投影视图知识点(要点详细版)

合集下载

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图是工程图学中的重要内容,是工程师进行设计与制造的基础。

下面是投影与视图的知识点总结。

一、投影的定义与种类1. 投影是将三维实体在二维画面上的投影。

2. 投影分为平行投影和透视投影两种。

平行投影是物体在无穷远处时的投影,保持物体形状和大小不变,适用于工程制图中的多视图投影。

透视投影是通过模拟人眼的透视原理,使物体在近处大远处小,用于绘制逼真的效果图。

二、主视图与副视图1. 主视图是从物体六个主要方向观察并绘制的视图。

2. 副视图是从物体其它非主要方向观察并绘制的视图。

3. 任何物体至少需要主视图和一个副视图来完整表示。

三、视图的投影规律1. 视图的投影规律是指根据物体的几何特性,确定其视图的位置、大小及间隔等规律。

2. 正投影规律:物体的投影与视图同侧,上投下,前投后,左投右。

3. 在主视图、俯视图和立体图中,物体的主要特征线分别为前、上、左三个面上的轮廓线。

四、视图的基本要求1. 视图的大小适中,方便观察和绘制。

2. 视图之间的间距要均匀,以突出主要的特征和轮廓线。

3. 视图应尽量减少折角,直线尽量不折断。

五、视图的选择原则1. 选择平易近人的主视图。

2. 主视图要选主要面直接对称的视图。

3. 选择于构造、加工、检验方便的视图。

4. 尽量选择存在完整轮廓线的视图。

六、常见视图1. 正投主视图:从正前方观察物体并绘制的视图。

2. 俯视图:从物体的上方直接向下观察并绘制的视图。

3. 阜视图:从物体的左前方斜向观察并绘制的视图。

4. 左视图:从物体的左侧观察并绘制的视图。

5. 右视图:从物体的右侧观察并绘制的视图。

七、主视图与副视图的绘制方法1. 主视图绘制方法:a. 确定主视图的位置,主视图应水平或竖直地绘制在图纸上。

b. 根据主视图的投影规律,绘制主视图的轮廓线。

c. 绘制主视图上的特征线、尺寸和字体。

2. 副视图绘制方法:a. 根据几何原理,确定副视图的位置和大小。

《投影》投影与视图

《投影》投影与视图

投影的应用场景
建筑学
建筑师使用投影来设计和可视化建筑 模型,以更好地理解建筑物的形状、 大小和空间关系。
机械制造
机械设计师使用投影来设计和可视化 机械零件,以确保它们的尺寸和形状 符合要求。
计算机图形学
计算机图形学中广泛使用投影来渲染 三维场景,生成二维图像。
电影和游戏制作
电影和游戏制作中广泛使用投影来制 作特效和场景,以实现逼真的视觉效 果。
斜投影法
将物体放在投影中心的一侧,物体和投影面之间存在一定 的角度,物体在投影面上形成的是斜投影。
三视图法
从物体的三个不同方向进行正投影,将三个投影面展开在 一个平面上,形成物体的三视图。
轴测投影法
将物体沿某一方向拉伸或压缩,使其变成一个具有长、宽 、高比例的平行四边形,然后将该平行四边形展开在一个 平面上,形成物体的轴测投影。
正投影能够真实地反映物体的形状和大小,这是它的一大优点。
简单易学
正投影的作图方法相对简单,初学者容易掌握。
应用广泛
由于正投影能够真实地反映物体的形状和大小,因此在工程、建筑 、机械等领域得到广泛应用。
正投影的作图方法
确定投影方向
首先确定投影线的方向,通常选择垂直于投 影面。
将物体放置在投影平面上
将物体放置在投影平面上,并保持物体与投 影面的相对位置不变。
透视投影的特点是近大远小、 近实远虚。
透视投影的性质
透视投影的物体离投影中心越远,投 影越小,越近投影越大。
透视投影的物体上的垂直线在投影中 心处互相平行。
透视投影的物体上的平行线在投影中 心处相交于一点。
透视投影的物体上的斜线在影的作图方法
根据已知物体的轮廓 和透视中心的位置, 绘制出物体的透视投 影。

投影与视图的知识点

投影与视图的知识点

投影与视图知识点知识结构框图1.投影一般地,用光线照射物体,在某个平面(地面墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.生活中有许多利用投影的例子,如手影表演,皮影戏等。

