电子与光子这两种粒子的根本区别

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子与光子这两种粒子的根本区别——光子没有自旋,电子有自旋.

电子与正电子相遇时将湮灭而转化为光子,即转化为电磁场;反之,在核场中光子的能量足够大时,光子也可以转化为正负电子对。电子与正电子都是实物,而光子却是电磁场,即真空。

从微观物理的角度考察:电子是费米子,带基本电荷,具有空间局域性。它可以是信息的载体,也可以是能量的载体。作为信息载体时,可以通过金属导线或无线电波在自由空间进行传递。电载信息的主要储存方式为磁储存。微电子技术发展了电子计算机,其信息处理的速度受到了电子开关极限时间10-10 s的障碍,和大规模集成电路密集度水平以及并行技术的制约。20世纪信息技术的进步已经充分挖掘并几乎穹尽了电子的潜力。虽然微电子技术的进一步完善,尚可提高芯片信号运作的速度。有望把计算机运算速度再提高(用大规模并行

技术。)然而,电子本身的运动特性及其所产生的电磁场频率极限,制约了它在信息领域功能的进一步发展。电子作为能量的载体时,高能电子束可以让物质改性,可以作为高温热加工,但要求真空环境。并且,它的德布罗意波长极限使它难以胜任超精细的工作。

光子是玻色子,电中性,没有空间局域性而具有时间可逆性。它可以是信息的载体,也可以是能量的载体。作为信息载体时,可以通过光纤(光缆)或自由空间进行传递,光载信息的主要存储方式为光储存。光子技术将发展起光子计算机,其光子逻辑或智能运算的信息处理速度将受到光子开关极限时间10-14s的障碍,和光子集成光路密集度水平以及并行技术的制约。这些制约都远较电子技术所受制约宽松。光子作为能量的载体时(只有光子简并度极高的激光束才能实现),高能激光束可以让物质改性,可以作高温热加工,甚至有望导致核聚变。由于激光波长比电子波长短很多,因而可以胜任非常精细的工作。仅就信息属性而言,光子技术较诸电子技术有着明显的优势:光子开关的速度极限较电子开关速度极限高出4个量级以上,光子信息可以作高密通道交互传输及并行处理;光频载波要比微波频率高出4

个量级,可荷载信息量自然高得多;光束的实用调制方式较多,能够采用密集的波分复用技术,频分复用技术以及时分复用技术。光子存储的平面密度不仅大大高于磁存储,而且还能发展空间维、时间维、光谱维及体全息等存储方式。单体存储容量可望达到TB量级。这是磁

存储技术无法比拟的;光子集成包括器件集成和功能集成。光子集成度远比电子集成度高。

单量子点激光器可以做到0.1μm 。有人认为,光子技术将会在全光通讯和光子计算机上取得突破:传码率为TB/ s量级的全光通信;仅非并行的单机“光脑“运算速度就可超过1012次/秒。

相关文档
最新文档