ D(0, 2),∴ AD =√OA 2+OD 2=2√2;(2)设新抛物线对应的函数表达式为:y =x 2+bx +2, ∴ y =x 2+bx +2=(x +b2)2+2−b 24,∴ C′(−b2, 2−b 24),∵ 直线CC′平行于直线AD ,且经过C(0, −4),∴ 将点C′ 代入y =x −4,得直线[Math Processing Error]的函数表达式为y =x −4, ∴ 2−b 24=−b2−4,整理得b 2−2b −24=0,解得b 1=−4,b 2=6,∴ 新抛物线对应的函数表达式为:y =x 2−4x +2或y =x 2+6x +2. 26.【答案】证法一:连接BC , ∵ △CDA ≅△CEA , ∴ ∠DCA =∠ECA ,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90∘,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90∘,∴∠DCF+∠F=90∘,∴∠F=∠DCA=∠ACE=∠ECG=22.5∘,∴∠AOC=2∠F=45∘,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD // OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180∘,∴3x+3x+2x=180,x=22.5∘,∴∠AOC=2x=45∘,∴△CEO是等腰直角三角形.【考点】全等三角形的性质等腰直角三角形垂径定理切线的性质【解析】(1)连接AC,根据切线的性质和已知得:AD // OC,得∠DAC=∠ACO,根据AAS证明△CDA≅△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≅△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5∘,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180∘,则3x+3x+2x=180,可得结论.【解答】证法一:连接BC,∵△CDA≅△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90∘,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90∘,∴∠DCF+∠F=90∘,∴∠F=∠DCA=∠ACE=∠ECG=22.5∘,∴∠AOC=2∠F=45∘,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD // OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180∘,∴3x+3x+2x=180,x=22.5∘,∴∠AOC=2x=45∘,∴△CEO是等腰直角三角形.27. 【答案】316解法一:∵ AB =4,AD =m , ∴ BD =4−m , ∵ DE // BC , ∴ CE EA =BD AD =4−m m, ∴ S △DECS△ADE=CE AE =4−m m,∵ DE // BC ,∴ △ADE ∽△ABC , ∴ S △ADE S △ABC=(m 4)2=m 216, ∴S △DEC S △ABC=S △DEC S △ADE∗S △ADE S △ABC=4−m m∗m 216=−m 2+4m16,即[Math Processing Error];解法二:如图1,过点B 作BH ⊥AC 于H ,过D 作DF ⊥AC 于F ,则DF // BH , ∴ △ADF ∽△ABH , ∴DF BH=AD AB=m4,∴ S △DECS△ABC=12CE∗DF 12CA∗BH =4−m 4×m 4=−m 2+4m16,即[Math Processing Error]; 问题2:如图②,解法一:如图2,分别延长BD 、CE 交于点O , ∵ AD // BC ,∴ △OAD ∽△OBC , ∴OA OB=AD BC=12,∴ OA =AB =4, ∴ OB =8, ∵ AE =n , ∴ OE =4+n , ∵ EF // BC ,由问题1的解法可知:S △CEF S △OBC=S △CEF S △OEF∗S △OEF S △OBC=4−n 4+n×(4+n 8)2=16−n 264,∵S △OAD S △OBC=(OA OB)2=14,∴ SABCD S △OBC=34,∴ S △CEFSABCD=S △CEF 34S △OBC=43×16−n 264=16−n 248,即[Math Processing Error];解法二:如图3,连接AC 交EF 于M , ∵ AD // BC ,且AD =12BC , ∴ S △ADC S △ABC=12,∴ S △ADC =12S △ABC , ∴ S △ADC =13S ,S △ABC =23S ,由问题1的结论可知:S △EMCS △ABC=−n 2+4n 16,∵ MF // AD ,∴ △CFM ∽△CDA , ∴S △CFM S △CDA=S △CFM13S =3×S △CFMS=(4−n 4)2, ∴ S △CFM =(4−n)248×S ,∴ S △EFC =S △EMC +S △CFM =−n 2+4n 16∗23S +(4−n)248×S =16−n 248×S ,∴ [Math Processing Error].【考点】三角形中位线定理相似三角形的性质与判定【解析】问题1:(1)先根据平行线分线段成比例定理可得:CEEA =BDAD=13,由同高三角形面积的比等于对应底边的比,则S△DEC S△ADE =ECAE=13=39,根据相似三角形面积比等于相似比的平方得:S△ADES△ABC=(34)2=916,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:S△DECS△ABC =12CE∗DF12CA∗BH,分别表示CECA和DFBH的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:S△CEFS△OBC=S△CEF S△OEF ∗S△OEFS△OBC=4−n4+n×(4+n8)2=16−n264,根据相似三角形的性质得:S ABCDS△OBC=34,可得结论;解法二:如图3,连接AC交EF于M,根据AD=12BC,可得S△ADCS△ABC=12,得:S△ADC=13S,S△ABC=23S,由问题1的结论可知:S△EMCS△ABC =−n2+4n16,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】∵AB=4,AD=3,∴BD=4−3=1,∵DE // BC,∴CEEA=BDAD=13,∴S△DECS△ADE=ECAE=13=39,∵DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC=(34)2=916,∴S△DECS△ABC=316,即[Math Processing Error],故答案为:316;解法一:∵AB=4,AD=m,∴BD=4−m,∵DE // BC,∴CEEA=BDAD=4−mm,∴S△DECS△ADE=CEAE=4−mm,∵DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC=(m4)2=m216,∴S△DECS△ABC=S△DECS△ADE∗S△ADES△ABC=4−mm∗m216=−m2+4m16,即[Math Processing Error];解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF // BH,∴△ADF∽△ABH,∴DFBH=ADAB=m4,∴S△DECS△ABC=12CE∗DF12CA∗BH=4−m4×m4=−m2+4m16,即[Math Processing Error];问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD // BC,∴△OAD∽△OBC,∴OAOB=ADBC=12,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF // BC,由问题1的解法可知:S△CEFS△OBC =S△CEFS△OEF∗S△OEFS△OBC=4−n4+n×(4+n8)2=16−n264,∵S△OADS△OBC=(OAOB)2=14,∴S ABCDS△OBC=34,∴S△CEFS ABCD=S△CEF34S△OBC=43×16−n264=16−n248,即[Math Processing Error];解法二:如图3,连接AC交EF于M,∵AD // BC,且AD=12BC,∴S△ADCS△ABC=12,∴S△ADC=12S△ABC,∴S△ADC=13S,S△ABC=23S,由问题1的结论可知:S△EMCS△ABC=−n2+4n16,∵MF // AD,∴△CFM∽△CDA,∴S△CFMS△CDA=S△CFM13S=3×S△CFMS=(4−n4)2,∴S△CFM=(4−n)248×S,∴S△EFC=S△EMC+S△CFM=−n2+4n16∗23S+(4−n)248×S=16−n248×S,∴ [Math Processing Error].28.【答案】设线段MN所在直线的函数表达式为y=kx+b,将M(30, 230)、N(100, 300)代入y=kx+b,{30k+b=230100k+b=300,解得:{k=1b=200,∴线段MN所在直线的函数表达式为y=x+200.分三种情况考虑:①考虑FE=FG是否成立,连接EC,如图所示.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC // EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴ CG =FG −FC =2x +200−100=2x +100.在Rt △CDG 中,CD =100,GD =x +100,CG =2x +100, ∴ 1002+(x +100)2=(2x +100)2, 解得:x 1=−100(不合题意,舍去),x 2=1003;③考虑EF =EG 是否成立.同理,假设EF =EG 成立,则FB =BC 成立,∴ BE =EF −FB =2x +200−100=2x +100. 在Rt △ABE 中,AE =x ,AB =100,BE =2x +100, ∴ 1002+x 2=(2x +100)2,解得:x 1=0(不合题意,舍去),x 2=−4003(不合题意,舍去).综上所述:当x =1003时,△EFG 是一个等腰三角形.【考点】一次函数的综合题 【解析】(1)根据点M 、N 的坐标,利用待定系数法即可求出图②中线段MN 所在直线的函数表达式;(2)分FE =FG 、FG =EG 及EF =EG 三种情况考虑:①考虑FE =FG 是否成立,连接EC ,通过计算可得出ED =GD ,结合CD ⊥EG ,可得出CE =CG ,根据等腰三角形的性质可得出∠CGE =∠CEG 、∠FEG >∠CGE ,进而可得出FE ≠FG ;②考虑FG =EG 是否成立,由正方形的性质可得出BC // EG ,进而可得出△FBC ∽△FEG ,根据相似三角形的性质可得出若FG =EG 则FC =BC ,进而可得出CG 、DG 的长度,在Rt △CDG 中,利用勾股定理即可求出x 的值;③考虑EF =EG 是否成立,同理可得出若EF =EG 则FB =BC ,进而可得出BE 的长度,在Rt △ABE 中,利用勾股定理即可求出x 的值.综上即可得出结论. 【解答】设线段MN 所在直线的函数表达式为y =kx +b , 将M(30, 230)、N(100, 300)代入y =kx +b , {30k +b =230100k +b =300 ,解得:{k =1b =200, ∴ 线段MN 所在直线的函数表达式为y =x +200. 分三种情况考虑:①考虑FE =FG 是否成立,连接EC ,如图所示. ∵ AE =x ,AD =100,GA =x +200, ∴ ED =GD =x +100. 又∵ CD ⊥EG , ∴ CE =CG ,∴ ∠CGE =∠CEG , ∴ ∠FEG >∠CGE , ∴ FE ≠FG ;②考虑FG =EG 是否成立.∵ 四边形ABCD 是正方形, ∴ BC // EG ,∴ △FBC ∽△FEG .假设FG =EG 成立,则FC =BC 成立, ∴ FC =BC =100.∵ AE =x ,GA =x +200,∴ FG =EG =AE +GA =2x +200,∴ CG =FG −FC =2x +200−100=2x +100.在Rt △CDG 中,CD =100,GD =x +100,CG =2x +100, ∴ 1002+(x +100)2=(2x +100)2, 解得:x 1=−100(不合题意,舍去),x 2=1003;③考虑EF =EG 是否成立.同理,假设EF =EG 成立,则FB =BC 成立,∴ BE =EF −FB =2x +200−100=2x +100. 在Rt △ABE 中,AE =x ,AB =100,BE =2x +100, ∴ 1002+x 2=(2x +100)2,解得:x 1=0(不合题意,舍去),x 2=−4003(不合题意,舍去).综上所述:当x =1003时,△EFG 是一个等腰三角形.。