投影分为平行投影和中心投影.由一点(点光源)发出的光线形成的投影是中心投影,如位似图。

平面为投影面,各射线为投影线,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线。

中心投影后的图形与原图形相比虽然改变较多、但直观性强、看起来与人的视觉效果一致、最像原来的物体、所以在绘画时、经常使用这种方法,但在立体几何中很少用中心投影原理来画图。

平行线在经过中心投影后有可能变成了相交的直线如果一个平面图形所在的平面与投射面平行、那么中心投影后得到的图形与原图形也是平行的、由平行光线形成的投影(太阳光等)称为平行投影,它是投射线相互平行的投影。

平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种。

当投影线倾斜于投影面时,称斜投影;当投影线垂直于投影面时,称正投影。

光由一点向外散射形成的投影是中心投影,一束平行光线照射下形成的投影是平行投影,那么用灯泡照射物体和用手电筒照射物体形成的投影分别属于哪种投影。

从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。

一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。

平行投影和中心投影有什么不同平行投影;发出来的光线是平行的(如太阳光),对应点的连线是平行的中心投影:是从一点发出来的光(如灯泡的光)对应点的连线或延长线相交于一点工程图样一般都是采用正投影根据投影方法我们可以看到,当直线段平行于投影面时,直线段与它的投影及过两端点的投影线组成一个矩形,因此,直线的投影反映直线的实长。

当平面图形平行与投影面时,不难得出,平面图形与它的投影为全等图形,即反映平面图形的实形。

由此我们可得出:平行于投影面的直线或平面图形,在该投影面上的投影反映线段的实长或平面图形的实形,这种投影特性称为真实性。

专题27 投影与视图的核心知识点精讲(讲义)(全国通用)

专题27 投影与视图的核心知识点精讲(讲义)(全国通用)

专题27 投影与视图的核心知识点精讲1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。

考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是.(填“图1”或“图2”)三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm25.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.95.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m 的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为m.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结
投影与视图是工程制图中非常重要的概念,它们在工程设计和制造过程中起着
至关重要的作用。

在本文中,我将对投影与视图的相关知识点进行总结,希望能够帮助读者更好地理解和应用这些概念。

首先,我们来谈谈投影的概念。

投影是指将三维物体投射到二维平面上的过程,通过这个过程,我们可以得到物体在不同方向上的投影图。

在工程制图中,投影是非常常见的操作,它可以帮助工程师更好地理解和表达物体的形状和结构。

在进行投影时,需要注意选择合适的投影方向和视角,以确保得到准确的投影图。

接下来,我们来讨论视图的概念。

视图是指从不同方向观察物体时所得到的图像,它可以帮助我们全面地了解物体的外形和结构。

在工程制图中,通常会绘制物体的多个视图,包括正视图、侧视图、俯视图等,以全面地展现物体的各个方面。

通过这些视图,工程师可以更好地进行设计和制造工作。

除了投影和视图的概念外,我们还需要了解它们在工程制图中的应用。

首先,
投影和视图可以帮助工程师准确地表达和传达设计意图,使得制造过程更加精确和高效。

其次,通过合理地选择投影方向和视角,可以得到清晰、准确的投影图和视图,为工程设计和制造提供可靠的依据。

最后,投影和视图也是工程师进行设计分析和沟通交流的重要工具,它们可以帮助工程师更好地理解和解决问题。

综上所述,投影与视图是工程制图中非常重要的概念,它们在工程设计和制造
中起着至关重要的作用。

通过对投影与视图的理解和应用,工程师可以更好地进行设计和制造工作,提高工作效率和质量。

希望本文的总结能够帮助读者更好地掌握这些知识点,为工程实践提供帮助。

(完整版)投影与视图知识点总结

(完整版)投影与视图知识点总结

投影与视图知识点总结知识点一:中心投影有关概念1. 投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。

2. 手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影n知识点三:平行投影及应用1.平行投影的定义太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影2.平行投影的应用:(1)等高的物体垂直地面放置时,太阳光下的影长相等。

