动态几何问题探究
中考数学“动态几何探究”题型解析
中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。
动态几何问题的解题探究
2023年12月下半月㊀解法探究㊀㊀㊀㊀动态几何问题的解题探究◉广东珠海市凤凰中学㊀魏庆雪㊀㊀摘要:初中数学中动态几何问题是难点,不少学生面对动态几何问题,常常不知如何入手.为了帮助学生掌握动态几何问题的解题方法,教师根据动态几何问题的特点,对其解题方式进行归纳总结,结合典型例题,将解题方法展现出来,引导学生把握解题细节,能够做到学以致用㊁举一反三.关键词:中学数学;动态几何问题;解题㊀㊀对于动态几何问题,解题的思路比较多,如利用函数性质㊁图形性质㊁点的对称知识㊁图形关系以及数形结合等,解题时需要根据题目的特点选择合适的思路.点对称的动态几何问题是根据 将军饮马模型 转化的,图形关系则是根据图形的全等或者相似而来的.本文中结合具体实例,探究初中数学中动态几何问题的解题方法.1利用函数性质解决动态几何问题动态几何问题通常比较复杂,难度较大,特别是求解最值问题时,利用函数性质解题是常见的思路.在解题过程中,需要仔细审题,理解题意,明确线段㊁角之间的关系,设出相应的参数,表示出求解参数的表达式,之后根据一次函数㊁二次函数和反比例函数性质完成解答.在解题时,最值与自变量有着直接关系,需要根据题意,确定自变量的范围[1].图1例1㊀如图1所示,矩形A B C D 中,A B =10c m ,A D =6c m ,动点E 从点A 开始以1c m /s的速度沿着A D 向点D 移动,另有一个动点F 从点D 出发,以2c m /s 的速度沿着D C 向C 点移动,设移动的时间为t s ,当S әD E F +S әA B E 取最大值时,t 的值是(㊀㊀).A.2㊀㊀㊀B .3㊀㊀㊀C .72㊀㊀㊀D.112分析:此题创设的情境并不十分复杂,根据动点的运动速度,可以得出D F =2A E ,将点的运动变化转化成线段的长度关系.根据已知条件中的参数,设出A E 的长度,用A E 表示出三角形的面积和,将问题转化成二次函数的最值问题.解析:由题意得A E =t c m ,D F =2t c m ,所以S әA B E =12ˑA B ˑA E =5t ,S әD E F =12ˑD E ˑD F =(6-t )t .故S әD E F +S әA B E =(6-t )t +5t =-t 2+11t(0<t <5).又-t 2+11t =-(t -112)2+1214,所以当t =112时,S әD E F +S әA B E 的值最大.故正确答案是选项D .点评:此题根据矩形和三角形的性质设计问题,结合点的变化对三角形面积的影响,引导学生联想一次函数㊁二次函数或者反比例函数,结合特点写出函数表达式,进而利用函数的性质解题.考查学生对函数性质的掌握和利用.2结合图形性质解决动态几何问题在求解动态几何问题时,利用图形性质是一种比较常见的思路.初中数学中图形比较多,如三角形㊁正方形㊁长方形㊁圆等,每种图形有其特有的性质.在求解问题时,通过分析题目中的图形,利用线段与角之间的关系,找出运动中的变量与不变量,明确解题突破点.例2㊀在平面直角坐标系x O y 中,点A 坐标是(12,0),点B 坐标是(0,9),经过点O 作一个圆和A B相切,圆与x 轴㊁y 轴分别相交于点P ,Q ,则线段P Q 的最小值是(㊀㊀).A.62B .10C .7.2D.63分析:通过审题发掘题目中的隐藏信息.在圆运动的过程中,øQ O P =90ʎ是不变的,圆和A B 相切是不变的.根据圆的性质分析,求解P Q 的最小值就是求解动圆直径的最小值.结合已知条件,当圆的直径是三角形A B O 中A B 边上的高时,圆的直径最小.图2解析:如图2所示,设F 是P Q 的中点,因为øQ O P =90ʎ,所以F 是动圆的圆心.设圆与A B 的切点是D ,连接O F ,F D ,则F D ʅA B .因为点A 坐标是(12,0),点B 坐标是(0,9),所以A B =15.因为øA O B =90ʎ,所以F O +F D =P Q ,F O +F D ȡO D ,当F ,O ,D 三点共线时,P Q 取得最小值,此时P Q =O D .因为S әA O B =12O B O A =12O D A B ,所57解法探究2023年12月下半月㊀㊀㊀以O D =O A O BA B =7.2.故正确答案为选项C .点评:此题将图形与坐标系结合,要求学生认真审题,根据圆的性质发掘隐含条件,如直径对应的圆周角为直角.通过这样的方式,对问题进行转化,完成题目的解答,考查学生对图形性质的掌握与应用.3利用点的对称解决动态几何问题在初中数学动态几何问题中,利用点的对称解题是一种有效的方式, 将军饮马模型 是具有代表性的问题.在动态几何问题的求解中,根据题目条件选择合适的点,找出对称的线段,根据图形性质确定对称点的问题,作出辅助线,构建相应的图形,利用图形性质和相关定理求解线段长度[2].图3例3㊀如图3所示,在菱形A B C D 中,øD =135ʎ,A D =32,C E =2,动点P ,F 分别在线段A C ,A B 上,则P E +P F 的最小值是(㊀㊀).A.22B .3C .25D.10分析:解答此题时,根据 将军饮马模型 ,找出点E 关于A C 的对称点,结合菱形的性质,可以确定对称点在C D 上,当对称点与P ,F 三点共线时,P E +P F 最小.作出辅助线,构建直角三角形,根据题目中的已知条件,求解出线段之和的最小值.解析:设点E 关于A C 的对称点为G ,因为四边形A B C D 是菱形,所以点G 在C D 上.连接P G ,B G ,过点B 作B H ʅC D ,垂足为H .根据菱形的性质可以得出C E =C G =2,P E =P G ,要求P E +P F 的最小值,即求P G +P F 的最小值.因为点P ,F 是动点,所以当G ,P ,F 三点共线时,P G +P F 取最小值.因为øD =135ʎ,A D =32,C E =2,所以øB C D =45ʎ,得出B H =C H =32c o s 45ʎ=3,H G =C H -C G =1.在直角三角形B H G 中,G B =B H 2+H G 2=10,所以P E +P F 的最小值为10.故正确答案是选项D .点评:点对称的动态几何问题源自于 将军饮马模型 .在解题时,根据 将军饮马模型 ,结合条件准确找出点的对称点,构建相应的图形,利用图形性质和相关定理解题.如,此题中构建直角三角形,利用勾股定理进行求解.4分析图形关系解决动态几何问题在解答一些初中动态几何问题时,可以根据图形关系分析等量关系与比例关系,运用平行线性质㊁三角形全等与相似等知识思考解题思路.解答此种类型题目时,可以采用逆向推理的方式,从需要求解的问题入手,分析需要的解题条件,作出相应的辅助线,找出问题与已知条件的联系,明确问题解答思路.例4㊀平面直角坐标系中,点A 坐标为(3,4),点C 坐标为(x ,0)且-2<x <3,点B 是直线x =-2上的动点,且B C ʅA C ,连接A B .设A B 与y 轴正半轴的夹角是α,当t a n α取最大值时,x 的值是(㊀㊀).A.12B .332C .1D.13分析:根据题意,利用平行线的性质,将角转化到三角形中,表示出角的正切,将问题转化成求解线段B G 的最大值.根据题目已知条件,利用三角形相似的性质,找出线段之间的关系,完成问题的求解.图4解析:如图4,过点A 作A F 垂直于x 轴,垂足为F ,作AH 垂直于直线x =-2,垂足为H .因为y 轴与直线x =-2平行,所以t a n α=AHB H.又因为AH =5,所以t a n α=5B H.当t a n α取最大值时,即B H 取最小值,此时B G 取最大值.因为B C ʅA C ,所以øB C O +øA C F =90ʎ,又øB C O +øC B G =90ʎ,所以øC B G =øA C F ,故әB G C ʐәC F A .设B G =y ,又C F =3-x ,C G =x +2,则由B G C F =C G A F 得y 3-x=x +24,所以y =-14(x -12)2+2516(-2<x <3),因此当x =12时,t a n α取最大值.故正确答案是选项A .点评:解答此类问题时,需要对图形进行观察分析,利用辅助线构建图形,结合线段平行㊁三角形相似等知识,对问题进行分析解答.主要考查学生对知识的理解与综合利用.5结语对于初中数学动态几何问题的解题教学,教师应当结合具体例题,向学生展示解题思路与方法,借助图形的变化,让学生直观了解数量关系.同时,教师应当注重与学生的交流,创设良好的课堂环境,加深学生的课堂学习体验,帮助学生理解和掌握不同类型问题的解题方法,提高解题能力.参考文献:[1]陈伟宁.动中分析,静中求解 谈中考动态几何压轴题的解题策略[J ].中学数学研究(华南师范大学版),2020(4):42G45.[2]王涵.初中数学动态几何问题的解题方法[J ].数理化解题研究,2022(26):2G4.Z67。
中考综合题(四)----《探究性问题——动态几何》
中考综合题(四)----《探究性问题——动态几何》一、知识网络《动态几何》涉及的几种情况 ⎧⎪⎨⎪⎩动点问题动线问题动形问题二、【精典题型】1.【05重庆课改】如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动 点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?2.【05青岛】如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。
(1)求面积S 与时间t 的关系式;(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由。
xB3.【05乌鲁木齐】四边形OABC是等腰梯形,OA∥BC。
在建立如图的平面直角坐标系中,A (4,0),B(3,2),点M从O点以每秒2单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连结AC交NP于Q,连结MQ。
(1)写出C点的坐标;(2)若动点N运动t秒,求Q点的坐标(用含t的式子表示(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围。
(4)当t取何值时,△AMQ的面积最大;(5)当t为何值时,△AMQ为等腰三角形。
4.【05宜昌】如图1,已知△ABC的高AE=5,BC=403,∠ABC=45°,F是AE上的点,G是点E关于F的对称点,过点G作BC的平行线与AB交于H、与AC交于I,连接IF并延长交BC于J,连接HF并延长交BC于K.(1)请你探索并判断四边形HIKJ是怎样的四边形?并对你得到的结论予以证明;(2)当点F在AE上运动并使点H、I、K、J都在△ABC的三条边上时,求线段AF长的取值范围.(图2供思考用)CJ E CBA图2图15.【05漳州】如图1,在直角梯形ABCD 中,AD ∥BC ,顶点D ,C 分别在AM ,BN 上运动(点D 不与A 重合,点C 不与B 重合),E 是AB 上的动点(点E 不与A ,B 重合),在运动过程中始终保持DE ⊥CE ,且AD+DE=AB=a 。
九年级中考数学复习专题十 几何动态探究题
专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
剖析立体几何中的“动态”问题