2018年江苏省苏州市中考数学试卷

2018年江苏省苏州市中考数学试卷

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•苏州)在下列四个实数中,最大的数是( )A .3-B .0C .32D .342.(3分)(2018•苏州)地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为( )A .33.8410⨯B .43.8410⨯C .53.8410⨯D .63.8410⨯3.(3分)(2018•苏州)下列四个图案中,不是轴对称图案的是( )A .B .C .D .4.(3分)(2018•苏州)若2x +在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .5.(3分)(2018•苏州)计算2121(1)x x x x+++÷的结果是( ) A .1x + B .11x + C .1x x + D .1x x+ 6.(3分)(2018•苏州)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .12B .13C .49D .597.(3分)(2018•苏州)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点,若40BOC ∠=︒,则D ∠的度数为( )A.100︒B.110︒C.120︒D.130︒8.(3分)(2018•苏州)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30︒方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.203海里D.403海里9.(3分)(2018•苏州)如图,在ABC∆中,延长BC至D,使得12CD BC=,过AC中点E作//EF CD(点F位于点E右侧),且2EF CD=,连接DF.若8AB=,则DF的长为() A.3B.4C.23D.3210.(3分)(2018•苏州)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数kyx=在第一象限内的图象经过点D,交BC于点E.若4AB=,2CE BE=,3tan4AOD∠=,则k的值为()A.3B.23C.6D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3分)(2018•苏州)计算:4a a÷=.12.(3分)(2018•苏州)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 . 13.(3分)(2018•苏州)若关于x 的一元二次方程220x mx n ++=有一个根是2,则m n += .14.(3分)(2018•苏州)若4a b +=,1a b -=,则22(1)(1)a b +--的值为 .15.(3分)(2018•苏州)如图,ABC ∆是一块直角三角板,90BAC ∠=︒,30B ∠=︒,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若20CAF ∠=︒,则BED ∠的度数为 ︒.16.(3分)(2018•苏州)如图,88⨯的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为1r ;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12r r 的值为 .17.(3分)(2018•苏州)如图,在Rt ABC ∆中,90B ∠=︒,25AB =,5BC =.将ABC ∆绕点A 按逆时针方向旋转90︒得到△AB C '',连接B C ',则sin ACB ∠'= .18.(3分)(2018•苏州)如图,已知8AB =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,60DAP ∠=︒.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之间的距离最短为 (结果留根号).三、解答题(本题共10小题,共76分)19.(5分)(2018•苏州)计算:212||9()22-+-. 20.(5分)(2018•苏州)解不等式组:3242(21)x x x x +⎧⎨+<-⎩ 21.(6分)(2018•苏州)如图,点A ,F ,C ,D 在一条直线上,//AB DE ,AB DE =,AF DC =.求证://BC EF .22.(6分)(2018•苏州)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8分)(2018•苏州)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8分)(2018•苏州)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?25.(8分)(2018•苏州)如图,已知抛物线24y x =-与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y x m =+经过点A ,与y 轴交于点D .(1)求线段AD 的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.26.(10分)(2018•苏州)如图,AB 是O 的直径,点C 在O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .(1)求证:CD CE =;(2)若AE GE =,求证:CEO ∆是等腰直角三角形.27.(10分)(2018•苏州)问题1:如图①,在ABC ∆中,4AB =,D 是AB 上一点(不与A ,B 重合),//DE BC ,交AC 于点E ,连接CD .设ABC ∆的面积为S ,DEC ∆的面积为S '.(1)当3AD =时,S S '= ; (2)设AD m =,请你用含字母m 的代数式表示S S'. 问题2:如图②,在四边形ABCD 中,4AB =,//AD BC ,12AD BC =,E 是AB 上一点(不与A ,B 重合),//EF BC ,交CD 于点F ,连接CE .设AE n =,四边形ABCD 的面积为S ,EFC ∆的面积为S '.请你利用问题1的解法或结论,用含字母n 的代数式表示S S'.28.(10分)(2018•苏州)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE x =米(其中0)x >,GA y =米,已知y 与x 之间的函数关系如图②所示,(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即)EFG ∆是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.。