(2)等长的物体平行于地面放置时,太阳下的影长相等。

3.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。

例1:如图,小华(线段CD)在观察某建筑物AB(1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。

(2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m 和8m,求建筑物AB的高。

例2:小明在公园游玩,想利用太阳光下的影子测量一颗大树AB的高,他发现大树的影子恰好落在假山坡面CD和地面BC上,如图所示,经测量CD=4m,BC=10m,CD与地面成30度的角,此时量得1m标杆的影长为2m,请你帮助小明求出大树AB的高度?知识点四:视图1.常见几何体的三视图2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。

注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。

在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。

例1:如图是几个相同的小正方体组成的一个几何体,请画出它的三视图。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图主要涉及到平行投影、透视投影、三维图形的多视图投影,各种视图对应的关系等。

在本文中,我们将对这些概念进行详细的讨论,并深入探讨它们在工程学和设计领域中的应用。

一、平行投影平行投影是投影中最基本的一种类型。

它是通过平行光线将三维对象投影到二维平面上的过程。

在平行投影中,光线是平行的,因此投影到平面上的图形保持了原始对象的大小和形状。

在工程图纸中,平行投影通常用于绘制多视图投影和透视投影。

在建筑设计中,平行投影也经常用于绘制建筑平面图和立面图等。

平行投影对于工程设计师和建筑师来说是非常重要的,因为它能够准确地表达三维对象的形状和尺寸,在设计和制造过程中起到至关重要的作用。

二、透视投影透视投影是一种通过透视原理将三维对象投影到二维平面上的过程。

在透视投影中,光线不再是平行的,而是会汇聚到一个点上,因此投影到平面上的图形会呈现出远近关系和透视效果。

透视投影常常用于绘制逼真的图像,如绘画、摄影和电影等。

在工程设计中,透视投影往往用于展示设计概念和效果图,以便更好地向客户展示设计方案和效果。

在建筑设计中,透视投影也经常用于绘制逼真的建筑效果图和室内设计图。

透视投影对于产品设计师、室内设计师和广告设计师来说是非常重要的,因为它能够更好地展示设计概念和效果,让客户更好地理解和接受设计方案。

三、多视图投影多视图投影是一种通过多个视图来描述三维对象的投影方法。

在多视图投影中,三维对象通常被投影到正面视图、顶视图和侧视图等不同的平面上,从而得到多个视图来描述对象的形状和尺寸。

多视图投影是工程图纸中常用的一种投影方法,它能够全面准确地表达对象的各个方面,从而为设计和制造提供必要的信息。

在多视图投影中,正面视图、底视图和侧视图等不同的视图之间有一定的关系,设计师需要根据这些关系来确定各个视图的尺寸和位置。

多视图投影对于工程师和设计师来说是非常重要的,因为它能够为设计和制造提供必要的信息,帮助他们更好地理解并表达对象的形状和尺寸。

投影与视图九年级知识点

投影与视图九年级知识点

投影与视图九年级知识点一、引言投影与视图是几何学中的基础概念之一,它们帮助我们更好地理解和描述三维空间中的物体。

在九年级几何学课程中,学生将学习如何通过投影和视图来描绘物体的形状和结构。

本文将探讨投影与视图的概念、分析它们的应用以及解决相关问题的方法。