ʏ沈建良所谓动态立体几何问题,是指在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算㊂立体几何中常求解一些固定不变的点㊁线㊁面的关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,立意会更新颖㊁更灵活,能培养同学们的空间想象能力㊂下面是对破解立体几何 动态 问题的一些思考,以期抛砖引玉㊂一㊁ 动态 问题之轨迹问题例1如图1,在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H,N分别是C C1,C1D1,D D1,C D,B C的中点,M在四边形E F G H边上及其内部运动,若MNʊ面A1B D,则点M轨迹的长度是()㊂图1A.3aB.2aC.32aD.22a解:因为在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H分别是C C1, C1D1,D D1,C D的中点,N是B C的中点,则G HʊB A1,HNʊB D㊂又G H⊄面A1B D, B A1⊂面A1B D,所以G Hʊ面A1B D㊂同理可得,NHʊ面A1B D㊂又G HɘHN=H,所以面A1B Dʊ面G HN㊂因为点M在四边形E F G H上及其内部运动,MNʊ面A1B D,所以点M一定在线段G H上运动,即满足条件㊂易得G H=22a㊂故点M轨迹的长度是22a㊂应选D㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立不变量与动点之间的关系,从而确定动点的轨迹长度㊂二㊁ 动态 问题之定值问题例2如图2,在单位正方体A B C D-A1B1C1D1中,点P在线段A D1上运动㊂图2给出以下四个命题:①异面直线A1P与B C1间的距离为定值;②三棱锥D-B P C1的体积为定值;③异面直线C1P与C B1所成的角为定值;④二面角P-B C1-D的大小为定值㊂其中真命题的序号是()㊂A.①②B.③④C.①②③D.①②③④解:对于①,异面直线A1P与B C1间的距离即为两平行平面A D D1A1和平面B C C1B1间的距离,即为正方体的棱长,为定值,①正确㊂对于②,V D-B P C1=V P-D B C1,因为SәD B C1为定值,点PɪA D1,A D1ʊ平面B D C1,所以点P到平面B D C1的距离即为正方体的棱长,所以三棱锥D-B P C1的体积为定值,②正确㊂对于③,在正方体A B C D-A1B1C1D1中,因为B1Cʅ平面A B C1D1,而C1P⊂平面A B C1D1,所以B1CʅC1P,即这0 1数学部分㊃知识结构与拓展高一使用2022年4月Copyright©博看网. All Rights Reserved.两条异面直线所成的角为90ʎ,③正确㊂对于④,因为二面角P -B C 1-D 的大小即为平面A B C 1D 1与平面B D C 1所成的二面角的大小,而这两个平面位置固定不变,所以二面角P -B C 1-D 的大小为定值,④正确㊂应选D㊂动态立体几何问题,在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口㊂三㊁ 动态 问题之翻折问题例3 如图3,在长方形A B C D 中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әAF D 沿A F 折起,使平面A B D ʅ平面A B C F ,得到如图4所示的四棱锥D -A B C F ㊂在平面A B D 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图3 图4解:过点F 作F M ʅA B 交A B 于点M (作法略)㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1,A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R t әD F K 中,D F =2-x ,D K 2+F K 2=D F 2,所以1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x㊂又因为t =12-x在(0,1)上单调递增,所以12<t <1,即t 的取值范围为12,1()㊂本题是一个动态的翻折问题,通过发现不变的垂直关系,从而得到相关变量间的关系,最终转化成函数的值域问题㊂解决折叠问题的关键是分清折叠前后图形的位置和数量关系的变与不变的量㊂四㊁ 动态 问题之展开问题例4 已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为㊂设线段A B 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为㊂解:易得该圆锥的高h =32-1=22㊂所以该圆锥的体积V =13ˑπˑ12ˑ22=223π㊂将该圆锥侧面沿母线S A 展开,如图5所示㊂图5因为圆锥底面周长为2π,扇形半径为3,所以侧面展开后得到的扇形的圆心角øA S A '=2π3㊂由题意知点B 是圆锥侧面展开后得到的扇形的弧A A '的中点,则øA S B =π3,所以A B =A 'B =A S =3㊂所以该质点运动路径的最短长度为A B +A 'B =6㊂空间动态问题常转化为平面的动态问题求解㊂化曲为直是求解曲面上路径长度最短问题的关键㊂本题是求解圆锥侧面上质点运动路径的最短长度问题,可将圆锥侧面沿一条母线展开成扇形,从而在平面图形中解决问题㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
动态几何问题探索
例1、 已知:如图,Rt △ABC 中,AC=3cm,BC=4cm,点P 在AB 边上由点A 向点B 匀速运动,点Q 在CB 边上由点C 向点B 匀速运动,它们同时出发,速度都为1厘米/秒,当点Q 先到达B 点时,点P 也停止运动,设P 与Q 两点运动的时间为t 秒。
(1) 若△CPD 的面积为s (2cm ),求s (2cm )与运动时间t (秒)的函数关系式及自变量t 的取值范围;(2) 当△CPD 为直角三角形时,它的面积是多少平方厘米?(3) 已知:P 与Q 两点的运动速度相同时,无论t 为何值,△CPQ 都不可能是正三角形。
那么在“保持点P 运动速度不变”的条件下,是否能通过改变点Q 的运动速度,使△CPQ 在运动的过程中成为正三角形?若能,请求出点Q 改变后的运动速度v 和此时t 的值;若不能,请说明理由。
例2、在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。
动点,P Q 同时从点B 出发,点P 沿,,BA AD DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,两点运动时的速度都是1/cm s 。
而当点P 到达点A 时,点Q 正好到达点C 。
设,P Q 同时从点B 出发,经过的时间为()t s 时,BPQ ∆的面积为()2y cm (如图2)。
分别以,t y 为横、纵坐标建立直角坐标系,已知点P 在AD 边上从A 到D 运动时,y 与t 的函数图象是图3中的线段MN 。
(1)分别求出梯形中,BA AD 的长度;(2)写出图3中,M N 两点的坐标;(3)分别写出点P 在BA 边上和DC 边上运动时,y 与t 的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y 关于t 的函数关系的大致图象。
(图1) (图2)练习1、如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t (不必写出t 的取值范围) (4) △PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.练习2、如图①,Rt ABC △中,90B ∠=,30CAB ∠= .它的顶点A 的坐标为(100),,顶点B 的坐标为(5,10AB =,点P 从点A 出发,沿A B C →→的方向匀速运动,同时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒.(1)求BAO ∠的度数.(2)当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.(3)求(2)中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标.(4)如果点P Q ,保持(2)中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点P 沿这两边运动时,使90OPQ ∠= 的点P 有几个?(①) x t (图②)。
第六节 动态几何探究-学而思培优
第六节 动态几何探究一、课标导航二、核心纲要l.动态几何特点问题背景是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质及图形的特殊位置等).2.解决动态几何问题的基本思路(1)动中求静,发现运动变化中的不变量、不变图形.(2)把相关的量用含变量的代数式表示,列方程或确定函数关系.(3)把握运动中的特殊位置、临界位置,分段、分情况讨论解决问题.三、全能突破基 础 演 练1.如图18 -6—1所示,在△ABC 中,,30,3,90=∠==∠B AC C 点P 是BC 边上的动点,则AP 长不可能是( ).5.3.A 2.4.B 8.5.C 7.D2.如图18-6-2所示,,43=∠MON 点A 在射线OM 上,动点P 在射线ON 上滑动,要使△AOP 为等腰三角形,那么满足条件的点P 共有( ).A.1个 B .2个 C .3个 D .4个3.在正方形ABCD 中,边长为2cm ,动点P 以lcm/s 的速度从A →B →C →D 运动,而动点Q 以2cm/s 的速度从A →D →C →B 运动,则在P 和Q 都运动的过程中,IPQI 的最大值是( ). 2.A 5.B 52.C 22.D4.如图18-6-3所示,矩形ABCD 的长AB 为5cm ,宽BC 为3cm ,点P 为AB 边上的一个动点,则阴影部分的面积为 .2cm能 力 提 升5.如图18-6-4所示,在平面直角坐标系中,0为坐标原点,四边形OABC 是矩形,点B 的坐标为(5,4),点P 为BC 上动点,当△POA 为等腰三角形时,点P 坐标为6.如图18-6-5所示,在直角梯形ABCD 中,,5,4,3,//,90====∠AD DC BC AB DC ABC 动点P 从点B 出发,由B →C →D →A 沿边运动时,则△ABP 的最大面积为7.如图18-6-6所示,8=MN ,点P 、Q 在线段MN 上,且C NQ PM .2,1==是线段MN 上的动点,分别 以CM 、CN 为斜边在线段MN 的同侧作直角△ACM 和直角△BCN,使,30=∠=∠BCN AMC 连接AB ,设AB 的中点为D ,当点C 从点P 运动到点Q 时,点D 移动路径的长是8.如图18—6-7所示,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形ABCD 和EFGH 内(包括边界)分别取两个动点P 、R ,与已有格点Q (每个小正方形的顶点叫格点)构成三角形,则当△PQR 的面积取得最大值2时,点P 和点R 所在位置是9.已知正方形ABCD 的对角线AC 与BD 交于点0,点E 、F 分别是OB 、OC 上的动点,(1)如果动点E 、F 满足BE = CF(如图18-6-8(a)所示):①写出所有以点E 或F 为顶点的全等三角形(不得添加辅助线);②证明:AE ⊥BF ;(2)如果动点E 、F 满足BE 一OF(如图18-6-8 (b)所示),问当AE ⊥BF 时,点E 在什么位置,并证明你的结论.10.如图18-6-9所示,正方形ABCD 的边长为6cm ,点E 为AB 边上的一点,且AE=2cm ,动点M 由C 点开始以3cm/s 的速度沿折线CBE 移动,动点N 同时由D 点以lcm/s 的速度沿边DC 移动,请问多长时间后,顺次连接点E ,M ,N ,D 为顶点的四边形是平行四边形?11.如图18 -6 -10所示,在等腰梯形ABCD 中,.60,18,34,,// =∠==⊥C AD HDE BCxE DE BC AD=BC )1( ;(2)若动点P 从点D 出发,速度为2个单位/秒,沿DA 向点A 运动,同时,动点Q 从点B 出发,速度为3个单位/秒,沿BC 向点C 运动,当一个动点到达端点时,另一个动点同时停止运动.设运动的时间为t 秒.①t= 秒时,四边形PQED 是矩形;②t 为何值时,线段PQ 与梯形ABCD 的边构成平行四边形?③是否存在t 值,使②中的平行四边形是菱形?若存在,请求出t 值;若不存在,请说明理由.12.如图18 -6 -11所示,在直角梯形ABCD 中,.16,21,12,90,//====∠AD BC AB A BC AD动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动, 设运动的时间为t (秒).