【精校】2018年江苏省苏州市中考真题数学

【精校】2018年江苏省苏州市中考真题数学

2018年江苏省苏州市中考真题数学一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.在下列四个实数中,最大的数是( )A.-3B.0C.3 2D.3 4解析:将各数按照从小到大顺序排列,找出最大的数即可.答案:C.2.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( )A.3.84×103B.3.84×104C.3.84×105D.3.84×106解析:384 000=3.84×105.答案:C.3.下列四个图案中,不是轴对称图案的是( )A.B.C.D.解析:根据轴对称的概念对各选项分析判断利用排除法求解.答案:B.4.x 的取值范围在数轴上表示正确的是( )A.B.C.D.解析:根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可. 答案:D.5.计算21211x x x x+++÷()的结果是( )A.x+1B.11x + C.1x x + D.1x x+解析:先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得. 答案:B.6.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A.12 B.13C.4 9D.5 9解析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值. 答案:C.7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是»AC上的点,若∠BOC=40°,则∠D的度数为( )A.100°B.110°C.120°D.130°解析:根据互补得出∠AOC的度数,再利用圆周角定理解答即可.答案:B.8.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里解析:首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.答案:D.9.如图,在△ABC中,延长BC至D,使得CD=12BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( )A.3B.4解析:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=12AB=12×8=4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4.答案:B.10.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为( )A.3C.6D.12解析:由tan∠AOD=34ADOA可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.答案:A.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.计算:a4÷a=_____.解析:根据同底数幂的除法解答即可.答案:a3.12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是_____.解析:根据众数的概念解答.答案:8.13.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.解析:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=-2.答案:-2.14.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为_____.解析:∵a+b=4,a-b=1,∴(a+1)2-(b-1)2=(a+1+b-1)(a+1-b+1)=(a+b)(a-b+2)=4×(1+2)=12.答案:12.15.如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为_____°.解析:如图所示,∵DE ∥AF , ∴∠BED=∠BFA ,又∵∠CAF=20°,∠C=60°, ∴∠BFA=20°+60°=80°, ∴∠BED=80°. 答案:80.16.如图,8×8的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r 1;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则12r r 的值为_____.解析:由2πr 1=··180AOB OA π∠、2πr 2=··180AOB OC π∠知r 1=·360AOB OA ∠、r 2=·360AOB OC∠,据此可得12r OAr OC=,利用勾股定理计算可得. 答案:23.17.如图,在Rt △ABC 中,∠B=90°,,将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C ′,连接B ′C ,则sin ∠ACB ′=_____.解析:根据勾股定理求出AC ,过C 作CM ⊥AB ′于M ,过A 作AN ⊥CB ′于N ,求出B ′M 、CM ,根据勾股定理求出B ′C ,根据三角形面积公式求出AN ,解直角三角形求出即可.答案:45.18.如图,已知AB=8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP=60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之间的距离最短为_____(结果留根号).解析:连接PM 、PN.首先证明∠MPN=90°设PA=2a ,则PB=8-2a ,PM=a ,,构建二次函数,利用二次函数的性质即可解决问题.答案:.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.计算:|-12)2.解析:根据二次根式的运算法则即可求出答案. 答案:原式=12+3-12=3.20.解不等式组:()324221x x x x ≥+⎧⎪⎨+-⎪⎩<解析:首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.答案:由3x ≥x+2,解得x ≥1, 由x+4<2(2x-1),解得x >2, 所以不等式组的解集为x >2.21.如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB=DE ,AF=DC.求证:BC ∥EF.解析:由全等三角形的性质SAS 判定△ABC ≌△DEF ,则对应角∠ACB=∠DFE ,故证得结论. 答案:∵AB ∥DE , ∴∠A=∠D , ∵AF=DC , ∴AC=DF.∴在△ABC 与△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF(SAS), ∴∠ACB=∠DFE , ∴BC ∥EF.22.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为_____;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).解析:(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.答案:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为31 93 .23.某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?解析:(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.答案:(1)1428%=50,答:参加这次调查的学生人数是50人;补全条形统计图如下:(2)1050×360°=72°,答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3)600×850=96,答:估计该校选择“足球”项目的学生有96人.24.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?解析:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a-1)台,根据“(a-1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.答案:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:25900 229400 x yx y+=⎧⎨+=⎩,解得:35001200 xy=⎧⎨=⎩,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a-1)台,根据题意,得:3500(a-1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.25.如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m 经过点A,与y轴交于点D.(1)求线段AD 的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C ′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC ′平行于直线AD ,求新抛物线对应的函数表达式.解析:(1)解方程求出点A 的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x 2+bx+2,根据二次函数的性质求出点C ′的坐标,根据题意求出直线CC ′的解析式,代入计算即可.答案:(1)由x 2-4=0得,x 1=-2,x 2=2, ∵点A 位于点B 的左侧, ∴A(-2,0),∵直线y=x+m 经过点A , ∴-2+m=0, 解得,m=2,∴点D 的坐标为(0,2),∴=;(2)设新抛物线对应的函数表达式为:y=x 2+bx+2,y=x 2+bx+2=(x+2b )2+2-24b , 则点C ′的坐标为(-2b,2-24b ), ∵CC ′平行于直线AD ,且经过C(0,-4),∴直线CC ′的解析式为:y=x-4,∴2-24b =-2b -4, 解得,b 1=-4,b 2=6,∴新抛物线对应的函数表达式为:y=x 2-4x+2或y=x 2+6x+2.26.如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E.延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC.(1)求证:CD=CE ;(2)若AE=GE ,求证:△CEO 是等腰直角三角形.解析:(1)连接AC ,根据切线的性质和已知得:AD ∥OC ,得∠DAC=∠ACO ,根据AAS 证明△CDA ≌△CEA(AAS),可得结论; (2)介绍两种证法: 证法一:根据△CDA ≌△CEA ,得∠DCA=∠ECA ,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG ,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x ,则∠AOC=2∠F=2x ,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论. 答案:(1)连接AC ,∵CD 是⊙O 的切线, ∴OC ⊥CD , ∵AD ⊥CD ,∴∠DCO=∠D=90°, ∴AD ∥OC ,∴∠DAC=∠ACO , ∵OC=OA ,∴∠CAO=∠ACO , ∴∠DAC=∠CAO , ∵CE ⊥AB , ∴∠CEA=90°,在△CDA 和△CEA 中,∵D CEA DAC EAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDA ≌△CEA(AAS), ∴CD=CE ;(2)证法一:连接BC ,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.27.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC 于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,S S'=_____; (2)设AD=m ,请你用含字母m 的代数式表示S S'. 问题2:如图②,在四边形ABCD 中,AB=4,AD ∥BC ,AD=12BC ,E 是AB 上一点(不与A ,B 重合),EF ∥BC ,交CD 于点F ,连接CE.设AE=n ,四边形ABCD 的面积为S ,△EFC 的面积为S ′.请你利用问题1的解法或结论,用含字母n 的代数式表示S S'. 解析:问题1:(1)先根据平行线分线段成比例定理可得:13CE BD EA AD ==,由同高三角形面积的比等于对应底边的比,则1339DEC ADE S EC S AE ===V V ,根据相似三角形面积比等于相似比的平方得:239416ADE ABC S S ⎛⎫ ⎪⎝⎭==V V ,可得结论; (2)解法一:同理根据(1)可得结论;解法二:作高线DF 、BH ,根据三角形面积公式可得:1·21·2DEC ABCCE DFS S CA BH =V V ,分别表示CECA 和DFBH的值,代入可得结论; 问题2:解法一:如图2,作辅助线,构建△OBC ,证明△OAD ∽△OBC ,得OB=8,由问题1的解法可知:224416·4864CEF CEF OEF OBC OEF OBC S S S n n n S S S n ⎛⎫ ⎪⎝⎭-+-==⨯=+V V V V V V ,根据相似三角形的性质得:34ABCD OBC S S =V ,可得结论; 解法二:如图3,连接AC 交EF 于M ,根据AD=12BC ,可得12ADC ABC S S =V V ,得:S △ADC =13S ,S △ABC=2 3S,由问题1的结论可知:2416EMCABCS n nS-+=VV,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论. 答案:问题1:(1)∵AB=4,AD=3,∴BD=4-3=1,∵DE∥BC,∴13 CE BDEA AD==,∴1339 DECADES ECS AE===VV,∵DE∥BC,∴△ADE∽△ABC,∴239416 ADEABCSS⎛⎫⎪⎝⎭==VV,∴316DECABCSS=VV,即316SS'=;(2)解法一:∵AB=4,AD=m,∴BD=4-m,∵DE∥BC,∴4CE BD m EA AD m-==,∴4DECADES CE mS AE m-==VV,∵DE∥BC,∴△ADE∽△ABC,∴22416 ADEABCS m mS⎛⎫⎪⎝=⎭=VV,∴2244··1616 DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+===V V VV V V,即2416S m mS'-+=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF ∽△ABH ,∴4DF AD mBH AB ==, ∴21·44214416·2DEC ABC CE DF S m m m mS CA BH--+==⨯=V V , 即2416S m m S '-+=; 问题2:解法一:如图2,分别延长BD 、CE 交于点O ,∵AD ∥BC ,∴△OAD ∽△OBC , ∴12OA AD OB BC ==, ∴OA=AB=4, ∴OB=8, ∵AE=n , ∴OE=4+n , ∵EF ∥BC ,由问题1的解法可知:224416·4864CEF CEF OEF OBC OEF OBC S S S n n n S S S n ⎛⎫ ⎪⎝⎭-+-==⨯=+V V V V V V ,∵214 OADOBCS OAS OB⎛⎫=⎪⎝⎭=VV,∴34 ABCDOBCSS=V,∴22416163364484CEF CEFABCDOBCS S n nS S--==⨯=V VV,即21648S nS'-=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=12 BC,∴12ADCABCSS=VV,∴S△ADC=12S△ABC,∴S△ADC=13S,S△ABC=23S,由问题1的结论可知:2416EMCABCS n nS-+=VV,∵MF∥AD,∴△CFM∽△CDA,∴243143CFM CFM CFMCDAS S S nS SS-==⨯⎛⎫⎪⎝=⎭V V VV,∴S△CFM=()2448n-×S,∴S△EFC=S△EMC+S△CFM=()22244216·1634848nn n nS S S--+-+⨯=⨯,∴21648S n S '-=.28.如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE=x 米(其中x >0),GA=y 米,已知y 与x 之间的函数关系如图②所示,(1)求图②中线段MN 所在直线的函数表达式; (2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.解析:(1)根据点M 、N 的坐标,利用待定系数法即可求出图②中线段MN 所在直线的函数表达式;(2)分FE=FG 、FG=EG 及EF=EG 三种情况考虑:①考虑FE=FG 是否成立,连接EC ,通过计算可得出ED=GD ,结合CD ⊥EG ,可得出CE=CG ,根据等腰三角形的性质可得出∠CGE=∠CEG 、∠FEG >∠CGE ,进而可得出FE ≠FG ;②考虑FG=EG 是否成立,由正方形的性质可得出BC ∥EG ,进而可得出△FBC ∽△FEG ,根据相似三角形的性质可得出若FG=EG 则FC=BC ,进而可得出CG 、DG 的长度,在Rt △CDG 中,利用勾股定理即可求出x 的值;③考虑EF=EG 是否成立,同理可得出若EF=EG 则FB=BC ,进而可得出BE 的长度,在Rt △ABE 中,利用勾股定理即可求出x 的值.综上即可得出结论.答案:(1)设线段MN 所在直线的函数表达式为y=kx+b , 将M(30,230)、N(100,300)代入y=kx+b ,30230100300k b k b +=⎧⎨+=⎩,解得:1200k b =⎧⎨=⎩, ∴线段MN 所在直线的函数表达式为y=x+200. (2)分三种情况考虑:①考虑FE=FG 是否成立,连接EC ,如图所示.∵AE=x ,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC∥EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解得:x1=-100(不合题意,舍去),x2=1003;③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=-4003(不合题意,舍去).综上所述:当x=1003时,△EFG是一个等腰三角形.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2018年江苏省苏州市中考数学试卷-答案