二、投影的概念1. 投影是指一个物体在光线或平面上的阴影或映像。

在几何学中,投影通常用于描述一个物体在平面上的阴影或三维空间中的投射。

2. 平行投影是指从一个平面上的点到另一个平面上的点的映射。

在平行投影中,物体的形状和大小保持不变,只有位置发生变化。

3. 垂直投影是指从一个平面上的点到另一个平面上的点的映射,同时保持垂直于平面的方向。

垂直投影常用于描述物体的正面、侧面和顶面视图。

三、视图的概念1. 视图是物体在不同平面上的投影。

常用的视图有正面视图、侧面视图和顶面视图。

2. 正面视图是指物体在一个垂直于平面的平面上的投影。

它展示了物体的正面形状、尺寸和特征。

3. 侧面视图是指物体在一个与正面视图垂直的平面上的投影。

它展示了物体的侧面形状、尺寸和特征。

4. 顶面视图是指物体在一个平行于底面的平面上的投影。

它展示了物体的顶面形状、尺寸和特征。

四、投影与视图的应用1. 工程和建筑:投影与视图在设计和建造过程中起着重要作用。

工程师和建筑师通过绘制投影和视图来展示他们的设计概念,提供给施工人员一个清晰的指导。

2. 制造业:在制造业中,投影和视图被用来描述产品的形状和结构,以及制造过程中的工艺要求。

这有助于确保产品的质量和符合设计要求。

3. 艺术和设计:投影与视图对于艺术家和设计师来说也是非常重要的。

通过观察投影和视图,他们可以更好地理解和描绘物体的形状、光影效果和透视。

五、解决问题的方法1. 通过观察物体和理解其几何特征,可以确定物体的投影和视图所在的平面。

2. 使用标尺和直角尺来测量物体的尺寸和角度,以确保正确绘制投影和视图。

3. 利用几何理论和原理,根据已知条件和关系绘制正确的投影和视图。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结在我们的日常生活和学习中,投影与视图是一个重要的数学概念,它不仅在数学领域有着广泛的应用,在工程、建筑、设计等实际领域也发挥着关键作用。

接下来,让我们一起深入了解投影与视图的相关知识点。

一、投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。

1、中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影。

比如,夜晚路灯下的人影就是中心投影的例子。

其特点是:等长的物体平行于地面放置时,在灯光下,离点光源越近的物体的影子越短,离点光源越远的物体的影子越长。

2、平行投影由平行光线(太阳光线)形成的投影称为平行投影。

平行投影又分为正投影和斜投影。

正投影是指投射线垂直于投影面的平行投影。

在平行投影中,同一时刻,不同物体的物高和影长成比例。

二、视图视图是将物体按正投影向投影面投射所得到的图形。

1、三视图三视图包括主视图、俯视图和左视图。

主视图:从物体的前面向后面投射所得的视图。

俯视图:从物体的上面向下面投射所得的视图。

左视图:从物体的左面向右面投射所得的视图。

三视图的位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。

三视图的大小关系:长对正、高平齐、宽相等。

即主视图与俯视图的长相等,主视图与左视图的高相等,俯视图与左视图的宽相等。

2、常见几何体的三视图(1)正方体:三视图都是正方形。

(2)长方体:主视图、左视图是长方形,俯视图是长方形。

(3)圆柱:主视图、左视图是长方形,俯视图是圆。

(4)圆锥:主视图、左视图是三角形,俯视图是圆及圆心。

(5)球:三视图都是圆。

三、根据视图还原几何体根据三视图还原几何体时,要先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左面的形状,然后综合起来考虑整体形状。