(1)当t 为何值时,四边形PQDC 的面积是梯形ABCD 的面积的一半;(2)四边形PQDC 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由.(3)四边形PQDC 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由.13.如图18-6-12(a)所示,在直角梯形ABCD 中,.3,4,90,//====∠BC CD AD ADC BC AD点M 从 点D 出发以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动,过点N 作NP ⊥AD 于点P ,连接AC 交NP 于点Q ,连接MQ.设运动时间为t 秒.(1)填空:AM=____,AP=____.(用含t 的代数式表示)(2)t 取何值时,梯形ABNM 面积等于梯形ABCD 面积的一半;(3)如图18-6-12(b)所示,将△AQM 沿AD 翻折,得△AKM,是否存在某时刻t ,使四边形AQMK 为正方形?并说明理由.14.如图18-6-13(a)所示,在△ABC 中,ECD AC BC AB ∆===.6,5是△ABC 沿BC 方向平移得到的,连接AE 、AC 和BE 相交于点O.(1)判断四边形ABCE 是怎样的四边形,说明理由;(2)如图18-6-13(b)所示,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积.15.如图18 -6 -14所示,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q 的运动速度与点P 的运动速度相等,经过2秒后,△BPE 与△CQP 是否全等?请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,则当t 为何值时,能够使△BPE 与△CQP 全等;此时点Q 的运动速度为多少.16.如图18 -6 -15所示,在△ABC 中,D AC AB BAC ,6,90===∠为BC 的中点.(1)若E 、F 分别是AB 、AC 上的点,且AE=CF ,求证:△AED≌△CFD;(2)当点F 、E 分别从C 、A 两点同时出发,以每秒1个单位长度的速度沿CA 、AB 运动到点A 、B 时停止;设△DEF 的面积为y ,F 点运动的时间为x ,用含Qx 的代数式表示y;(3)在(2)的条件下,点F 、E 分别沿CA 、AB 的延长线继续运动,用含x 的代数式表示y .中 考 链 接17.(2012.温州)如图18 -6 -16所示,在△ABC 中,M C ,90 =∠是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P 、Q 两点同时出发,并同时到达终点,连接MP 、MQ 、PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( ).A. 一直增大 B .一直减小 C .先减小后增大 D .先增大后减少18.(2012.常德)已知四边形ABCD 是正方形,0为正方形对角线的交点,一动点P 从B 开始,沿射线BC运动,连接DP ,作CN ⊥DP 于点M ,且交直线AB 于点N ,连接0.P ,0N .(当P 在线段BC 上时,如图18—6—17(a)所示;当P 在BC 的延长线上时,如图18—6—17(b)所示)(1)请从图18-6-17(a)、图18-6-17(b)中任选一图证明下面结论:,;ON OP CP BN ==②①且 .ON OP ⊥(2)设,,4x BP AB ==用含x 的代数式表示以0、P 、B 、N 为顶点的四边形的面积y .19.(2012.广州)如图18 -6 -18所示,矩形OABC 中,),33,0()32,0()0,6(D C A 、、射线L 过点D且与x 轴平行,点P 、Q 分别是L 和x 轴正半轴上动点,满足.60=∠PQO(1)①点B 的坐标是 ;②∠CAO= 度;③当点Q 与点A 重合时,点P 的坐标为 .(直接写出答案)(2)设OA 的中点为N ,PQ 与线段AC 相交于点M ,是否存在点P ,使△AMN 为等腰三角形?若存在,请直接写出点P 的横坐标m ,若不存在,请说明理由.巅 峰 突 破20.如图18 -6 -19所示,边长为a 的等边△ABC 的顶点A 、B 分别在x 轴正半轴和y 轴正半轴上运动,则动点C 到原点0的距离的最大值是( ).a a A 2123.- a a B 2123.+ a a C 2126.- a a D 2126.+21.如图18-6-20所示,等腰梯形ABCD 中,,60,12,4,// =∠==C CD AB CD AB 动点P 从点C 出发沿C →D 方向向终点D 运动,动点Q 同时以相同速度从点D 出发沿D →A →B 方向向终点B 运动.(1)求AD 的长;(2)探究:在BC 边上是否存在点M 使得四边形PDQM 是菱形?若存在,请找出点M ;不存在,请说明理由;(3)在整个运动过程中,求:线段PQ 的中点0运动的路程.22.已知:如图18-6—21所示,在菱形ABCD 中,,120 =∠BAD 动点P 在直线BC 上运动,作,60oAPM =∠ 且直线PM 与直线CD 相交于点Q ,Q 点到直线BC 的距离为QH.(1)若P 在线段BC 上运动,求证CP=DQ ;(2)若P 在线段BC 上运动,探求线段AC 、CP 、CH 的一个数量关系,并证明你的结论;(3)若动点P 在直线BC 上运动,菱形ABCD 周长为,6,8=AQ 求QH.(可使用备用图)。
初中数学动态几何问题的教学难点及措施研究
初中数学动态几何问题的教学难点及措施研究1. 引言1.1 背景介绍初中数学动态几何问题是数学教学中的一个重要内容,涉及到学生在空间和时间上的思维能力和几何图形变化的认识。
在教学实践中,往往存在着一些难点和问题,如学生对动态几何问题的理解不深,解题方法不够灵活等。
深入研究动态几何问题的教学难点及措施,对于提高学生的数学学习效果具有重要的意义。
背景介绍是这一研究的起点,主要介绍了动态几何问题在初中数学教学中的地位和作用。
通过对动态几何问题的特点和特性进行分析,我们可以更好地把握教学中的重点和难点,从而为教师们提供更好的指导和支持。
了解动态几何问题的教学困难和挑战,有助于我们找到更有效的教学方法和策略,提高学生的数学学习兴趣和能力。
本文将围绕着初中数学动态几何问题的教学难点及措施展开研究,旨在为教师们在教学实践中提供一些启示和借鉴。
1.2 研究意义数统计等。
【研究意义】动态几何在初中数学教学中起着重要的作用,能够帮助学生更好地理解几何概念,并培养他们的空间想象能力和逻辑推理能力。
动态几何问题的教学难点也是不可避免的,如何有效地解决这些难点,提高教学效果,是本文研究的重点。
通过对初中数学动态几何问题的教学特点、难点分析和教学措施建议的研究,可以为教师提供更好的教学指导,帮助学生更好地掌握动态几何知识。
本文还将通过案例分析和评估方法的探讨,进一步完善教学策略,提高教学效果。
通过对初中数学动态几何问题的深入研究,不仅可以促进教学改革和教学方法的创新,还可以为学生的数学学习提供更有效的帮助,提高他们的数学素养和解决问题的能力。
【2000字】2. 正文2.1 初中数学动态几何问题的特点1. 动态性:动态几何问题是指在平面内或立体空间内,一些几何对象在运动中的性质和规律。
这种问题要求学生能够通过观察几何图形在运动过程中的变化,把握图形的运动规律,从而解决问题。
2. 几何性:动态几何问题强调几何图形的性质和变化,要求学生善于观察、分析和推理,从几何图形的角度解决问题,培养学生的几何思维能力。
动态几何问题(课件)
THANK YOU
动态几何问题的实 际应用案例分析
实际应用案例的选择标准
代表性:案例应具有代表性,能够反映动态几何问题的普遍性和特殊性 实用性:案例应具有实用性,能够解决实际问题,具有实际应用价值 创新性:案例应具有创新性,能够展示动态几何问题的新方法和新思路 教育性:案例应具有教育性,能够帮助学生理解和掌握动态几何问题的基本概念和方法
动态几何问题的应 用
在数学竞赛中的应用
动态几何问题在数学竞赛中的 重要性
动态几何问题的解题技巧和方 法
动态几何问题在数学竞赛中的 常见题型和解题思路
动态几何问题在数学竞赛中的 创新应用和挑战
在实际生活中的应用
建筑设计:利 用动态几何问 题进行空间布 局和结构设计
机械制造:利 用动态几何问 题进行机械零 件设计和装配
力。
激发学习兴趣: 动态几何问题具 有趣味性和挑战 性,有助于激发 学生的学习兴趣, 提高学习积极性。
对学生思维发展的影响
提高空间思维能 力:通过动态几 何问题的解决, 学生可以更好地 理解和掌握空间 关系,提高空间
思维能力。
培养逻辑思维能 力:动态几何问 题的解决需要学 生运用逻辑推理 和数学思维,有 助于培养学生的 逻辑思维能力。
研究方法和成果
研究方法:动态几何问题的研究方法主要包括几何分析、代数方法、微 分几何等。
成果:动态几何问题的研究成果包括发现了许多新的几何结构、证明了 许多重要的几何定理、解决了许多重要的几何问题等。
2024年高考数学总复习:立体几何中的动态问题
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
初中动态几何问题教学策略探究
几何问题的方法,学生也 能因之领略到数学之美尽在于此. 三、引导学生综合分析 ,理清解题 的关键
() 2 连接 B E,证明 AB ME是 等腰 直角 三角形 ; () 3 将图 3中 AP A绕点 A顺时针旋转 4 。 ( E 5 在备 用图 中画
在几何证 明中 ,综合法与分析法是两种最常用的数学方法 ,
() 1 求证 :AB Q △A P D D ;
( )已 知 A = 3 2 D ,AP =2 ,
P B
求 cs P o/B Q的值 ( 结果保留根号) .
图4
【 明 】 题是 2 1 海 南 说 此 0 1年 省 中考 题 ,它不属 于动 态几何 问题 ,但 我们可 以将 其 “ 动态 ”
如 图 8 过 点 P 作 _∥AB, 交 , G
法 ,从 已知条件 出发 ,逐步往下推
清解题 的思路 ,找到解题的突破 口.
四 、引 导 学 生 分 析变 量 ,发 现 变 量 的 关 系
c于点 F ,交 A D于点 G . 理 ,同时从需要证 明的结论往 上做假 设 与猜想 ,有助于 学生理 B
用综 合法拓展条件 ,由条件 向结论推 理 ,执 因索果 ;用分析法
转化 结论 ,由结论 向条件层 层假设 与猜 想 ,执果索 因 ;这样往 往更能发现解决问题的关键所在 .
例 4 如 图 5 正 方形 A C A , BD 的边 长 为 1 ,G 为 C 边 上 的 一 个 D
图 3 备 用 图
【 明】 说 此题是 2 0 0 5年海南省 中考 题,是典型 的动态几何 问
题 ,其 中的第( ) 2 小题是 属于较难 的题型 ,学生不容易发现解题 的关键 点,但是如果用分析综合法,则容 易发现解题 的突破 口. 如果 学生只利 用综合法 ,由条件 向结论进行单 向性地推理 ,
2022中考数学压轴题之动态几何专题《动态几何问题探究》PPT讲义 - 副本
从点B开始沿BC向点C以2 cm/s的速度移动,点Q从点C开始沿CA边向
点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,第几秒时
PQ∥AB?
A
(陕西省咸阳市中考试题)
Q
B
P
C
图9—2
分析:如图9—2,假设运动开始后t秒时,PQ∥AB根据这时图形的特殊位置, 利用平行线分线段成比例定理求解.
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明 理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数。
中考动态几何问题探索
线动实质就是点动,即点动带动线 动,进而还会产生面动,因而线动型几 何问题可以通过转化成点动型问题来求 解.解决此类题的关键是要把握图形运 动与变化的全过程,抓住其中的等量关 系和变量关系.从运动变化得图形的特 殊位置,进而探索出一般的结论或者从 中获得解题启示,这种由特殊到一般的 思想对我们解决运动变化问题是极为重 要的.