2018年江苏省苏州市中考数学试卷-答案

2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。

3.【答案】B【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部分能否重合即可.四个选项中,A 、C 、D 三个选项中的图形都能沿着某一条直线折叠以后,直线两旁的部分能互相重合,只有B 选项中图形无法沿着某一条直线折叠以后,直线两旁的部分互相重合.故选B . 【考点】轴对称图形的识别。

4.【答案】D【解析】根据题意,得x 20+≥,解得x 2≥-,所以x 2≥-表示在数轴上时在点2-处取向右的方向,2-处用实心点圈表示.故选D .【考点】二次根式有意义的条件和用数轴表示不等式的解集。

5.【答案】B【解析】()22121111+x 11x x x x x x x x +++⎛⎫÷=⋅= ⎪+⎝⎭+.故选B . 【考点】分式的混合运算。

6.【答案】C【解析】设每个小正方形的边长为a ,则正方形的面积29a ,∴阴影部分面积为21424,2a a a ⨯⨯⨯=∴飞镖落在阴影部分的概率2244=99a a =.故选C .【考点】几何概率的求法。

7.【答案】B【解析】()1,B BCO,BOC 4018040702OB OC B =∴∠=∠∠=︒∴∠=︒-︒=︒,,四边形ABCD 是O 的内接四边形,18018018070110B D D B ∴∠+∠=︒∴∠=︒-∠=︒-︒=︒,.故选B. 【考点】圆内接四边形的性质以及等腰三角形的性质。

8.【答案】D【解析】根据题意得,6020,tan 20tan 6020240,204060,ABP AB AP AB ABP BC AC ∠=︒=∴=⋅∠=⨯︒==⨯=∴=+=,在t R PAC △中,PC ===.故选D .【考点】解直角三角形的应用——方向角问题。

七数上(RJ)-2018年江苏省苏州市中考数学试卷含答案解析(Word版)--2018年各地中考真题

七数上(RJ)-2018年江苏省苏州市中考数学试卷含答案解析(Word版)--2018年各地中考真题

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC 方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y 米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A 型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD 中,AB=4,AD ∥BC ,AD=BC ,E 是AB 上一点(不与A ,B 重合),EF ∥BC ,交CD 于点F ,连接CE .设AE=n ,四边形ABCD 的面积为S ,△EFC 的面积为S′.请你利用问题1的解法或结论,用含字母n 的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF 、BH ,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC ,证明△OAD ∽△OBC ,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC 交EF 于M ,根据AD=BC ,可得=,得:S △ADC =S ,S △ABC =,由问题1的结论可知:=,证明△CFM ∽△CDA ,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE ∥BC , ∴,∴==,∵DE ∥BC ,∴△ADE ∽△ABC ,∴==, ∴=,即, 故答案为:; (2)解法一:∵AB=4,AD=m ,∴BD=4﹣m ,∵DE ∥BC , ∴==,∴==,∵DE ∥BC ,∴△ADE ∽△ABC ,∴==,∴===,即=; 解法二:如图1,过点B 作BH ⊥AC 于H ,过D 作DF ⊥AC 于F ,则DF ∥BH ,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S=,△ADC∴S=S,S△ABC=,△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,∴S=×S,△CFM=S△EMC+S△CFM=+×S=,∴S△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC 方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y 米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【分析】(1)根据点M、N的坐标,利用待定系数法即可求出图②中线段MN所在直线的函数表达式;(2)分FE=FG、FG=EG及EF=EG三种情况考虑:①考虑FE=FG是否成立,连接EC,通过计算可得出ED=GD,结合CD⊥EG,可得出CE=CG,根据等腰三角形的性质可得出∠CGE=∠CEG、∠FEG>∠CGE,进而可得出FE≠FG;②考虑FG=EG是否成立,由正方形的性质可得出BC∥EG,进而可得出△FBC∽△FEG,根据相似三角形的性质可得出若FG=EG则FC=BC,进而可得出CG、DG的长度,在Rt△CDG中,利用勾股定理即可求出x的值;③考虑EF=EG是否成立,同理可得出若EF=EG则FB=BC,进而可得出BE的长。

(2021年整理)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

(2021年整理)2018年江苏省苏州市中考数学试卷(试卷+答案+解析)

2018年江苏省苏州市中考数学试卷(试卷+答案+解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年江苏省苏州市中考数学试卷(试卷+答案+解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年江苏省苏州市中考数学试卷(试卷+答案+解析)的全部内容。

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是( )A.﹣3 B.0 C.D.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3。

84×103B.3.84×104C.3。

84×105D.3.84×1063.(3分)下列四个图案中,不是轴对称图案的是( )A.B.C.D.4.(3分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是( )A.B.C.D.5.(3分)计算(1+)÷的结果是( )A.x+1 B.C.D.6.(3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A.B.C.D.7.(3分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°8.(3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( )A.3 B.4 C.2D.310.(3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为( )A.3 B.2C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3分)计算:a4÷a= .12.(3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .14.(3分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(本题共10小题,共76分)19.(5分)计算:|﹣|+﹣()2.20.(5分)解不等式组:21.(6分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m 经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD 于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x 米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)在下列四个实数中,最大的数是( )A.﹣3 B.0 C.D.【考点】2A:实数大小比较.菁优网版权所有【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.2.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3。

2018年苏州市中考数学试卷含答案解析-推荐

2018年苏州市中考数学试卷含答案解析-推荐

2018年江苏省苏州市中考数学试卷、选择题(每题只有一个正确选项,本题共 10小题,每题3分,共30分)1. (3.00分)在下列四个实数中,最大的数是()A. - 3 B . 0 C.色 D.上2 4 2.(3.00分)地球与月球之间的平均距离大约为 384000km 384000用科学记数法可表示为 ( )A. 3.84 X 103B. 3.84 X 104C. 3.84 X 105D. 3.84 X 1063. (3.00分)下列四个图案中,不是轴对称图案的是((3.00分)若 ,在实数范围内有意义,贝U x 的取值范围在数轴上表示正确的是( ( 3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞 镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A.B.-C. D. 5. (3.00分)计算(1+丄)x 的结果是A.D.4.x+1 B .y+17. (3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是"上的点,若/BOC=40,则/D的度数为()6.C. 120°D. 130°8. (3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西 向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛 屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间A. 40海里B . 60海里C . 20「海里 D. 40「海里9. (3.00分)如图,在△ ABC 中,延长BC 至 D,使得CD=-BC 过AC 中点E 作EF// CD (点F 位于点E 右侧),且EF=2CD 连接DF.若AB=8贝U DF 的长为(10. (3.00分)如图,矩形ABCD 勺顶点A ,B 在x 轴的正半轴上,反比例函数 y 丄在第一象 D,交 BC 于点 E .若 AB=4 CE=2BE tan /k 的值为(A. 100°B. 110° ,则限内的图象经过点二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11. ___________________________ (3.00 分)计算:a4- a= .12. (3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5, 8, 6, 8, 5,10,8,这组数据的众数是________ .13. (3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,贝U m+n= ______ .14. (3.00 分)若a+b=4, a-b=1,贝U( a+1)2—(b—1)2的值为 ___ .15. (3.00分)如图,△ ABC是一块直角三角板,/ BAC=90,/ B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D, BC与直尺的两边分别交于点E, F.若/ CAF=20,则/ BED的度数为__________ ° .16. (3.00分)如图,8X 8的正方形网格纸上有扇形OAB和扇形OCD 点O, A, B, C, D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为「1 ;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则一的值为____________ .r217. (3.00分)如图,在Rt△ ABC中,/ B=90°, AB=2 n, BC= ~.将厶ABC绕点A按逆时针方向旋转90°得到△ AB'C',连接B'C,贝U sin / ACB = ________ .解答题(每题只有一个正确选项,本题共10小题,共76分)22. (6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相 等,且分别标有数字1, 2, 3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动 转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).C fB'18. (3.00分)如图,已知AB=8 P 为线段AB 上的一个动点,分别以 侧作菱形APC 刑菱形PBFE 点P ,C, E 在一条直线上,/ DAP=60 .AP, PB 为边在AB 的同 M N 分别是对角线AC (结果留根号).19. (5.00分)计算:| -丄|+「」-( 20. (5.00 分) 解不等式组:3盘》时2 s+4<2(2x-l ) 如图,点 A ,F ,C, D 在一条直线上,AB// DE AB=DE AF=DC 求证:BC// EF.最短为 (6.00分)21. L )23. (8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择•为了估计全校学生对这四个活动项目的选择情况,体育老师从 全体学生中随机抽取了部分学生进行调查 (规定每人必须并且只能选择其中的一个项目),并 把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3) 若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24. (8.00分)某学校准备购买若干台 A 型电脑和B 型打印机•如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花 费9400元.(1) 求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2) 如果学校购买A 型电脑和B 型打印机的预算费用不超过 20000元,并且购买B 型打印机 的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台 B 型打印机?25. (8.00分)如图,已知抛物线y=x 2 -4与x 轴交于点A, B (点A 位于点B 的左侧),C 为 顶点,直线y=x+m 经过点A,与y 轴交于点D.列问题:(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为 C .若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD求新抛物线对应的函数表达式.26. (10.00分)如图,AB是。