四、投影与视图的应用1、在建筑设计中,设计师需要通过绘制三视图来准确表达建筑物的形状和尺寸,以便施工人员能够按照设计进行施工。

2、在机械制造中,工程师需要根据零件的三视图来制造零件,确保零件的精度和质量。

投影知识点归纳总结

投影知识点归纳总结

投影知识点归纳总结一、投影的基本概念1. 投影的定义:投影是指将一个点或一条线或一个物体的表面在另一个平面上投影的过程。

投影是一种几何学的基本概念,它被广泛应用于几何学、工程学、电影制作等领域。

2. 投影的种类:根据投影对象的性质,投影可以分为点投影、直线投影和面投影。

3. 投影的原理:投影的基本原理是利用光线传播的特性,将一个物体的形状和位置投射到另一个平面上,从而实现几何形状的表达和分析。

二、点投影的相关知识点1. 点投影的定义:点投影是指将一个点在另一个平面上的投影。

2. 点投影的性质:点投影的性质包括:平行投影、中心投影和透视投影。

3. 点投影的应用:点投影在工程图、几何学模型和摄影技术等领域有着广泛的应用。

三、直线投影的相关知识点1. 直线投影的定义:直线投影是指将一条直线在另一个平面上的投影。

2. 直线投影的性质:直线投影的性质包括:平行投影、交叉投影和平面投影。

3. 直线投影的应用:直线投影在建筑设计、机械制图和地图制作等领域有着广泛的应用。

四、面投影的相关知识点1. 面投影的定义:面投影是指将一个物体的表面在另一个平面上的投影。

2. 面投影的性质:面投影的性质包括:平行投影、交叉投影和透视投影。

3. 面投影的应用:面投影在工程制图、建筑设计和影视特效等领域有着广泛的应用。

五、投影的应用领域1. 工程制图:在建筑设计、机械制图和电路设计等领域,投影是绘制平面图和立体图的基础。

2. 地图制作:地图制作是利用地球表面的地理信息在平面上进行投影,以便观看和测量地理位置。

3. 影视特效:在电影和电视节目中,投影技术被广泛应用于特效制作和虚拟场景的构建。

4. 摄影技术:摄影是通过相机将三维物体投影到二维胶片或数码传感器上,从而产生真实的影像。

六、投影的发展趋势1. 投影技术的智能化发展:随着人工智能和计算机视觉技术的不断发展,投影技术将实现更高级别的智能化处理和应用。

2. 投影技术的虚拟化发展:随着虚拟现实和增强现实技术的快速发展,投影技术将融入更多的虚拟化应用场景中。

投影与视图的知识点

投影与视图的知识点

投影与视图的知识点(共4页) -本页仅作为预览文档封面,使用时请删除本页-投影与视图知识点知识结构框图1.投影一般地,用光线照射物体,在某个平面(地面墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.生活中有许多利用投影的例子,如手影表演,皮影戏等。

投影分为平行投影和中心投影.由一点(点光源)发出的光线形成的投影是中心投影,如位似图。

平面为投影面,各射线为投影线,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线。

中心投影后的图形与原图形相比虽然改变较多、但直观性强、看起来与人的视觉效果一致、最像原来的物体、所以在绘画时、经常使用这种方法,但在立体几何中很少用中心投影原理来画图。

平行线在经过中心投影后有可能变成了相交的直线如果一个平面图形所在的平面与投射面平行、那么中心投影后得到的图形与原图形也是平行的、由平行光线形成的投影(太阳光等)称为平行投影,它是投射线相互平行的投影。

平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种。

当投影线倾斜于投影面时,称斜投影;当投影线垂直于投影面时,称正投影。

光由一点向外散射形成的投影是中心投影,一束平行光线照射下形成的投影是平行投影,那么用灯泡照射物体和用手电筒照射物体形成的投影分别属于哪种投影。

从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。

一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。

平行投影和中心投影有什么不同平行投影;发出来的光线是平行的(如太阳光),对应点的连线是平行的中心投影:是从一点发出来的光(如灯泡的光)对应点的连线或延长线相交于一点工程图样一般都是采用正投影根据投影方法我们可以看到,当直线段平行于投影面时,直线段与它的投影及过两端点的投影线组成一个矩形,因此,直线的投影反映直线的实长。

当平面图形平行与投影面时,不难得出,平面图形与它的投影为全等图形,即反映平面图形的实形。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结
投影的定义:用光线照射物体,在某个平面(如地面、墙壁等)上得到的影子称为物体的投影。

照射光线称为投影线,而投影所在的平面称为投影面。

投影的类型:
平行投影:当光线是一组互相平行的射线时,例如太阳光或探照灯光,由此形成的投影称为平行投影。

中心投影:由同一点(点光源)发出的光线形成的投影称为中心投影。

正投影:当投影线垂直于投影面时产生的投影称为正投影。

物体的正投影的形状、大小与其相对于投影面的位置有关。

视图的概念:视图是一个虚拟的表,它基于一个或多个表的查询结果提供逻辑展现。

用户可以通过视图按照需要从数据库中获取部分数据,而不是直接访问底层的物理表。

视图不存储任何实际数据,可以看作是数据库表的一个抽象或逻辑上的表。

三视图:在投影与视图中,三视图是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

这三个视图分别是:
俯视图:能反映物体的前面形状,是从物体的上面向下面投射所得的视图。

左视图:能反映物体的上面形状,是从物体的左面向右面投射所得的视图。

这些知识点在工程图、几何学模型、摄影技术、建筑设计、机械制图和地图制作等领域都有广泛的应用。

通过学习和理解这些概念,可以更好地应用它们于实际场景中。

投影视图知识点(要点详细版)

投影视图知识点(要点详细版)