2、图形旋转型
例7(临沂)
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板
DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为
DF),将直角三角板DEF绕D点按逆时针方向旋转。
⑴在图1中,DE交AB于M,DF交BC于N。①证明DM=DN;②在这一过程中,
B P RC (图2)
D
变化?若变化,请说明理由;若不变,求出四边 A
E
形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相
O
似?
B
C
D
(备用图)
1
中考动态几何问题探索
(眉山)、如图:∠MON = 90°,在∠MON的内部有一个 正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的 任意一点,在∠MON的内部作正方形AB1C1D1。
人教版初中数学中考 讲本 专项突破六 动态几何探究问题 类型一 “动点”问题探究
(1)若点G在AC上.求证:FA=FG; (2)若EF=FG,当EF过AC中点时,求AG的长; (3)已知FG=8,设点E运动的路程为s.当s满足什么条件时,以G,C,H为顶 点的三角形与△BEF相似(包括全等)?
(1)解:证明:∵四边形ABCD是菱形,∴BA=BC, ∴∠BAC=∠BCA. `∵四边形EFGH是矩形, ∴FG∥BC,∴∠AGF=∠BCA, ∴∠AGF=∠FAG,∴FA=FG.
(1)线段AD的长为 2 ;
(2)用含t的代数式表示线段BP的长;
(3)当点A'在△ABC内部时,求t的取值范围; (4)当∠AA'D与∠B相等时,直接写出t的值.
(3)如图1,当点A'落在AB上时,DP⊥AB. 图1
由(1)知AD=2.由题意,得AP=t.
如图2,当点A'落在边BC上时,DP⊥AC,点A'与点C重合. 图2
由题意,得PB=AQ=t cm, ∴AP=AB-PB=(5-t)cm. ∵∠B=∠B,∠PNB=∠ACB=90°,
解:(3)存在. 如图,过点C作CM⊥AD于点M,
∴∠CMD=90°.
∵PQ∥CD,∴∠AQP=∠MDC. 由(2)知∠BAD=90°,∴∠PAQ=∠CMD, ∴△APQ∽△MCD,
图3
∴s=BE=4x=1;
Ⅱ.若点H在点C的右侧,s+8>10,即2<s≤8,如图4,
图4 ∴CH=BE+EH-BC=(4x+8)-10=4x-2.
②当点E在线段MC上时,8<s≤10,如图5.
图5 由(2)①知EF=6,由(3)①知EH=8. 由题意,得BE=s, ∴BH=BE+EH=s+8,∴CH=BH-BC=s-2. ∵四边形EFGH为矩形,∴GH=EF=6.
小专题(十三) 几何图形中的动态问题
∠BOM,所以∠MOC= ∠BOM= (180°-β)
=90°- β.因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°
β)= β.所以∠AOM=2∠CON.
1
2
3
4
② 当∠AOC=3∠BON时,求∠AOM的度数.
② 由①,知∠BON=∠MON-∠BOM=90°(180°-β)=β-90°,∠AOC=∠AOM+∠MOC
OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的
平分线?如果存在,求出t的值;如果不存在,请说明理由.
(3) 存在
有以下三种情况:① 当OB平分∠AOM时, ∠AOM=∠BOM,所以t=180-4t,
解得t=36.②
当OB平分∠MON时,∠BON= ∠MON,即∠BON=90°,所以
1
2
3
4
类型二
角中的动态问题
3. 如图,O为直线AB上一点,将一直角三角形OMN的直角顶点放在点O处,
射线OC平分∠BOM.
(1) 如图①,若∠AOM=30°,求∠CON的度数.
(1) 因为∠AOM=30°,所以∠BOM=180°-
∠AOM=150°.又因为∠MON是直角,OC平
分∠BOM,所以∠CON=∠MON- ∠BOM=
(1) AC+MD=AB-MC-BD=20-2×1-2×2=14(cm)
(2) 设BM=xcm,运动时间为ts.由题意,得x-2t=2(n-t),
所以x=2n.所以AB=AM+BM=3ncm
1
2
3
微重点 立体几何中的动态问题 解析版-2024年高考数学重难点攻略
微重点 立体几何中的动态问题“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.知识导图考点一:动点轨迹问题考点二:折叠、展开问题考点三:最值、范围问题考点分类讲解考点一:动点轨迹问题规律方法 解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定或用代数法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.1(2024·浙江温州·一模)如图,所有棱长都为1的正三棱柱ABC -A 1B 1C 1,BE =2EC,点F 是侧棱AA 1上的动点,且AF =2CG,H 为线段FB 上的动点,直线CH ∩平面AEG =M ,则点M 的轨迹为()A.三角形(含内部)B.矩形(含内部)C.圆柱面的一部分D.球面的一部分【答案】A【分析】根据题意首先保持H 在线段FB 上不动(与F 重合),研究当点F 运动时M 的轨迹为线段MN ,再根据H 点在线段FB 上运动的轨迹即可得出点M 的轨迹为△MNE 及其内部的所有点的集合.【详解】如下图所示:首先保持H 在线段FB 上不动,假设H 与F 重合根据题意可知当F 点在侧棱AA 1上运动时,若F 点在A 1点处时,G 为CC 1的中点,此时由AF =2CG 可得满足FM =2MC,当F 点运动到图中F 1位置时,易知AF 1 =2CG 1,取AG 1∩CF 1=P ,可得F 1P =2PC ,取棱AC 上的点N ,满足AN =2NC,根据三角形相似可得M ,N ,P 三点共线,当点F 在侧棱AA 1上从A 1点运动到A 点时,M 点轨迹即为线段MN ;再研究当点H 在线段FB 上运动,当点H 在线段FB 上从点F 运动到点B 时,M 点的轨迹是线段ME ,当点H 在线段F 1B 上从点F 1运动到点B 时,M 点的轨迹是线段PE ,因此可得,当点F 是侧棱AA 1上运动时,H 在线段FB 上运动时,点M 的轨迹为△MNE 及其内部的所有点的集合;即可得M 的轨迹为三角形(含内部).故选:A2(多选)(23-24高三上·贵州安顺·期末)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E 、F 、G 、H 分别为棱CC 1、C 1D 1、A 1D 1、AB 的中点,点M 为棱A 1B 1上动点,则()A.点E 、F 、G 、H 共面B.GM +MH 的最小值为1+5C.点B 到平面AB 1C 的距离为233D.DE ⊥A 1H【答案】ACD【分析】根据题意建立空间之间坐标系,利用平面向量基本定理可对A 判断,利用向量的垂直表示可对D 判断;利用正方体面展开图可对B 判断;利用等体积法可对C 判断.【详解】如图,以D 为原点,建立空间直角坐标系,则D 0,0,0 ,E 0,2,1 ,F 0,1,2 ,G 1,0,2 ,H 2,1,0 ,对A :EF =0,-1,1 ,EG =1,-2,1 ,EH =2,-1,-1 ,设EF =λEG +μEH ,即0,-1,1 =λ1,-2,1 +μ2,-1,-1 ,解得λ=23,μ=-13,所以EF ,EG ,EH共面,故A 正确.对B :将正方体沿AB 剪开展开如下图,连接GH 交A 1B 1于一点,此点为M 点,此时GM +MH 为最小值32+22=13,故B 错误;对C :由等体积法可知V B -AB 1C =V B 1-ABC ,即13·S △AB 1C ·d =13·S △ABC ·BB 1 ,由S △AB 1C =12×2×2×sin π3=32,S △ABC =12×2×2=2,求解得d =233,故C 正确.对D :D 0,0,0 ,A 12,0,2 ,DE =0,2,1 ,A 1H=0,1,-2 DE ·A 1H =2-2=0,则DE ⊥A 1H ,所以DE ⊥A 1H ,故D 正确.故选:ACD .3(2023·贵州·一模)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N ,P 分别为棱AA 1,CC 1,AD 的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的轨迹围成图形的面积为.【答案】33【分析】根据题意找出点Q 的轨迹围成图形为正六边形PENFGM 即可求解.【详解】如图,取CD ,B 1C 1,A 1B 1的中点分别为EFG ,则点Q 的轨迹围成图形为正六边形PENFGM ,且边长为面对角线的一半,即2,所以点Q 的轨迹围成图形的面积为6×122×2 2-222=33,故答案为:3 3.4(2023·宁波联考)正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 满足BP =λBC+μ-→BB 1(λ,μ∈R ),则下列说法正确的有()A.若λ+μ=1,则A 1P ⊥AD 1B.若λ+μ=1,则三棱锥A 1-PDC 1的体积为定值C.若点P 总满足PA ⊥BD 1,则动点P 的轨迹是一条直线D.若点P 到点A 的距离为3,则动点P 的轨迹是一个面积为π的圆【答案】ABC【解析】对于A ,因为BP =λBC +μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知,点B 1,C ,P 共线,如图,连接AD1,A 1C ,BC 1,B 1C ,在正方体ABCD -A 1B 1C 1D 1中,B 1C ⊥BC 1,A 1B 1⊥平面BB 1C 1C ,因为BC 1⊂平面BB 1C 1C ,所以A 1B 1⊥BC 1,又B 1C ∩A 1B 1=B 1,所以BC 1⊥平面A 1B 1C ,在BC 1上任取一点P ,连接A 1P ,则A 1P ⊂平面A 1B 1C ,所以BC 1⊥A 1P ,在正方体ABCD -A 1B 1C 1D 1中,因为AB ∥D1C 1,且AB =D 1C 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1,则AD 1⊥A 1P ,故选项A 正确;对于B ,如图,连接A 1C 1,C 1D ,A 1D ,B 1C ,因为BP =λBC+μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知点B 1,C ,P 共线,即点P 在直线B 1C 上,在正方体ABCD -A 1B 1C 1D 1中,因为A 1B 1∥DC ,且A 1B 1=DC ,所以四边形A 1B 1CD 为平行四边形,所以A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,BC 1⊄平面A 1C 1D ,所以B 1C ∥平面A 1C 1D ,则直线B 1C 上任意一点到平面A 1C 1D 的距离相等,又因为△A 1C 1D 的面积为一定值,所以三棱锥A 1-PDC 1的体积为定值,故选项B 正确;对于C ,如图,连接AC ,BD ,AB1,BD 1,B 1C ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,AC ⊥BD ,BB 1⊥平面ABCD ,因为AC ⊂平面ABCD ,所以BB 1⊥AC ,又BB 1∩BD =B ,所以AC ⊥平面BB 1D 1D ,BD 1⊂平面BB 1D 1D ,所以AC ⊥BD 1,同理AB 1⊥BD 1,又AB 1∩AC =A ,所以BD 1⊥平面AB 1C ,因为点P 满足BP =λBC +μ-→BB 1(λ,μ∈R ),所以点P 在侧面BB 1C 1C 所在的平面上运动,且PA ⊥BD 1,所以动点P 的轨迹就是直线B 1C ,故选项C 正确;对于D ,因为点P 到点A 的距离为3,所以点P 的轨迹是以A 为球心,3为半径的球面与平面BB 1C 1C 的交线,即点P 的轨迹为小圆,设小圆半径为r ,因为球心A 到平面BB 1C 1C 的距离为1,则r =(3)2-1=2,所以小圆的面积S =πr 2=2π,故选项D 错误考点二:折叠、展开问题规律方法 画好折叠、展开前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.1(2024·河南·模拟预测)为体现市民参与城市建设、共建共享公园城市的热情,同时搭建城市共建共享平台,彰显城市的发展温度,某市在中心公园开放长椅赠送点位,接受市民赠送的休闲长椅.其中观景草坪上一架长椅因其造型简单别致,颇受人们喜欢(如图1).