2018江苏苏州中考数学解析

2018江苏苏州中考数学解析

2018年江苏省苏州市初中毕业、升学考试数学学科一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州,1,3分)在下列四个实数中,最大的数是A.-3 B.0 C.32D.34【答案】C【解析】本题解答时要利用有理数大小比较的规则.根据正数大于零,零大于一切负数,可知最大的数为32,故选C.2.(2018江苏苏州,2,3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【解析】本题解答时要确定好底数和10上的指数,384 000有6位整数,用科学记数法可表示成:53.8410⨯,故选C.3.(2018江苏苏州,3,3分)下列四个图案中,不是轴对称图案的是A.B.C.D.【答案】B【解析】本题解答时要找出图形的对称轴.A,C,D都是轴对称图形,只有B是中心对称图形,故选B. 4.(2018江苏苏州,4,3分)若2x+在实数范围内有意义,则x的取值范围在数轴上表示正确的是A.B.C.D.【答案】D【解析】本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x+≥,解得2x≥-,故选D.5.(2018江苏苏州,5,3分)计算2121(1)x xx x+++÷的结果是A .x +1B .11x + C .1x x + D .1x x+ 【答案】B【解析】 本题解答时要利用分式的运算顺序和法则进行计算.原式=2111(1)x x x x x +⨯=++ ,故选B .6.(2018江苏苏州,6,3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A .12B .13C .49D .59【答案】C【解析】 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为214242a a a ⨯⨯⨯=,则飞镖落在阴影部分的概率为:224499a a=,故选C .7.(2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是»AC 上的点.若∠BOC =40°,则∠D 的度数为A .100°B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .8.(2018江苏苏州,8,3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏两30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之问的距离(即PC 的长)为A .40海里B .60海里C .203海里D .403海里【答案】D【解析】本题解答时要利用直角三角形的边角关键和勾股定理来进行计算.由题意可知AB=20,∠APB=30゜,∴P A=203,∵BC=2⨯20=40,∴AC=60,∴PC=2222(203)60403PA AC+=+=(海里),故选D.9.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A.3 B.4 C.23D.32【答案】B【解析】本题解答时要取AB的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB的中点M,则ME∥BC,ME=12BC,∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=4,故选B.E FMBA10.(2018江苏苏州,10,3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23C.6 D.12【答案】A【解析】本题解答时要把三角形函数数值化,用参数表示D的坐标,再求出E点的坐标,利用点在反比例函数上,得到方程,解这个方程即可求出k.设AD=3m,OA=4m,∵BC=AD,∴BC=3m,∵CE=2BE,∴BE=m,∴点E的坐标为(4m+4,m),∵点D,E都在反比例函数kyx=上,∴3m⨯4m=m(4m+4),解得m=12,∴k=3m⨯4m=3,故选A.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州,11,3分)计算:a4÷a=.【答案】a3【解析】本题解答时要利用同底数幂的除法法则.43a a a÷=.12.(2018江苏苏州,12,3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.【答案】8【解析】本题解答时要掌握众数的概念.在这组数据中,由8出现了3次为最多,所以这组数据的众数为8.13.(2018江苏苏州,13,3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.【答案】-2【解析】本题解答时要把方程的解代入方程进行计算.把x=2代入方程有:4+2m+2n=0,∴m+n=-2.14.(2018江苏苏州,14,3分)若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.【答案】12【解析】本题解答时要把要求值的代数式进行因式分解变形,然后整体代入即可.22(1)(1)()(2)4312a b a b a b+--=+-+=⨯=.15.(2018江苏苏州,15,3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°.现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.【答案】80【解析】本题先用直角的性质求出∠CAF的度数,再利用平行线求出∠BDE的度数,最后利用三角形的内角和定理求出∠BED的度数.∵∠CAB=90゜,∠CAF=20゜,∴∠F AB=70゜,∵DE∥FA,∴∠BDE=∠F AD=70゜,∴∠BED=180゜-30゜-70゜=80゜.16.(2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为.【答案】23【解析】 本题解答时要注意圆锥展开图是扇形,扇形的弧长是圆锥底面圆的周长.12180AOB rOA ππ∠=⨯,22180AOB r OB ππ∠=⨯,∴12r OA r OC = , ∵AB ∥CD ,∴4263OA AB OC CD ===,∴1223r OA r OC ==17.(2018江苏苏州,17,3分)如图,在Rt △ABC 中,∠B =90°,AB =25,BC =5.将△ABC 绕点A按逆时针方向旋转90°得到△AB C '',连接B C ',则sin ∠ACB '= .【答案】45【解析】 本题解答时要过B ’作B ’D ⊥AC 于D ,利用用等角的三角函数值相等中,旋转的性质,直角三角形三边的关系以及勾股定理来进行计算.过点B ’作B ’D ⊥AC 于D ,由旋转可知:∠B ’AB =90゜,AB ’=AB 5 ∴∠AB ’D +∠B ’AD =∠B ’AD +∠CAB ,∴∠AB ’D =∠CAB . ∵AB 5BC =5AC =5∴B ’D =AB ’sin 'AB D ∠ ==AB ’sin CAB ∠=5252=, ∴CD =5-2=3,∴B ’D 22(25)24-, ∴B ’C =5, ∴sin ∠ACB ’='4'5B D BC =.DC'B'CA18.(2018江苏苏州,18,3分)如图,已知AB =8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP =60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之问的距离最短为 (结果保留根号).【答案】3【解析】 本题解答时要连接MP ,PN ,利用菱形的性质,得出△PMN 为直角三角形,然后利用勾股定理,求出用PA 的长来表示的MN 的长,最后利用二次函数的性质求出MN 的最小值.连接PM ,PN ,∵四边形APCD ,PBFE 是菱形, ∴P A =PC ,∵AM =MC ,∴PM ⊥AC ,同理PN ⊥BE . ∴∠CPM +∠CPN =119022APC BPE ∠+∠=゜,∵∠DAP =60゜,∴∠CAP ==∠NPB =30゜, 设AP =x ,则PB =8-x , ∴PM =12x ,PN 3)x - NMCFD ABP∴2222213()[(8)](6)1222PM PN x x x ++--+∴当x =6时,MN 有最小值,最小值为23三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(2018江苏苏州,19,5分)(本题5分)计算:2129()22-+-. 【思路分析】 解答本题时要分别求出绝对值,二次根式,乘方的值,然后再做加减运算. 【解答过程】原式=12+3-12=3.20.(2018江苏苏州,20,5分)(本题5分)解不等式组:3242(21)x x x x ≥+⎧⎨+<-⎩.【思路分析】 解答本题时,先分别求出两个不等式的解集,然后再根据“同大取大,同小取小,大于小数小于大数取中间,大于大数小于小数无解”来求不等式组的解集.【解答过程】由3x >x +2,解得x ≥1,由x +4<2(2x -1),解得x >2, ∴不等式组的解集是x >2.21.(2018江苏苏州,21,6分)如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB =DE ,AF =DC .求证:BC ∥EF .【思路分析】 解答本题时,先根据边角边判定△ABC ≌△DEF ,再由全等三角形的性质得到∠BCA =∠EFC ,由此判别BC ∥EF .【解答过程】证明:∵AB ∥DE ,∴∠A =∠D .∵AF =DC ,∴AC =DF .在△ABC 和△DEF 中,AB =DE ,∠A =∠D ,AC =DF , ∴△ABC ≌△DEF (SAS ). ∴∠ACB =∠DFE , ∴BC ∥EF .22.(2018江苏苏州,22,6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【思路分析】本题考查概率的应用.解答(1)时,这一小题是一步事件,直接应用概率公式进行计算;解答第(2)时,这一小题是二步事件,先用树状图或列表法找出所有的等可能事件,然后再找出满足题目条件的情况,最后利用公式进行计算.【解答过程】(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.23.(2018江苏苏州,23,8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【思路分析】本题考查与条形统计图和扇形统计图相关的计算.(1)由乒乓球人数和所占的百分比求出样本容量,再利用样本容量和已知组的人数求出羽毛球的人数,再补全条形图;(2)求出篮球人数的百分比,乘以360゜即可;(3)用样本的百分率来估算总体.【解答过程】(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.24.(2018江苏苏州,24,8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?【思路分析】本题考查了二元一次方程组和不等式的应用.解答第(1)时,根据题意列出地二元一次方程组来解决问题;解答第(2)时,根据题目中的不等式关系列出不等式来解决问题.【解答过程】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x yx y+=⎧⎨+=⎩,解这个方程组,得x=3500,y=1200.答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元.(2)设学校购买胛台B型打印机,则购买A型电脑为(n-l)台,根据题意得:3500(n-1)+1200n≤20000,解这个不等式,得n≤5.答:该学校至多能购买5台B型打印机.25.(2018江苏苏州,25,8分)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C 为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.【思路分析】 本题本题考查二次函数与一元二次方程的关系.解答第(1)时,分别求出A ,D 两点的坐标,然后利用勾股定理可求出AD 的长;解答第(2)时,把二次函数配成顶点式,得到C ’点的坐标,再求出直线CC ’的解析式,最后把C ’点的坐标解入直线即可求出二次函数的解析式.【解答过程】 解:(1)由x 2-4=0解得x 1=2,x 2=-2.∵点A 位于点B 的左侧,∴A (-2,0). ∵直线y =x +m 经过点A ,∴-2+m =0, ∴m =2,∴D (0,2).∴AD 22OA OD +2(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b .∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b-4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2.26.(2018江苏苏州,26,10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC . (1)求证:CD =CE ;(2)若AE =GE ,求证:△CEO 是等腰直角三角形.【思路分析】本题本题考查圆的切线的性质,圆的基本性质以及全等三角形的判定和性质等.(1)连接AC,BC,证明△CDA≌△CEA,即可得CD=CE;(2)利用(1)中的全等形,和直径所对的圆周是直角等性质求出∠AOC=2∠F=45゜,即可证明△CEO是等腰直角三角形.【解答过程】证明:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC+∠EAC+∠OAF=180°.∴3x°+3x°+2x°=180°.∴x=22.5,∴∠AOC=2x°=45°.∴△CEO是等腰直角三角形.27.(2018江苏苏州,27,10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,S S'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【思路分析】本题考查相似三角形的性质以及三角形面积的计算.问1:(1)先求出△ADC的面积,再求出△CDE的面积与△ADC的面积的比,最后求出两三角形的面积比;(2)类比(1)中的方法进行求解;问题2:把梯形的问题转化为三角形的问题,仍然利用平行线截得线段成比例,相似三角形的面积比等于相似比的平方以及等式的性质来求解.【解答过程】解:问题1:(1)316;(2)解法一:∵AB=4,AD=m.∴BD=4-m.又∵CE∥BC,∴4CE BD mEA DA m-==,∴4DECADES mS m-=VV.又∵CE∥BC,∴△ADE∽△ABC,∴216ADEABCS mS=VV.∴22441616DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+=⨯=⨯=V V VV V V.即2416S m mS-+=′.解法二:过点B作BH⊥AC,垂足为H,过点D作DF⊥AC,垂足为F.则DF∥BH,∴△ADF∽△ABH.∴4DF AD mBH AB==.∵DE∥BC,∴44CE BD mCA BA-==,∴21442144162DECABCCE DFS m m m mS CA BH⋅--+==⨯=⋅VV.即2416S m mS-+=′.问题2:解法一:分别延长BA,CD,相交于点D.∵AD∥BC,∴△OAD∽△OBC,∴12OA ADOB BC==.∴OA=AB=4,∴OB=8.∵AE=n,∴OE=4+n.∵EF∥BC.由问题1的解法可知24416()4864CEF CEF OEFOBC OEF OBCS S S n n nS S S n-+-=⨯=⨯=+V V VV V V,∵21()4OADABCDS OAS OB==VV.∴23()4ABCDOBCS OAS OB==V.∴22416163364484CEF CEFABCDOBCS S n nS S--==⨯=△△△,即SS=′21648n-.解法二:连接AC交EF于M.∵AD∥BC,且AD=12BC,∴12ADCABCSS=△△.∴S△ADC=13S,S△ABC=23S.由问题1的结论可知,EMCABCSS=VV2416n n-+.∴S△EMC=2416n n-+×23S=2424n nS-+.∵MF∥AD,∴△CFM∽△CDA,∴243()143CFM CFM CFM CDA S S S n S S S -==⨯=△△△△, ∴S △CFM =2(4)48n S -. ∴S △EFC =S △EMC +S △CFM =2424n n S -++2(4)48n S -=21648n S -, ∴S S=′21648n -.28.(2018江苏苏州,28,10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向两走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE =x 米(其中x >0),GA =y 米.已知y 与x 之间的函数关系如图②所示.(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG )是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.【思路分析】 本题考查一次函数的性质以及动点问题中等腰三角形存在性质的探究.(1)利用待定系数法坟出y 与x 之间的函数关系式;(2)用含x 的代数式来表示AE ,AG ,GD 的长度,然后分EF =FG ,FG =EG ,EF =EG 来进行讨论,利用勾股定理和相似三角形和性质来求x .【解答过程】解:(1)设线段MN 所在直线的函数表达式为y =kx +b .∵M ,N 两点的坐标分别为(30,230),(100,300),∴30230100300k b k b +=⎧⎨+=⎩,解这个方程组,得1200k b =⎧⎨=⎩. ∴线段MN 所在直线的函数表达式为y =x +200.(2)①第一种情况:考虑FE =FG 是否成立,连接EC .∵AE =x ,AD =100,GA =x +200,∴ED =GD =x +100.又∵CD ⊥EG ,∴CE =CG ,∴∠CGE =∠CEG ,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003.③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解这个方程,得x1=0,x2=-4003(不合题意,均舍去).综上所述,当x=1003时,△EFG是一个等腰三角形.。