投影视图知识点汇总(要点详细版)要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做的,像这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子 .(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子,离点光源远的物体它的影子 .(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越;离点光源越远,影子越,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点四、正投影正投影的定义:如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.(1)线段的正投影分为三种情况.如图所示.①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.(2)平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.(3)立体图形的正投影.物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.要点诠释:(1)正投影是特殊的平行投影,它不可能是中心投影.(2)由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影.(3)由于正投影的投影线垂直于投影面,一个物体的正投影与我们沿投影线方向观察这个物体看到的图象之间是有联系的.要点五、三视图1.三视图的概念(1)视图从某一角度观察一个物体时,所看到的图象叫做物体的一个视图.(2)正面、水平面和侧面用三个互相垂直的平面作为投影面,其中正对我们的面叫做,正面下面的面叫做水平面,右边的面叫做 .(3)三视图一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做 .主视图、左视图、俯视图叫做物体的三视图.2.三视图之间的关系(1)位置关系三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(1)所示.(2)大小关系三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.要点诠释:物体的三视图的位置是有严格规定的,不能随意乱放.三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.要点六、画几何体的三视图画图方法:画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“”;(3)在主视图的正右方画出左视图,注意与主视图“”,与俯视图“”.几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.要点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.要点七、由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.。

专题23 投影与视图(学生版)

专题23 投影与视图(学生版)

知识点01:几何体的三视图【高频考点精讲】1、三视图(1)从正面得到的由前向后观察物体的视图,叫做主视图。

(从前往后看)(2)从水平面得到的由上向下观察物体的视图,叫做俯视图。

(从上往下看)(3)从侧面得到的由左向右观察物体的视图,叫做左视图。

(从左往右看)2、三视图的画法(1)主视图与俯视图的长相等;(2)主视图与左视图的高相等;(3)俯视图与左视图的高相等。

3、正方体、长方体、圆柱、圆锥的三视图(正视、侧视、俯视)知识点02:投影与视角【高频考点精讲】1、平行投影(1)用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:由平行光线形成的投影是平行投影,例如物体在太阳光的照射下形成的影子。