已知AB 和CD 是圆O 的两条互相垂直的直径,将平面ABC 沿AB 翻折至平面ABC ,使得平面ABC ⊥平面ABD (如图2)此时直线AB 与平面C BD 所成角的正弦值为()A.13B.33C.22D.32【答案】B【分析】根据给定条件,建立空间直角坐标系,利用空间向量求出线面角的正弦值.【详解】依题意,OC ⊥AB ,OD ⊥AB ,而平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,又OC ⊂平面ABC ,OD ⊂平面ABD ,则OC ⊥平面ABD ,OD ⊥OC ,因此直线OD ,OB ,OC 两两垂直,以点O 为原点,直线OD ,OB ,OC 分别为x ,y ,z 轴建立空间直角坐标系,令圆半径OD =1,则O (0,0,0),D (1,0,0),B (0,1,0),C (0,0,1),OB =(0,1,0),BC=(0,-1,1),BD =(1,-1,0),设平面C BD 的一个法向量n =(x ,y ,z ),则n ⋅BC=-y +z =0n ⋅BD=x -y =0,令y =1,得n =(1,1,1),设直线AB 与平面C BD 所成的角为θ,则sin θ=|cos ‹n ,OB ›|=|n ⋅OB ||n ||OB |=11×3=33,所以直线AB 与平面C BD 所成角的正弦值为33.故选:B2(22-23高三上·浙江·开学考试)如图,矩形ABCD 中,AD =2,AB =3,AE =2EB,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的点,满足CM =2MA 1,则在△ADE 翻折过程中(点A 1不在平面DEBC 内),下面四个选项中正确的是()A.BM ⎳平面A 1DEB.点M 在某个圆上运动C.存在某个位置,使DE ⊥A 1CD.线段BA 1的长的取值范围是5,3【答案】ABD【分析】由已知,选项A ,在DC 上取一点N ,令CN =2ND ,可通过面面平行的判定定理证明平面BMN ∥平面ADE ,从而证明BM ∥平面A 1DE ;选项B ,可通过∠A 1DE =∠MNB =π4,NM =43,EB =22,借助余弦定理可知BM 为定值,从而确定M 点的轨迹;选项C ,可先假设DE ⊥A 1C 成立,然后借助线面垂直的判定定理和性质定理得到DE ⊥CH ,然后在△DHC 中,利用勾股定理验证是否满足,即可做出判断;选项D ,可通过点A 1运行轨迹,分别找出最大值和最小值点,然后求解即可做出判断.【详解】如上图所示,在DC 上取一点N ,令CN =2ND,连接NB ,在矩形ABCD 中,AB =CD 且AB ∥CD ,又因为AE =2EB ,CN =2ND,所以EB =ND 且EB ∥ND ,所以四边形EBND 为平行四边形,所以NB ∥ED ,又因为NB ⊄平面ADE ,DE ⊂平面ADE ,所以NB ∥平面ADE ,又因为CN =2ND ,CM =2MA 1,所以NM ∥A 1D ,又因为NM ⊄平面ADE ,DA 1⊂平面ADE ,所以NM ∥平面ADE ,又因为NM ∩NB =N 且NM 、NB ⊂平面BMN ,所以平面BMN ∥平面ADE ,又因为MB ⊂平面BMN ,所以BM ∥平面A 1DE ,选项A 正确;由NB ∥ED ,NM ∥A 1D ,AD =AE =2,可得∠A 1DE =∠MNB =π4,由CN =2ND ,CM =2MA 1 可知,NM =23A 1D =43,而EB =ND =22,由余弦定理可知,BM 为定值,而B 为定点,故M 在以B 为圆心,BM 为半径的圆上运动,故选项B 正确;取ED 的中点H ,连接HA 1、HC ,在△A 1DE 中,AD =AE =2,所以DE ⊥A 1H ,假设DE ⊥A 1C 成立,A 1H 、A 1C ⊂平面A 1HC ,所以DE ⊥平面A 1HC ,又因为CH ⊂平面A 1HC ,所以DE ⊥CH ,而,在△DHC 中,DH =2,DC =3,CH =5,所以∠DHC ≠π2,故DE ⊥CH 不成立,所以假设不成立,该选项C 错误;在DC 上取一点A 2,令DA 2 =2A 2C,在△ADE 翻折过程中, 线段BA 1的最大值是A 1与A 点重合,此时BA 1=3,线段BA 1的最小值是A 1与A 2点重合,此时BA 1=5,又因为点A 1不在平面DEBC 内,所以线段BA 1的长的取值范围是5,3 ,选项D 正确;故选:ABD3(2024高三·全国·专题练习)如图1,在等边△ABC 中,点D 、E 分别为边AB 、AC 上的动点且满足DE ⎳BC ,记DEBC=λ.将△ADE 沿DE 翻折到△MDE 的位置,使得平面MDE ⊥平面DECB ,连接MB ,MC ,如图2,N 为MC 的中点.(1)当EN ⎳平面MBD 时,求λ的值.(2)随着λ的值的变化,二面角B -MD -E 的大小是否改变?若是,请说明理由;若不是,请求出二面角B -MD -E 的正弦值.【答案】(1)λ=12(2)不是,255【分析】(1)取MB 的中点为P ,连接DP ,PN ,推出NP ∥BC ,证明NEDP 为平行四边形,利用比例关系求解即可.(2)取DE 的中点O ,如图建立空间直角坐标系,求出平面BMD 的法向量,平面EMD 的法向量,利用空间向量的数量积求解二面角的余弦函数值然后求解即可.【详解】(1)如图,取MB 的中点P ,连接DP ,PN .因为N 为MC 的中点,所以NP ⎳BC ,NP =12BC .又DE ⎳BC ,所以NP ⎳DE ,即N ,P ,D ,E 四点共面.因为EN ⎳平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD =DP ,所以EN ⎳DP ,即四边形NEDP 为平行四边形,所以NP =DE ,即DE =12BC ,所以λ=12.(2)取ED 的中点O ,连接MO ,则MO ⊥DE .因为平面MDE ⊥平面DECB ,平面MDE ∩平面DECB =DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB .如图,建立空间直角坐标系,不妨设BC =2,则M 0,0,3λ ,D λ,0,0 ,B 1,31-λ ,0 ,所以MD =λ,0,-3λ ,DB =1-λ,31-λ ,0 .设平面MBD 的一个法向量为m=(x ,y ,z ),则MD ⋅m=λx -3λz =0,DB ⋅m =1-λ x +31-λ y =0,即x =3z ,x =-3y , 令x =3,所以m =3,-1,1 .由题意可知n=(0,1,0)为平面MDE 的一个法向量.设二面角B -MD -E 的平面角为θ,则cos θ =cos m ,n =m ⋅n m n =55,因此sin θ=1-cos 2θ=255,所以二面角B -MD -E 的正弦值为255.4(2023·邵阳模拟)如图所示,在矩形ABCD 中,AB =3,AD =1,AF ⊥平面ABCD ,且AF =3,点E 为线段CD (除端点外)上的动点,沿直线AE 将△DAE 翻折到△D ′AE ,则下列说法中正确的是()A.当点E 固定在线段CD 的某位置时,点D ′的运动轨迹为球面B.存在点E ,使AB ⊥平面D ′AEC.点A 到平面BCF 的距离为32D.异面直线EF 与BC 所成角的余弦值的取值范围是1313,1010【答案】 D【解析】选项A ,当点E 固定在线段CD 的某位置时,线段AE 的长度为定值,AD ′⊥D ′E ,过D ′作D ′H ⊥AE 于点H ,H 为定点,D ′H 的长度为定值,且D ′H 在过点H 与AE 垂直的平面内,故D ′的轨迹是以H 为圆心,D ′H 为半径的圆,故A 错误;选项B ,无论E 在CD (端点除外)的哪个位置,AB 均不与AE 垂直,故AB 不与平面AD ′E 垂直,故B 错误;选项C ,以AB ,AD ,AF分别为x ,y ,z 轴的方向建立如图所示的空间直角坐标系,则A (0,0,0),F (0,0,3),B (3,0,0),C (3,1,0).BC =(0,1,0),BF =(-3,0,3),AB =(3,0,0),设平面BCF 的法向量为n =(x ,y ,z ),则n ·BC=y =0,n ·BF =-3x +3z =0, 取n =(3,0,1),则点A 到平面BCF 的距离d =n ·ABn=32,故C 错误;选项D ,设E (3λ,1,0),λ∈(0,1),BC=(0,1,0),EF=-3λ,-1,3 ,设EF 与BC 所成的角为θ,则cos θ=EF ·BCEF BC=13λ2+10∈1313,1010 ,故D 正确.考点三:最值、范围问题规律方法 在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的解题思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.1(多选)(2023·鞍山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是线段BC 1上的动点,则下列结论正确的是()A.四面体PA 1D 1A 的体积为定值B.AP +PC 的最小值为22C.A 1P ∥平面ACD 1D.直线A 1P 与AC 所成的角的取值范围是0,π3【答案】ACD【解析】对于A ,由正方体可得平面DAA 1D 1∥平面BCC 1B 1,且B ,P ∈平面BCC 1B 1,所以点B 到平面DAA 1D 1的距离等于点P 到平面DAA 1D 1的距离,所以四面体PA 1D 1A 的体积V P -A 1D 1A =VB -A 1D 1A =13S △A 1D 1A ×1=13×12×1×1×1=16,所以四面体PA 1D 1A 的体积为定值,故A 正确;对于B ,当P 与B 重合时,AP +PC =AB +BC =2<22,所以AP +PC 的最小值不为22,故B 错误;对于C ,连接A 1C 1,A 1B ,由正方体可得AA 1=CC 1,AA 1∥CC 1,所以四边形AA 1C 1C 是平行四边形,所以AC ∥A 1C 1,因为AC ⊂平面ACD 1,A 1C 1⊄平面ACD 1,所以A 1C 1∥平面ACD 1,同理可得BC 1∥平面ACD 1因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1C 1B ,所以平面A 1C 1B ∥平面ACD 1,因为A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,故C 正确;对于D ,因为AC ∥A 1C 1,所以∠PA 1C 1(或其补角)为直线A 1P 与AC 所成的角,由图可得当P 与B 重合时,此时∠PA 1C 1最大为π3,当P 与C 1重合时,此时∠PA 1C 1最小为0,所以直线A 1P 与AC 所成的角的取值范围是0,π3,故D 正确.2(2023·青岛模拟)三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角P -ABC 是由有公共端点P 且不共面的三条射线PA ,PB ,PC 以及相邻两射线间的平面部分所组成的图形,设∠APC =α,∠BPC =β,∠APB =γ,二面角A -PC -B 为θ,由三面角余弦定理得cos θ=cos γ-cos α·cos βsin α·sin β.在三棱锥P -ABC 中,PA =6,∠APC =60°,∠BPC =45°,∠APB =90°,PB +PC=6,则三棱锥P -ABC 体积的最大值为()A.2724B.274C.92D.94【答案】C【解析】如图所示,作BD 垂直于CP 于点D ,设点B 在平面APC 中的射影为M ,连接BM ,MD ,由题意得V P -ABC =13·S △APC·BM .设二面角A -PC -B 为θ,则cos θ=0-12×2232×22=-33,θ∈(0,π),∴sin ∠BDM =63,BM =BD ·sin ∠BDM =63BD =63·PB ·sin ∠BPC =33·PB ,S △APC =12·PA ·PC ·sin ∠APC =332·PC ,∴V P -ABC =13·S △APC ·BM =12·PB ·PC =12·PB (6-PB )=-12PB 2+3PB=-12(PB -3)2+92,当PB =3时,V P -ABC 的最大值为92.3(23-24高三下·北京·开学考试)正方体ABCD -A 1B 1C 1D 1的棱长为1,动点M 在线段CC 1上,动点P 在平面A 1B 1C 1D 1上,且AP ⊥平面MBD 1.线段AP 长度的取值范围是()A.1,2B.62,3 C.62,2 D.62+∞ 【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算,代入计算,即可得到结果.