苏州市中考数学试卷含答案解析

苏州市中考数学试卷含答案解析

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE 的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E 处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;=S,S△ABC=,解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADC由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,=,∴S△ADC=S,S△ABC=,∴S△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,=×S,∴S△CFM∴S=S△EMC+S△CFM=+×S=,△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E 处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.。

2018年江苏省苏州市中考数学试卷含答案解析

2018年江苏省苏州市中考数学试卷含答案解析

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD (点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB 的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD (点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB 的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A 型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS 证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;=S,S 解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角△ABC形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S=,△ADC=S,S△ABC=,∴S△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,=×S,∴S△CFM=S△EMC+S△CFM=+×S=,∴S△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【分析】(1)根据点M、N的坐标,利用待定系数法即可求出图②中线段MN所在直线的函数表达式;(2)分FE=FG、FG=EG及EF=EG三种情况考虑:①考虑FE=FG是否成立,连接EC,通过计算可得出ED=GD,结合CD⊥EG,可得出CE=CG,根据等腰三角形的性质可得出∠CGE=∠CEG、∠FEG>∠CGE,进而可得出FE≠FG;②考虑FG=EG是否成立,由正方形的性质可得出BC∥EG,进而可得出△FBC∽△FEG,根据相似三角形的性质可得出若FG=EG则FC=BC,进而可得出CG、DG的长度,在Rt△CDG中,利用勾股定理即可求出x的值;③考虑EF=EG是否成立,同理可得出若EF=EG则FB=BC,进而可得出BE的长度,在Rt△。

江苏省苏州市2018年中考数学试题(含解析)

江苏省苏州市2018年中考数学试题(含解析)

2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B.C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120° D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y 元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S=S,△ADCS△ABC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE ∥BC ,∴△ADE ∽△ABC ,∴==,∴===, 即=; 解法二:如图1,过点B 作BH ⊥AC 于H ,过D 作DF ⊥AC 于F ,则DF ∥BH , ∴△ADF ∽△ABH ,∴=,∴===, 即=;问题2:如图②,解法一:如图2,分别延长BD 、CE 交于点O ,∵AD ∥BC ,∴△OAD ∽△OBC , ∴,∴OA=AB=4,∴OB=8,∵AE=n ,∴OE=4+n ,∵EF ∥BC ,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,=,∴S△ADC∴S=S,S△ABC=,△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,∴S=×S,△CFM=S△EMC+S△CFM=+×S=,∴S△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;。

2018年全国中考数学真题江苏苏州中考数学(解析版-精品文档)

2018年全国中考数学真题江苏苏州中考数学(解析版-精品文档)