2、中心投影(1)由同一点发出光线形成的投影叫做中心投影,例如物体在灯光的照射下形成的影子。

(2)中心投影光线特点:物体与投影面平行时,物体与投影是位似变换的关系。

3、视点、视角和盲区(1)观察物体时,从物体两边(上下或左右)引出的光线与人眼的夹角就是视角。

(3)盲区:视线到达不了的区域。

检测时间:90分钟试题满分:100分难度系数:0.58一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同2.(2分)(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.3.(2分)(2023•辽宁)如图是由5个完全相同的小正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.4.(2分)(2023•日照)如图所示的几何体的俯视图可能是()A.B.C.D.5.(2分)(2023•泸州)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱6.(2分)(2023•齐齐哈尔)如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是()A.2 B.3 C.4 D.57.(2分)(2023•襄阳)先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是()A.B.C.D.8.(2分)(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2分)(2023•海南)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是()A.B.C.D.10.(2分)(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.12.(2分)(2023•越秀区校级二模)如图,在平面直角坐标系中,点光源位于P(2,2)处,木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的影长CD为.13.(2分)(2023•新吴区二模)某几何体的三视图如图所示,已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和4,俯视图是直径等于2的圆,则这个几何体的体积为.14.(2分)(2023•齐河县模拟)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是.15.(2分)(2023•泰安模拟)如图是某圆锥的主视图和左视图,则该圆锥的表面积是.16.(2分)(2023•南海区校级模拟)如图是某几何体的三视图,根据图所给各边长度算出该几何体的体积是cm3.(结果保留π)17.(2分)(2022•青海)由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数是.18.(2分)(2023•祁阳县一模)已知圆锥的主视图是底边长为12cm,底边上的高为8cm的等腰三角形,则这个圆锥的侧面积是cm2.(结果保留π)19.(2分)(2023•巧家县一模)如图,这是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的等腰三角形.若主视图的腰长5cm,俯视图是直径为6cm的圆,则这个几何体的高为cm.20.(2分)(2023•通辽)某款“不倒翁”(如图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B,若该圆半径是10cm,∠P=60°,则主视图的面积为cm2.三.解答题(共8小题,满分60分)21.(6分)(2023•未央区校级三模)李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?22.(6分)(2023•萧县一模)如图是一个几何体的三视图,其中俯视图为正三角形.(1)这个几何体的名称为;(2)求该几何体的左视图中a的值.23.(8分)(2023•东洲区模拟)(1)计算:.(2)如图是一个几何体的三视图(单位:cm).①这个几何体的名称是;②根据图上的数据计算这个几何体的表面积(结果保留π).24.(8分)(2023•晋州市模拟)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的菜碟,每一摞菜碟的高度与菜碟的个数的关系如表所示.菜碟的个数菜碟的高度(单位:cm)1 32 3+1.83 3+3.64 3+5.4……(1)把x个菜碟放成一摞时,请直接写出这一摞菜碟的高度(用含x的式子表示);(2)如图所示,是几摞菜碟的三视图,厨师想把它们整齐叠成一摞,求叠成一摞后的高度是多少.25.(8分)(2023•蒲城县二模)夏天到了,姗姗的妈妈买了一个防蚊罩以保护饭菜(如图1),将罩子开口朝下放在水平桌面上,其截面为抛物线形.姗姗测得罩子的直径OA为40厘米,罩子内壁的最大高度为20厘米,她以罩子左边缘点O为原点、OA所在的水平线为x轴建立平面直角坐标系(如图2).(1)求抛物线的函数表达式;(2)某天,姗姗将一盘菜沿水平线OA(圆形盘子直径与OA重合)放置在罩子下,盘子左侧边缘离O点的水平距离为4厘米,她想在盘子右侧紧挨盘子沿水平线OA再放置高度为6厘米的一碗稀饭(碗的俯视图也是圆形,其直径与OA重合),已知盘子和碗的直径分别为20厘米、12厘米,要使罩子紧贴水平桌面,请通过计算说明:她这样放,罩子能否接触到碗?26.(8分)(2023•盐都区三模)盐城市某初级中学数学小组想探究:大楼影长对相邻大楼的影响.分成了两个实验小组,在某天下午3时,同时进行了两项实验:实验一:测量高为1.5m竹竿的影长.通过测量发现影长为1m.实验二:探究长方体的影子.如图1是该长方体在当天下午3时阳光下投影,图2是图1中长方体的俯视图.(1)该长方体的高AB=39cm,宽BE=22cm.①此时AB的影长BC为cm;②此时测得CE=40cm,求tan∠BCD;(2)某小区预规划两栋一样的楼房甲、乙,朝向与“实验二”中长方体一致,俯视图如图3,相关数据如图所示,若楼高42米,请通过计算说明实验当天下午3时甲楼的影子是否落在乙楼的墙上.27.(8分)(2023•婺城区一模)如图是用10个完全相同的小立方体搭成的几何体.(1)已知该几何体的主视图如图所示,请在空白的方格中画出它的左视图和俯视图.(2)若保持主视图和俯视图不变,最多还可以再搭个小立方体.28.(8分)(2023•潍坊三模)【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x=﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.。

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。

投影与视图(知识点+题型分类练习+答案)

投影与视图(知识点+题型分类练习+答案)

投影与视图知识梳理【知识网络】【考点梳理】一、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。

当平行光线垂直投影面时叫正投影。

投影三视图都是正投影。

(2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.二、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。

三个图的位置展示:要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.(1)主视图:三视图(2)左视图:(3)俯视图:投影与视图专题练习类型一:平行投影1.有两根木棒AB、CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子BE如图(1)所示,则CD这根木棒的影子DF应如何画?2.如图所示,某居民小区内A、B两楼之间的距离MN=30米,两楼的高都是20米,A楼在B楼正南,B 楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2米,窗户高CD=1.8米.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2≈1.414,3≈1.732,5≈2.236)3.如图所示,在一天的某一时刻,李明同学站在旗杆附近某一位置,其头部的影子正好落在旗杆脚处,那么你能在图中画出此时的太阳光线及旗杆的影子吗?4.已知,如图所示,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下时投影长为6m.请你计算DE的长.类型二:中心投影1.如图所示,小明在广场上乘凉,图中线段AB表示站在广场上的小明,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小明在照明灯P照射下的影子.(2)如果灯杆高PO=12m,小明身高AB=1.6m,小明与灯杆的距离BO=13m,请求出小明影子的长度.2.确定图中路灯灯泡所在的位置。