【详解】以D 为坐标原点,以DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系,设P a ,b ,1 ,M 0,1,t 0≤t ≤1 ,则A 1,0,0 ,B 1,1,0 ,D 10,0,1 ,则AP =a -1,b ,1 ,BD 1 =-1,-1,1 ,MD 1=0,-1,1-t ,因为AP ⊥平面MBD 1,所以AP ⊥BD 1,AP ⊥MD 1,即AP ⋅BD 1=1-a -b +1=0AP ⋅MD 1 =-b +1-t =0 ,解得a =t +1b =1-t ,所以AP =t ,1-t ,1 ,所以AP =t 2+1-t 2+1=2t -12 2+32,又0≤t ≤1,所以当t =12时,即M 是CC 1的中点时,AP 取得最小值62,当t =0或1,即M 与点C 或C 1重合时,AP取得最大值2,所以线段AP 长度的取值范围为62,2.故选:C4(2023·黑龙江哈尔滨·三模)已知四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD ,点E 是线段PB 上的动点,则直线DE 与平面PBC 所成角的最大值为()A.π6B.π4C.π3D.π2【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算即可得到结果.【详解】由题意,因为ABCD 为正方形,且PD ⊥底面ABCD ,以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设PD =AD =1,则D 0,0,0 ,B 1,1,0 ,C 0,1,0 ,P 0,0,1 ,所以PB =1,1,-1 ,PC =0,1,-1 ,设PE =λPB ,λ∈0,1 ,则PE =λ,λ,-λ ,所以E λ,λ,1-λ ,即DE =λ,λ,1-λ ,设平面PBC 的法向量为n=x ,y ,z ,则n ⋅PB=x +y -z =0n ⋅PC=y -z =0,解得x =0,y =z ,取y =z =1,所以平面PBC 的一个法向量为n=0,1,1 ,设直线DE 与平面PBC 所成角为θ,则sin θ=cos <n ,DE> =n ⋅DEn DE =12×2λ2+1-λ2=12×3λ-132+23,因为y =sin θ,θ∈0,π2单调递增,所以当λ=13时,sin θ=32最大,此时θ=π3,即直线DE 与平面PBC 所成角的最大值为π3.故选:C强化训练一、单选题1(2023·云南保山·二模)已知正方体ABCD -A 1B 1C 1D 1,Q 为上底面A 1B 1C 1D 1所在平面内的动点,当直线DQ 与DA 1的所成角为45°时,点Q 的轨迹为()A.圆B.直线C.抛物线D.椭圆【答案】C【分析】建系,利用空间向量结合线线夹角分析运算.【详解】以点D 为原点,DA ,DC ,DD 1为x ,y ,z 的正方向,建立空间直角坐标系,设正方体棱长为1,则D 0,0,0 ,A 11,0,1 ,设Q x ,y ,1 ,可得DQ =x ,y ,1 ,DA 1 =1,0,1 ,因为直线DQ 与DA 1的所成角为45°,则cos45°=DQ ⋅DA 1 DQ ⋅DA 1=x +1x 2+y 2+1×2=22,化简可得y 2=2x ,所以点Q 的轨迹为抛物线.故选:C .2(2023·全国·三模)在平面直角坐标系中,P 为圆x 2+y 2=16上的动点,定点A -3,2 .现将y 轴左侧半圆所在坐标平面沿y 轴翻折,与y 轴右侧半圆所在平面成2π3的二面角,使点A 翻折至A ,P 仍在右侧半圆和折起的左侧半圆上运动,则A ,P 两点间距离的取值范围是()A.13,35B.4-13,7C.4-13,35D.13,7【答案】B【分析】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,以及P 在圆的下端点时,分别取到A ,P 两点间距离的最值;若P ∈β,设P 4cos α,4sin α ,利用两点间的距离公式结合A 到β的距离,以及三角函数的有界性取到最值,进而得出答案.【详解】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,PA 有最小值P 1A =R -OA =4-13;当P 在圆的下端点时,取到最大值P 2A =-3-02+2+4 2=32+62=35,即PA ∈4-13,35 ;若P ∈β,设P 4cos α,4sin α ,A 在β上的投影为距离为A 1,则A 到β面距离为AA 1 =-3 sin π3=332,又A 到y 轴的距离为3,∴A 1到y 轴的距离为9-274=32,而A 1到x 轴的距离为2,则PA =32+4cos α2+2-4sin α 2+3322=29+2035cos α-45sin α =29+20sin φ-α ,其中α∈-π2,π2 ,sin φ=35,cos φ=45,故PA min =13,当且仅当α=-π2时成立;PAmax =7,当且仅当α=φ-π2时成立;即PA ∈13,7 ;综上可得,PA∈4-13,7 ,故选:B3(2024·全国·模拟预测)如图,已知矩形ABCD 中,E 为线段CD 上一动点(不含端点),记∠AED =α,现将△ADE 沿直线AE 翻折到△APE 的位置,记直线CP 与直线AE 所成的角为β,则()A.cos α>cos βB.cos α<cos βC.cos α>sin βD.sin α<cos β【答案】B【分析】利用空间向量夹角余弦公式和向量数量积公式得到cos β=CE+EPcos αCP,由三角形三边关系得到cos β>cos α,求出答案.【详解】AB 选项,cos β=CP ⋅EA CP ⋅EA =CE +EP⋅EA CP ⋅EA =CE ⋅EA +EP ⋅EA CP ⋅EA=CE ⋅EA cos α+EP ⋅EA cos α CP ⋅EA =CE +EP ⋅EA cos αCP ⋅EA =CE +EP cos αCP,因为CE +EP >CP ,所以CE +EPCP>1,所以cos β>cos α,A 错误,B 正确;由于y =cos x 在x ∈0,π2上单调递减,故β<α,不确定cos α,sin β和sin α,cos β的大小关系,CD 错误.故选:B .4(2023·上海宝山·二模)在空间直角坐标系O -xyz 中,已知定点A 2,1,0 ,B 0,2,0 和动点C 0,t ,t +2 t ≥0 .若△OAC 的面积为S ,以O ,A ,B ,C 为顶点的锥体的体积为V ,则VS的最大值为()A.2155 B.155 C.4155 D.455【答案】C【分析】由已知OA =2,1,0 ,0B =0,2,0 ,OC =0,t ,t +2 ,设直线OA 的单位方向向量为u ,根据空间向量公式求出C 到直线OA 的距离,得到△OAC 的面积为S ,根据锥体体积公式得到以O ,A ,B ,C 为顶点的锥体的体积为V ,利用分离常数法和基本不等式求解即可得到最大值.【详解】由已知OA =2,1,0 ,0B =0,2,0 ,OC=0,t ,t +2 ,设直线OA 的单位方向向量为u ,则u =255,55,0,所以C 到直线OA 的距离h =OC 2-OC ⋅u 2=t 2+t +2 2-t 25=9t 2+20t +205,所以S =12×5×9t 2+20t +205=9t 2+20t +202,V =13S △OAB ⋅t +2 =13×12×2×2×t +2 =2t +2 3,则V S =2t +239t 2+20t +202=43⋅t +229t 2+20t +20=49⋅9t 2+36t +369t 2+20t +20=49⋅9t 2+20t +20+16t +169t 2+20t +20=49⋅1+16⋅t +19t 2+20t +20,令m =t +1m ≥1 ,则t =m -1,所以t +19t 2+20t +20=m 9m -1 2+20m -1 +20=m 9m 2+2m +9=19m +9m +2≤129m ⋅9m +2=120,当且仅当9m =9m即m =1时等号成立,所以V S≤49×1+16×120=4515,即V S的最大值为4515.故选:C .5(23-24高三上·河北衡水·阶段练习)正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,O 为BC 的中点,M 为棱B 1C 1上的动点,N 为棱AM 上的动点,且MN MO =MOMA ,则线段MN 长度的取值范围为()A.364,7 B.62,477C.34,477D.3,6【答案】B【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱ABC -A 1B 1C 中,O 为BC 的中点,取B 1C 1中点Q ,连接OQ ,如图,以O 为原点,OC ,OA ,OQ 为x ,y ,z 轴建立空间直角坐标系,则O 0,0,0 ,A 0,3,0 ,B 1-1,0,3 ,C 11,0,3 ,因为M 是棱B 1C 1上一动点,设M a ,0,3 ,且a ∈[-1,1],所以OM ⋅OA=a ,0,3 ⋅0,3,0 =0,则OA ⊥OM ,因为ON ⊥AM ,且MN MO =MOMA 所以在直角三角形OMA 中可得:△OMN ~△AMO即MN =MO 2MA=a 2+3a 2+3 2+3 2=a 2+3a 2+6,于是令t =a 2+6,t ∈6,7 ,所以a 2+3a 2+6=t 2-3t =t -3t ,t ∈6,7 ,又符合函数y =t -3t 为增增符合,所以在t ∈6,7 上为增函数,所以当t =6时,t -3tmin =6-36=62,即线段MN 长度的最小值为62,当t =7时,t -3tmax=7-37=477,即线段MN 长度的最大值为477,故选:B .【点睛】关键点睛:1.找到△OMN ~△AMO ,再利用函数单调性求出最值.2.建系,设出动点M a ,0,3 ,利用空间向量法求出ON ⊥AM ,再结合线线关系求线段MN 的表达式,利用函数求最值即可.6(23-24高三下·山西·阶段练习)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 是CD 的中点,F 是CC 1上的动点,则三棱锥A -DEF 外接球半径的最小值为()A.3B.23C.13D.15【答案】C【分析】取AE 的中点G ,根据题意分析可知:三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,设GO =n ,CF =m ∈0,4 ,建系,结合空间两点距离公式可得n =m 2+4m,进而利用基本不等式运算求解.【详解】连接AE ,取AE 的中点G ,可知G 为△ADE 的外心,过G 作平面ABCD 的垂线,可知三棱锥A -DEF 外接球的球心O 在该垂线上,设GO =n ,CF =m ∈0,4 ,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,则D 0,0,0 ,A 4,0,0 ,E 0,2,0 ,G 2,1,0 ,O 2,1,n ,F 0,4,m ,因为OD =OF ,即4+1+n 2=4+9+m -n 2,整理得n =m 2+4m≥2m 2⋅4m =22,当且仅当m 2=4m,即m =22时,等号成立,所以三棱锥A -DEF 外接球半径的最小值为4+1+8=13.故选:C .【点睛】关键点点睛:根据题意分析可知三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,再以空间直角坐标系为依托,分析求解.7(2023·陕西咸阳·模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则以下不正确的是()A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45o 的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】D【分析】由底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离不变,可判定A 正确;以D 为原点,建立空间直角坐标系,设P (x ,2-x ,0),则D 1P =(x ,2-x ,-2),A 1C 1=(-2,2,0),结合向量的夹角公式,可判定B 正确;由直线AP 与平面ABCD 所成的角为45°,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定C 正确;设P (m ,m ,0),求得平面CB 1D 1的一个法向量为n=(1,-1,-1),得到FP =2(x -1)2+6,可判定D 错误.