2018年江苏省苏州市初中毕业、升学考试数学学科一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州,1,3分)在下列四个实数中,最大的数是A.-3 B.0 C.32D.34【答案】C【解析】本题解答时要利用有理数大小比较的规则.根据正数大于零,零大于一切负数,可知最大的数为32,故选C.2.(2018江苏苏州,2,3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【解析】本题解答时要确定好底数和10上的指数,384 000有6位整数,用科学记数法可表示成:53.8410⨯,故选C.3.(2018江苏苏州,3,3分)下列四个图案中,不是轴对称图案的是A. B. C.D.【答案】B【解析】本题解答时要找出图形的对称轴.A,C,D都是轴对称图形,只有B是中心对称图形,故选B.4.(2018江苏苏州,4,32x+x的取值范围在数轴上表示正确的是A .B .C .D .【答案】D【解析】 本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x +≥,解得2x ≥-,故选D .5.(2018江苏苏州,5,3分)计算2121(1)x x x x+++÷的结果是A .x +1B .11x +C .1xx +D .1x x+ 【答案】B【解析】 本题解答时要利用分式的运算顺序和法则进行计算.原式=2111(1)x x x x x +⨯=++ ,故选B .6.(2018江苏苏州,6,3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A .12B .13C .49D .59【答案】C【解析】 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为214242a a a ⨯⨯⨯=,则飞镖落在阴影部分的概率为:224499a a=,故选C .7.(2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC =40°,则∠D 的度数为A.100°B.110°C.120°D.130°【答案】B【解析】本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC=OB,∠BOC=40゜,∴∠B=70゜,∴∠D=180゜-70゜=110゜,故选B.8.(2018江苏苏州,8,3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P在其北偏两30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之问的距离(即PC的长)为A.40海里B.60海里C.203海里D.403海里【答案】D【解析】本题解答时要利用直角三角形的边角关键和勾股定理来进行计算.由题意可知AB=20,∠APB=30゜,∴PA3,∵BC=2⨯20=40,∴AC=60,∴PC2222(203)60403PA AC++=,故选D.9.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为() A.3 B.4 C.3 D.2【答案】B【解析】本题解答时要取AB的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB的中点M,则ME∥BC,ME=12BC,∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=4,故选B.E FMBA10.(2018江苏苏州,10,3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y =kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23 C.6 D.12【答案】A【解析】本题解答时要把三角形函数数值化,用参数表示D的坐标,再求出E点的坐标,利用点在反比例函数上,得到方程,解这个方程即可求出k.设AD=3m,OA=4m,∵BC=AD,∴BC=3m,∵CE=2BE,∴BE=m,∴点E的坐标为(4m+4,m),∵点D,E都在反比例函数kyx=上,∴3m⨯4m=m(4m+4),解得m=12,∴k=3m⨯4m=3,故选A.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州,11,3分)计算:a4÷a=.【答案】a3【解析】本题解答时要利用同底数幂的除法法则.43÷=.a a a12.(2018江苏苏州,12,3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.【答案】8【解析】本题解答时要掌握众数的概念.在这组数据中,由8出现了3次为最多,所以这组数据的众数为8.13.(2018江苏苏州,13,3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n =.【答案】-2【解析】本题解答时要把方程的解代入方程进行计算.把x=2代入方程有:4+2m+2n=0,∴m+n=-2.14.(2018江苏苏州,14,3分)若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.【答案】12【解析】本题解答时要把要求值的代数式进行因式分解变形,然后整体代入即可.22+--=+-+=⨯=.a b a b a b(1)(1)()(2)431215.(2018江苏苏州,15,3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°.现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC 与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.【答案】80【解析】本题先用直角的性质求出∠CAF的度数,再利用平行线求出∠BDE的度数,最后利用三角形的内角和定理求出∠BED的度数.∵∠CAB=90゜,∠CAF=20゜,∴∠FAB=70゜,∵DE∥FA,∴∠BDE=∠FAD=70゜,∴∠BED=180゜-30゜-70゜=80゜.16.(2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为.【答案】23【解析】本题解答时要注意圆锥展开图是扇形,扇形的弧长是圆锥底面圆的周长.12180AOBr OAππ∠=⨯,22180AOBr OBππ∠=⨯,∴12r OAr OC=,∵AB∥CD,∴4263OA ABOC CD===,∴1223r OAr OC==17.(2018江苏苏州,17,3分)如图,在Rt△ABC中,∠B=90°,AB=25,BC=5.将△ABC 绕点A按逆时针方向旋转90°得到△AB C'',连接B C',则sin∠ACB'=.【答案】45【解析】本题解答时要过B’作B’D⊥AC于D,利用用等角的三角函数值相等中,旋转的性质,直角三角形三边的关系以及勾股定理来进行计算.过点B’作B’D⊥AC于D,由旋转可知:∠B’AB=90゜,AB’=AB5,∴∠AB’D+∠B’AD=∠B’AD+∠CAB,∴∠AB’D=∠CAB.∵AB=25,BC5AC=5∴B’D=AB’sin'AB D∠ ==AB’sin CAB∠=5252⨯=,∴CD=5-2=3,∴B’D=22(25)24-=,∴B’C=5,∴sin∠ACB’='4'5B DB C=.DC'B'CA18.(2018江苏苏州,18,3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N 分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之问的距离最短为(结果保留根号).【答案】23【解析】本题解答时要连接MP,PN,利用菱形的性质,得出△PMN为直角三角形,然后利用勾股定理,求出用PA的长来表示的MN的长,最后利用二次函数的性质求出MN的最小值.连接PM,PN,∵四边形APCD,PBFE是菱形,∴PA=PC,∵AM=MC,∴PM⊥AC,同理PN⊥BE.∴∠CPM+∠CPN=119022APC BPE∠+∠=゜,∵∠DAP=60゜,∴∠CAP==∠NPB=30゜,设AP=x,则PB=8-x,∴PM=12x,PN3)x-FAP∴==∴当x=6时,MN有最小值,最小值为三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(2018江苏苏州,19,5分)(本题5分)计算:21(22-.【思路分析】解答本题时要分别求出绝对值,二次根式,乘方的值,然后再做加减运算.【解答过程】原式=12+3-12=3.20.(2018江苏苏州,20,5分)(本题5分)解不等式组:3242(21)x xx x≥+⎧⎨+<-⎩.【思路分析】解答本题时,先分别求出两个不等式的解集,然后再根据“同大取大,同小取小,大于小数小于大数取中间,大于大数小于小数无解”来求不等式组的解集.【解答过程】由3x>x+2,解得x≥1,由x+4<2(2x-1),解得x>2,∴不等式组的解集是x>2.21.(2018江苏苏州,21,6分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【思路分析】解答本题时,先根据边角边判定△ABC≌△DEF,再由全等三角形的性质得到∠BCA=∠EFC,由此判别BC∥EF.【解答过程】证明:∵AB∥DE,∴∠A=∠D.∵AF=DC,∴AC=DF.在△ABC和△DEF中,AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS).∴∠ACB=∠DFE,∴BC∥EF.22.(2018江苏苏州,22,6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【思路分析】本题考查概率的应用.解答(1)时,这一小题是一步事件,直接应用概率公式进行计算;解答第(2)时,这一小题是二步事件,先用树状图或列表法找出所有的等可能事件,然后再找出满足题目条件的情况,最后利用公式进行计算.【解答过程】(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.23.(2018江苏苏州,23,8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【思路分析】本题考查与条形统计图和扇形统计图相关的计算.(1)由乒乓球人数和所占的百分比求出样本容量,再利用样本容量和已知组的人数求出羽毛球的人数,再补全条形图;(2)求出篮球人数的百分比,乘以360゜即可;(3)用样本的百分率来估算总体.【解答过程】(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.24.(2018江苏苏州,24,8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?【思路分析】本题考查了二元一次方程组和不等式的应用.解答第(1)时,根据题意列出地二元一次方程组来解决问题;解答第(2)时,根据题目中的不等式关系列出不等式来解决问题.【解答过程】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x yx y+=⎧⎨+=⎩,解这个方程组,得x=3500,y=1200.答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元.(2)设学校购买胛台B型打印机,则购买A型电脑为(n-l)台,根据题意得:3500(n-1)+1200n≤20000,解这个不等式,得n≤5.答:该学校至多能购买5台B型打印机.25.(2018江苏苏州,25,8分)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B 的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C'.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC'平行于直线AD,求新抛物线对应的函数表达式.【思路分析】本题本题考查二次函数与一元二次方程的关系.解答第(1)时,分别求出A,D两点的坐标,然后利用勾股定理可求出AD的长;解答第(2)时,把二次函数配成顶点式,得到C’点的坐标,再求出直线CC’的解析式,最后把C’点的坐标解入直线即可求出二次函数的解析式.【解答过程】解:(1)由x2-4=0解得x1=2,x2=-2.∵点A位于点B的左侧,∴A(-2,0).∵直线y=x+m经过点A,∴-2+m=0,∴m=2,∴D(0,2).∴AD22+2.OA OD(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b .∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b-4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2.26.(2018江苏苏州,26,10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .(1)求证:CD =CE ;(2)若AE =GE ,求证:△CEO 是等腰直角三角形.【思路分析】 本题本题考查圆的切线的性质,圆的基本性质以及全等三角形的判定和性质等. (1)连接AC ,BC ,证明△CDA ≌△CEA ,即可得CD =CE ;(2)利用(1)中的全等形,和直径所对的圆周是直角等性质求出∠AOC =2∠F =45゜,即可证明△CEO是等腰直角三角形.【解答过程】证明:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC+∠EAC+∠OAF=180°.∴3x°+3x°+2x°=180°.∴x=22.5,∴∠AOC=2x°=45°.∴△CEO是等腰直角三角形.27.(2018江苏苏州,27,10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,SS'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【思路分析】本题考查相似三角形的性质以及三角形面积的计算.问1:(1)先求出△ADC的面积,再求出△CDE的面积与△ADC的面积的比,最后求出两三角形的面积比;(2)类比(1)中的方法进行求解;问题2:把梯形的问题转化为三角形的问题,仍然利用平行线截得线段成比例,相似三角形的面积比等于相似比的平方以及等式的性质来求解.【解答过程】解:问题1:(1)316;(2)解法一:∵AB=4,AD=m.∴BD=4-m.又∵CE∥BC,∴4CE BD mEA DA m-==,∴4DECADES mS m-=.又∵CE∥BC,∴△ADE∽△ABC,∴216ADEABCS mS=.∴22441616DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+=⨯=⨯=.即2416S m mS-+=′.解法二:过点B作BH⊥AC,垂足为H,过点D作DF⊥AC,垂足为F.则DF∥BH,∴△ADF∽△ABH.∴4DF AD mBH AB==.∵DE∥BC,∴44CE BD mCA BA-==,∴21442144162DECABCCE DFS m m m mS CA BH⋅--+==⨯=⋅.即2416S m mS-+=′.问题2:解法一:分别延长BA,CD,相交于点D.∵AD∥BC,∴△OAD∽△OBC,∴12OA ADOB BC==.∴OA=AB=4,∴OB=8.∵AE=n,∴OE=4+n.∵EF∥BC.由问题1的解法可知24416()4864CEF CEF OEFOBC OEF OBCS S S n n nS S S n-+-=⨯=⨯=+,∵21()4OAD ABCD S OA S OB ==.∴23()4ABCD OBC S OA S OB ==. ∴22416163364484CEF CEF ABCD OBC S S n n S S --==⨯=△△△,即S S=′21648n -. 解法二:连接AC 交EF 于M . ∵AD ∥BC ,且AD =12BC ,∴12ADC ABC S S =△△. ∴S △ADC =13S ,S △ABC =23S .由问题1的结论可知,EMC ABCSS=2416n n-+. ∴S △EMC =2416n n -+×23S =2424n n S -+.∵MF ∥AD , ∴△CFM ∽△CDA , ∴243()143CFM CFM CFM CDA S S S n S S S -==⨯=△△△△, ∴S △CFM =2(4)48n S -.∴S △EFC =S △EMC +S △CFM =2424n n S -++2(4)48n S -=21648n S -,∴S S=′21648n -.28.(2018江苏苏州,28,10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向两走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE =x 米(其中x >0),GA =y 米.已知y 与x 之间的函数关系如图②所示.(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG )是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.【思路分析】本题考查一次函数的性质以及动点问题中等腰三角形存在性质的探究.(1)利用待定系数法坟出y与x之间的函数关系式;(2)用含x的代数式来表示AE,AG,GD的长度,然后分EF=FG,FG=EG,EF=EG来进行讨论,利用勾股定理和相似三角形和性质来求x.【解答过程】解:(1)设线段MN所在直线的函数表达式为y=kx+b.∵M,N两点的坐标分别为(30,230),(100,300),∴30230100300k bk b+=⎧⎨+=⎩,解这个方程组,得1200kb=⎧⎨=⎩.∴线段MN所在直线的函数表达式为y=x+200.(2)①第一种情况:考虑FE=FG是否成立,连接EC.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,.解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,(不合题意,均舍去).解这个方程,得x1=0,x2=-4003综上所述,当x=100时,△EFG是一个等腰三角形.3。