【详解】对于A 中:底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离为正方体棱长,所以四棱锥P -AA 1D 1D 的体积不变,所以A 选项正确;对于B 中:以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),设P (x ,2-x ,0),0≤x ≤2,则D 1P =(x ,2-x ,-2),A 1C 1 =(-2,2,0),设直线D 1P 与A 1C 1所成角为θ,则cos θ=cos D 1P ,A 1C 1 =D 1P ⋅A 1C 1D 1P A 1C 1 =x -1(x -1)2+3,因为0≤x -1 ≤1,当x -1 =0时,可得cos θ=0,所以θ=π2;当0<x -1 ≤1时,cos θ=x -1(x -1)2+3=11+3x -12≤12,所以π3≤θ<π2,所以异面直线D 1P 与A 1C 1所成角的取值范围是π3,π2,所以B 正确;对于C 中:因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面DCC 1D 1和平面BCC 1B 1内,因为∠B 1AB =45°,∠D 1AD =45°最大,不成立;在平面ADD 1A 1内,点P 的轨迹是AD 1=22;在平面ABB 1A 1内,点P 的轨迹是AB 1=22;在平面A 1B 1C 1D 1时,作PM ⊥平面ABCD ,如图所示,因为∠PAM =45°,所以PM =AM ,又因为PM =AB ,所以AM =AB ,所以A 1P =AB ,所以点P 的轨迹是以A 1点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为14×2π×2=π,综上,点P 的轨迹的总长度为π+42,所以C 正确;对于D 中,由B 1(2,2,2),D 1(0,0,2),C (0,2,0),F (2,1,2),设P (m ,n ,0),0≤m ≤2,0≤n ≤2,则CB 1 =(2,0,2),CD 1 =(0,-2,2),FP=(m -2,n -1,-2)设平面CB 1D 1的一个法向量为n=(a ,b ,c ),则n ⋅CD 1=-2b +c =0n ⋅CB 1=2a +2c =0,取a =1,可得b =-1,c =-1,所以n=(1,-1,-1),因为PF ⎳平面B 1CD ,所以FP ⋅n=(m -2)-(n -1)+2=0,可得n =m +1,所以FP=(m -2)2+(n -1)2+4=2m 2-4m +8=2(m -1)2+6≥6,当x =1时,等号成立,所以D 错误.故选:D .【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)、立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动角的范围等问题;(2)、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(3)、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(4)、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在.8(2023·吉林长春·模拟预测)四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,2AB =BC=CD,BC⊥CD,侧面A1ABB1为正方形,设点O为四棱锥A1-CC1DD外接球的球心,E为DD1上的动点,则直线AE与OB所成的最小角的正弦值为()A.55B.255C.265D.15【答案】D【分析】建立空间直角坐标系,确定各点坐标,设球心O1,h,1 2,根据OA=OC得到h=34,设E2,0,a,根据向量的夹角公式结合二次函数性质计算最值得到答案.【详解】如图所示:以CD,CB,CC1分别为x,y,z轴建立空间直角坐标系,设AB=1,则A1,2,0,C0,0,0,B0,2,0,球心O在平面CDD1C1的投影坐标为1,0,1 2,则设球心O1,h,12,则OA =OC ,即1-12+h -2 2+122=12+h 2+122,解得h =34,则O 1,34,12.设E 2,0,a ,a ∈0,1 ,EA =-1,2,-a ,OB =-1,54,-12,cos EA ,OB=EA ⋅OB EA ⋅OB =1+52+12a a 2+5⋅355=72+12a a 2+5⋅354=14+2a 35×a 2+5设7+a =t ,则a =7-t ,t ∈7,8 ,则14+2a 35×a 2+5=2t35×t 2-14t +54=235×541t-7542+554,当t =547时,有最大值为235×554=265,此时直线AE 与OB 所成的角最小,对应的正弦值为1-2652=15.故选:D【点睛】关键点睛:本题考查了立体几何中的异面直线夹角问题,外接球问题,意在考查学生的计算能力,空间想象能力和综合应用能力,其中建立空间直角坐标系可以简化运算,是解题的关键.二、多选题9(23-24高三下·江苏苏州·开学考试)在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AB 上的动点,则()A.平面ABC 1D 1⊥平面A 1DMB.平面BCD 1⎳平面A 1DMC.A 1M 与BC 1所成角的取值范围为π4,π3D.A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4【答案】ACD【分析】由面面垂直的判定定理可判断A 选项;取点M 与点B 重合,可判断B 选项;以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可判断CD 选项.【详解】对于A 选项,因为四边形AA 1D 1D 为正方形,则A 1D ⊥AD 1,在正方体ABCD -A 1B 1C 1D 1中,AB ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,则A 1D ⊥AB ,因为AB ∩AD 1=A ,AB 、AD 1⊂平面ABC 1D 1,所以,A 1D ⊥平面ABC 1D 1,因为A 1D ⊂平面A 1DM ,故平面ABC 1D 1⊥平面A 1DM ,A 对;对于B 选项,当点M 与点B 重合时,平面BCD 1与平面A 1DM 有公共点,B 错;对于CD 选项,以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,不妨设正方体的棱长为1,则A 1,0,0 、B 1,1,0 、C 0,1,0 、D 0,0,0 、A 11,0,1 、B 11,1,1 、C 10,1,1 、D 10,0,1 ,设点M 1,m ,0 ,其中0≤m ≤1,A 1M =0,m ,-1 ,BC 1 =-1,0,1 ,所以,cos A 1M ,BC 1 =A 1M ⋅BC 1A 1M ⋅BC 1 =12m 2+1 ∈12,22 ,设A 1M 与BC 1所成角为α,其中0≤α≤π2,则12≤cos α≤22,可得π4≤α≤π3,所以,A 1M 与BC 1所成角的取值范围为π4,π3,C 对;对于D 选项,由A 选项可知,平面ABC 1D 1的一个法向量为DA 1 =1,0,1 ,则cos A 1M ,DA 1 =A 1M ⋅DA 1A 1M ⋅DA 1 =12m 2+1 ∈12,22 ,设A 1M 与平面ABC 1D 1所成角为β,则0≤β≤π2,则12≤sin β≤22,可得π6≤β≤π4,所以,A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4,D 对.故选:ACD .10(2023·全国·模拟预测)如图①,四边形ABCD 是两个直角三角形拼接而成,AB =1,BD =2,∠ABD =∠C =90°,∠BDC =45°.现沿着BD 进行翻折,使平面ABD ⊥平面BCD ,连接AC ,得到三棱锥A -BCD (如图②),则下列选项中正确的是()A.平面ABC ⊥平面ACDB.二面角B -AD -C 的大小为60°C.异面直线AD 与BC 所成角的余弦值为33D.三棱锥A -BCD 外接球的表面积为π【答案】ABC【分析】A 选项,面面垂直⇒线面垂直⇒CD ⊥平面ABC ⇒平面ABD ⊥平面ACD ;B 、C 选项,建立空间直角坐标系,利用直线方向向量和平面法向量求解;D 选项,三棱锥的外接球,寻求斜边中点(球心位置).【详解】A 项,平面ABD ⊥平面BCD ,交线为BD ,AB ⊥BD ,AB ⊂平面ABD ,所以AB ⊥平面BCD ,因为CD ⊂平面BCD ,所以AB ⊥CD .又BC ⊥CD ,且AB ∩BC =B ,所以CD ⊥平面ABC .因为CD ⊂平面ACD ,所以平面ABC ⊥平面ACD ,选项A 正确.C 选项,以B 为原点,过B 在平面BCD 内作BD 的垂线为x 轴,直线BD 为y 轴,直线AB 为z 轴,建立空间直角坐标系,则B 0,0,0 ,A 0,0,1 ,C 22,22,0,D 0,2,0 ,则AC =22,22,-1 ,AD =0,2,-1 ,BC =22,22,0.易知平面ABD 的一个法向量为n 1=1,0,0 .设平面ACD 的法向量为n2=x ,y ,z ,则n 2⋅AC =0,n 1⋅AD=0, 即22x +22y -z =0,2y -z =0,取z =2,则x =1,y =1,则n 2=1,1,2 ,由图可知二面角B -AD -C 为锐角,则二面角B -AD -C 的余弦值为cos n 1,n 2=n 1⋅n 2 n 1 n 2 =11×2=12,即二面角B -AD -C 的大小为60°,选项B 正确;cos AD ,BC =AD ⋅BCAD BC =0,2,-1 ⋅22,22,0 3×1=33,选项C 正确;D 项,取AD 的中点N ,因为△ABD 与△ACD 都是直角三角形,所以点N 到A ,B ,C ,D 的距离相等,即为三棱锥A -BCD 外接球的球心,球半径为32,则三棱锥A -BCD 外接球的表面积为4π×322=3π,选项D 错误.故选:ABC .11(2023·全国·模拟预测)如图1,矩形B 1BCC 1由正方形B 1BAA 1与A 1ACC 1拼接而成.现将图形沿A 1A 对折成直二面角,如图2.点P (不与B 1,C 重合)是线段B 1C 上的一个动点,点E 在线段AB 上,点F 在线段A 1C 1上,且满足PE ⊥AB ,PF ⊥A 1C 1,则()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由.122. 已知在平面直角坐标系中,四边形OABC 是矩形,点A 、C 的坐标分别为()3A 0,、()04C ,,点D 的坐标为()D 5-0,,点P 是直线AC 上的一动点,直线DP 与y 轴交于点M .问:(1)当点P 运动到何位置时,直线DP 平分矩形OABC 的面积,请简要说明理由,并求出此时直线DP 的函数解析式;(2)当点P 沿直线AC 移动时,是否存在使DOM △与ABC △相似的点M ,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)当点P 沿直线AC 移动时,以点P 为圆心、半径长为R (R >0)画圆,所得到的圆称为动圆P .若设动圆P 的直径长为AC ,过点D 作动圆P 的两条切线,切点分别为点E 、F .请探求是否存在四边形DEPF 的最小面积S ,若存在,请求出S 的值;若不存在,请说明理由. 注:第(3)问请用备用图解答.备用3. 阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图4中探究平行四边形MNPQ面积的大小(画.图.并直接写出结果).图1 图2 图3 A DGCB E QHFMNP图434. 在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(11),的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O F,重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.455. 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).D C B A ① D C BA ③ D CB A ②66. 问题探究(1)请你在图①中作一条..直线,使它将矩形ABCD 分成面积相等的两部分; (2)如图②,点M 是矩形ABCD 内一定点.请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分. 问题解决(3)如图③,在平面直角坐标系中,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中644DC OB OB BC CD ===∥,,,.开发区综合服务管理委员会(其占地面积不计)设在点(42)P ,处.为了方便驻区单位,准备过点P 修一条笔直的道路(路的宽度不计),并且使这条路所在的直线l 将直角梯形OBCD 分成面积相等的两部分.你认为直线l 是否存在?若存在,求出直线l 的表达式;若不存在,请说明理由.7. 将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知8AB =,74BC AD ==,AC 与BD 相交于点E ,连结CD .(1)填空:如图1,AC = ,BD = ;四边形ABCD 是 梯形.(2)请写出图1中所有的相似三角形(不含全等三角形).(3)如图2,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图2的平面直角坐标系,保持ABD △不动,将ABC △向x 轴的正方向平移到FGH △的位置,FH 与BD 相交于点P ,设A F t =,FBP △面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围.8. 如图,正方形ABCD 的边长为3a ,两动点E F ,分别从顶点B C ,同时开始以相同速度沿BC CD ,运动,与BCF △相应的EGH △在运动过程中始终保持EGH BCF △≌△,对应边EG BC =,B E C G ,,,在一图1 A BD CE 图28直线上.(1)若BE a ,求DH 的长;(2)当E 点在BC 边上的什么位置时,DHE △的面积取得最小值?并求该三角形面积的最小值.9. 如图,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点BAB EC GH F D 3a 3aB匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q 同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.10. 小贝遇到一个有趣的问题:在矩形ABCD中,8AB=cm.现有一动点P按下列方式在矩形内AD=cm,6运动:它从A点出发,沿着与AB边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,910沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种 方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角 为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点 第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合.. 时.所经过的路径的总长是多少. 小贝的思考是这样开始的 : 如图2,将矩形A B 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =. 请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前...与边相碰 次;P 点从A 点出发到第一次与D 点重合时...所经过的路径的总长是 cm ;(2) 进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形A B C D 相邻的两边上. 若P 点第一次与B 点重合前...与边相碰7次,则:AB AD 的值为 .1. 解:(1)过点B 作BD OA ⊥于点D ,则四边形CODB 是矩形,图1图24BD CO ==,3OD CB ==,3DA =.在Rt ABD △中,5AB ==. 当MN OC ∥时,MN BD ∥,AMN ADB ∴△∽△,AN AMAB AD=. ∵AN OM t ==,63AM t AD =-=,, ∴653t t -=, 即154t =(秒).(2)过点N 作NE x ⊥轴于点E ,交CB 的延长线于点F , ∵NE BD ∥,∴AEN ADB △∽△,EN ANDB AB=. 即45EN t =,45EN t =.4EF CO == ,445FN t ∴=-.COM MNA CBN OABC S S S S S =--- △△△梯形,∴1111()2222S CO OA CB CO OM AM EN CB FN =+--- 1114144(63)4(6)34222525t t t t ⎛⎫=⨯⨯+-⨯-⨯-⨯-⨯⨯- ⎪⎝⎭ . 即22161255S t t =-+(05t ≤≤). 由22161255S t t =-+,得2228(4)55S t =-+.∴当4t =时,S 有最小值,且285S =最小. 解:(1)连结BO 与AC 交于点H ,则当点P 运动到点H 时,2.直线DP 平分矩形OABC 的面积.理由如下:∵矩形是中心对称图形,且点H 为矩形的对称中心.又据经过中心对称 图形对称中心的任一直线平分此中心对称图形的面积,因为直线DP 过矩形OABC 的对称中心点H ,所以直线DP 平分矩形OABC 的面积.由已知可得此时点P 的坐标为3(2)2P ,.设直线DP 的函数解析式为y kx b =+.则有503 2.2k b k b -+=⎧⎪⎨+=⎪⎩,解得413k =,2013b =.所以,直线DP 的函数解析式为:4201313y x =+. (2)存在点M 使得DOM △与ABC △相似.如图,不妨设直线DP 与y 轴的正半轴交于点(0)m M y ,. 因为DOM ABC ∠=∠,若△DOM 与△ABC 相似,则有OM BC OD AB =或OM ABOD BC=. 当OM BCOD AB=时,即354m y =,解得154m y =.所以点115(0)4M ,满足条件. 当OM ABOD BC=时,即453m y =,解得203m y =.所以点220(0)3M ,满足条件. 由对称性知,点315(0)4M -,也满足条件. 综上所述,满足使DOM △与ABC △相似的点M 有3个,分别为115(0)4M ,、220(0)3M ,、315(0)4M -,.(3)如图 ,过D 作DP ⊥AC 于点P ,以P 为圆心,半径长为52画圆,过点D 分别作P 的切线DE 、DF ,点E 、F 是切点.除P 点外在直线AC 上任取一点P 1,半径长为52画圆,过点D 分别作P 的切线DE 1、DF 1,点E 1、F 1是切点.在△DEP 和△DFP 中,∠PED =∠PFD ,PF =PE ,PD =PD ,∴△DPE ≌△DPF . ∴S四边形DEPF =2S△DPE =2×1522DE PE DE PE DE ⨯⋅=⋅=.∴当DE 取最小值时,S四边形DEPF 的值最小.∵222DE DP PE =-,2221111DE DP PE =-,∴222211DE DE DP DP -=-.∵1DP DP >,∴2210DE DE ->.∴1DE DE >.由1P 点的任意性知:DE 是D 点与切点所连线段长的最小值.在△ADP 与△AOC 中,∠DP A =∠AOC , ∠DAP =∠CAO , ∴△ADP ∽△AOC . ∴DP CO DA CA =,即485DP =.∴325DP =.∴DE ==x∴S四边形DEPF(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.)3. 解:(1(2)正确画出图形(如图4)平行四边形MNPQ 的面积为25.4. 解:(1)12;(2)直角顶点的坐标为22⎛⎫⎪⎪⎝⎭,或1122⎛⎫--⎪ ⎪⎝⎭. 此时的图形如右图.5. 解:(1)如图①,连接AC BD 、交于点P ,则90APB ∠=°. ∴点P 为所求.(2)如图②,画法如下:1)以AB 为边在正方形内作等边ABP △;2)作ABP △的外接圆O ⊙,分别与AD BC 、交于点E F 、.在O ⊙中,弦AB 所对的APB 上的圆周角均为60°, EF∴上的所有点均为所求的点P . (3)如图③,画法如下:1)连接AC ;2)以AB 为边作等边ABE △;3)作等边ABE △的外接圆O ⊙,交AC 于点P ; 4)在AC 上截取AP CP '=. 则点P P '、为所求.(评卷时,作图准确,无画法的不扣分) 过点B 作BG AC ⊥,交AC 于点G .图3CA DGC BEQH F M N P 图4B A P②在Rt ABC △中,43AB BC ==,.5AC ∴==.125AB BC BG AC ∴== . 在Rt ABG △中,4AB =,165AG ∴==.在Rt BPG △中,60BPA ∠=°,12tan 605BG PG ∴===°∴1655AP AG PG =+=+.111612962255525APB S AP BG ⎛⎫+∴==⨯+⨯= ⎪ ⎪⎝⎭ △.6. 解:(1)如图①,作直线DB ,直线DB 即为所求.(所求直线不唯一,只要过矩形 对称中心的直线均可) ··························································································· (2分) (2)如图②,连接AC 、DB 交于点P ,则点P 为矩形ABCD 的对称中心.作直线MP , 直线MP 即为所求. ································································································ (5分) (3)如图③,存在符合条件的直线l . ································································· (6分) 过点D 作DA OB ⊥于点A ,则点(42)P ,为矩形ABCD 的对称中心. ······························································· (6分) ∴过点P 的直线只要平分DOA △的面积即可.易知,在OD 边上必存在点H ,使得直线PH 将DOA △面积平分. 从而,直线PH 平分梯形OBCD 的面积. 即直线PH 为所求直线l . ························································································ (9分)设直线PH 的表达式为y kx b =+,且点(42)P ,, 24k b ∴=+.即2424b k y kx k =-∴=+-.. 直线OD 的表达式为2y x =.∴242y kx k y x =+-⎧⎨=⎩,.解之,得242482k x kk y k -⎧=⎪⎪-⎨-⎪=⎪-⎩,.③∴点H 的坐标为244822k k k --⎛⎫⎪--⎝⎭,.PH 与线段AD 的交点F 的坐标为(222)k -,, 02241k k ∴<-<∴-<<..2411224222k k -⎛⎫-=⨯⨯⨯ ⎪-⎝⎭.解之,得k k ⎛⎫== ⎪ ⎪⎝⎭83b ∴= ∴直线l的表达式为8y x =+- (12分)7. .解:(1)1分等腰; 2分 (2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对) 所以,一共有9对相似三角形. 5分(3)由题意知,FP ∥AE ,∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°, ∴ ∠PFB =∠2=30°, ∴ FP =BP过点P 作PK ⊥FB 于点K ,则12FK BK FB ==.∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. 7分∴ △FBP 的面积11(8))22S FB PK t t =⋅⋅=⋅--, ∴ S 与t 之间的函数关系式为:2(8)12S t =-,或24123S t =-+ 8分 t 的取值范围为:08t ≤<.9分8. 解:(1)连接FH ,则FH BE ∥且FH BE =, 1分在Rt DFH △中,32DF a a a =-=,FH a =,90DFH ∠= ,2分所以,DH ==.3分 (2)设BE x =,DHE △的面积为y , 4分 依题意,CDE EGH CDHG y S S S =+-△△梯形,5分1113(3)(3)3222a a x a x x a x =⨯⨯-+⨯+⨯-⨯⨯ 6分 22139222x ax a =-+ 7分22221391327222228y x ax a x a a ⎛⎫=-+=-+ ⎪⎝⎭.当32x a =,即12BE BC =, E 是BC 的中点时,y 取最小值. 8分DHE △的面积y 的最小值为2278a . 9分9. 解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.ABE CGH FDP图4由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =.②点P 由A 向C 运动,DE 经过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】10. 解:(1)5,; 3分 (2)4:5. 5分解题思路示意图:P图5。