最新部编RJ人教版 初中中考数学真题真卷———2018年江苏省苏州市中考数学试卷含答案解析(Word版)

最新部编RJ人教版 初中中考数学真题真卷———2018年江苏省苏州市中考数学试卷含答案解析(Word版)

2018年江苏省苏州市中考数学试卷相信你能取得好成绩!一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A. B. C. D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B.C.D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里 B.60海里 C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E 作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC 绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B 的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC 的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB 上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.2018年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A. B. C. D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B.C.D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里 B.60海里 C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E 作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a=a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=﹣2.【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80°.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y 元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B 的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC 的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB 上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S=S,S△ABC=,由问题1的结论可知:=,证明△CFM∽△ADC△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S=,△ADC=S,S△ABC=,∴S△ADC由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,=×S,∴S△CFM∴S=S△EMC+S△CFM=+×S=,△EFC∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年苏州市初中毕业暨升学考试试卷
数 学
本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:
1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;
2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用毫米黑色.墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;
3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.......... 1.在下列四个实数中,最大的数是 A. 3- B. 0 C. 3
2
D.
34
2.地球与月球之间的平均距离大约为384 000 km ,384 000用科学记数法可表示为

A. 3
3.8410⨯ B. 4
3.8410⨯ C. 5
3.8410⨯ D. 6
3.8410⨯
3.下列四个图案中,不是轴对称图案的是
4.x 的取值范围在数轴上表示正确的是
5.计算2121
(1)x x x x
+++÷的结果是
A. 1x +
11x + C. 1x x + D. 1x x
+ 6.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是 A.
12 B. 13 49 D. 59
;
7.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若40BOC ∠=︒,则D ∠的度数为
A. 100°
B. 110° °
8.如图,某海监船以20海里/小时的速度在某海域执行巡航任务.当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为
A. 40海里 6 0海里 C.
9.如图,在ABC ∆中,延长BC 至D ,使得1
2
CD BC =
,过AC 中点E 作//EF CD (点F
位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为
A. 3
B. 4 D. 10.如图,矩形ABCD 的顶点A 、B 在x 轴的正半轴上,反比例函数k
y x =
在第一象限内的图像经过点D ,交BC 于点E .若4AB =,2CE BE =,3
tan 4
AOD ∠=,则k 的值为
A. 3 C. 6 D. 12
"
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.........
11.计算:4
a a ÷= .
12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 .若关于x 的一元二次方程2
20x mx n ++=有一个根是2,在
m n += .
14.若4a b +=,1a b -=,则2
2
(1)(1)a b +--的值为 .如图,ABC ∆是一块直角三角板,90BAC ∠=︒,30B ∠=︒.现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E 、F .若20CAF ∠=︒,则BED ∠的度数为 .
如图,88
⨯的正方形网格纸上有扇形OAB 和扇形OCD ,点O 、A 、B 、C 、D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为1r ;若用扇形OCD 围成另一个
圆锥的侧面,记这个圆锥的底面半径为2r ,则
1
2
r r 的值为 . 17.如图,在Rt ABC ∆中,90B ∠=︒
,AB =
BC =.将ABC ∆绕点A 按逆时针方向旋转90°得到''AB C ∆,连接'B C ,则sin 'ACB ∠= .
18.如图,已知8AB =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,60DAP ∠=︒.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之间的距离最短为 (结果保留根号).三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算
:21(22
-.

20.(本题满分5分)
解不等式组:32
42(21)
x x x x ≥+⎧⎨+<-⎩.
21.(本题满分6分)
如图,点A ,F ,C ,D 在一条直线上,//AB DE ,AB DE =,AF DC =.求证://BC EF .
22.(本题满分6分)

如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3
的倍数的概率(用画树状图或列表等方法求解).本题满分8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
求参加这次调查
的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人

24.(本题满分8分)
某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元. (1)求每台A 型电脑和每台B 型打印机的价格分别是多少元 (2)如果学校购买A 型电脑和
B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机
{
25.(本题满分8分)
如图,已知抛物线2
4y x =-与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点.直线y x m =+经过点A ,与y 轴交于点D .
(1)求线段AD 的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为'C .若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线'CC 平行于直线AD ,求新抛物线对应的函数
表达式.本题满分10分)
如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE
垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .
(1)求证:CD CE = ; (2)若AE GE =,求证: CEO ∆是等腰直角三角形.
27.(本题满分10分)
问题1:如图①,在ABC ∆中,4AB =,D 是AB 上一点(不与A ,B 重合),//DE BC ,交AC 于点E ,连接CD .设ABC ∆的面积为S ,DEC ∆的面积为'S . |
(1)当3AD =时,
'S S = ;设AD m =,请你用含字母m 的代数式表示'S S
. 问题2:如图②,在四边形ABCD 中,4AB =,//AD BC ,1
2
AD BC =,E 是AB 上一点
(不与A ,B 重合),//EF BC ,交CD 于点F ,连接CE .设AE n =,四边形ABCD 的面积
为S ,EFC ∆的面积为'S .请你利用问题1的解法或结论,用含字母n 的代数式表示'
S S
.
28.(本题满分10分)
如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正
方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE x =米(其中0x >),GA y =米,已知y 与x 之间的函数关系如图②所示. (1)求图②中线段MN 所在直线的函数表达式;
(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即EFG ∆)是否可以是一
个等腰三角形如果可以,求出相应x 的值;如果不可以,说明理由.
)。

相关文档
最新文档