第二十九章 投影与视图

第二十九章 投影与视图

第二十九章投影与视图
知识点1投影
1.平行投影:由平行光线形成的投影叫做平行投影.
2.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.
3.正投影:投影线垂直于投影面产生的投影叫做正投影,正投影是一种特殊的平行投影.
知识点2三视图
三视图主视图在正面内得到的由前向后观察物体的视图,叫做主视图.左视图在侧面内得到的由左向右观察物体的视图,叫做左视图.俯视图在水平面内得到的由上向下观察物体的视图,叫做俯视图.
三视图的画法(1)主视图与俯视图的长对正,主视图与左视图高平齐,左视图与俯视图的宽相等:
(2)在画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线.
附:常见几何体的三视图
续表
知识点3立体图形的展开和折叠
1.常见几何体的展开图:
(1)正方体的展开图:
①“1-4-1”型
②“2-3-1”型
③“2-2-2”及“3-3”型
(2)圆柱、圆锥、三棱柱的展开图:
2.立体图形上两点之间的最短距离的求法:
将立体图形展开转化为平面图形或将曲面转化为平面图形,然后运用“两点之
间,线段最短”结合勾股定理求解.
蚂蚁要吃到蜂蜜的最短路线长是圆柱的侧面展开图中线段AB的长度.。

投影与视图基本知识-文档资料

投影与视图基本知识-文档资料

H
3. 形体的三面投影关系
投影特性
长对正 高齐平 宽相等



4. 作图
平面和直线的投影特点
V
V
1、物体上与投影面平行的平面 的投影反映实形;与投影面平行 的线段的投影反映其实长。 2、物体上与投影面垂直的平面 的投影成为一直线;与投影面垂 直的直线的投影成为一点。 3、物体上倾斜于投影面的平 面的投影成为缩小的类似形; 倾斜于投影面的直线的投影比 实长短。
投影与视图的基本知识
第一节
投影法简述
第二节 立体的三面投影图
第一节
投影法简述
一、投影的形成
形成影子的要素:
光源

光源
S A
光线
B
C
光线 物体 地面或墙面等
b
影子
a
P
c
成影现象
投影:物体经光线照射后在一平面上所产生的影
子(假设光线有穿透力)。
投影三要素
投影中心 :点光源
投影线 :光源发出的射线 投影面 :投影所在的平面 物体:几何元素或形体
3.机床各部间隙的调整:
(1) 主轴润滑的调整,必须保证每 分钟有 一滴油 通过。
(2) 工作台纵向丝杠传动间隙的 调整, 每 3个 月调整 或根据 实际使 用情况 进行调 整,要 求是传 动间隙 充分减 小,丝 杠的间 隙不超 过1/40 转,同 时在全 长上都 不得有 卡住现 象。
(3) 工作合纵向丝杠轴向间隙的调 整,目 的是消 除丝杠 和螺母 之间的 传动间 隙,同 时还
多个投影面 主要工程图样
正投影图
轴测投影图
4.标高投影图
正投影法
投影面为水平面
150M

九年级数学投影和视图知识点

九年级数学投影和视图知识点

九年级数学投影和视图知识点随着科技的发展和社会的进步,我们生活中的许多事物都跟几何形体有关。

为了更好地理解和描述这些物体,我们需要掌握一些数学知识,尤其是关于投影和视图的概念。

一、什么是投影?投影是指将三维空间中的物体沿某个方向投射到二维平面上的过程。

在实际生活中,我们可以用手机或相机拍摄照片,也可以用幻灯机或投影仪将图片或视频投射到屏幕上,这些都是投影。

那么,如何计算物体的投影呢?首先,我们要确定投影的方向和投影面。

然后,通过与投影面垂直的直线或射线与物体的交点,就可以确定物体的投影。

二、什么是正投影和斜投影?在正投影中,物体与投影面垂直,也就是说,投影是垂直于投影面的。

这种投影形式常常出现在我们的日常生活中,比如我们站在墙前,头上的阴影就是一种垂直投影。

而在斜投影中,物体与投影面不垂直,投影是倾斜的。

这种投影形式更贴近我们在屏幕上所看到的图像,比如电视、电影中的画面,都是通过斜投影来展示的。

三、什么是视图?视图是指通过某种角度观察物体所得到的结果。

我们可以从不同的角度观察同一个物体,得到不同的视图。

常见的视图有正视图、侧视图和俯视图。

正视图是指从物体的正面观察,得到的视图。

正视图可以清楚地看到物体的正面形状和细节。

侧视图是指从物体的侧面观察,得到的视图。

侧视图可以清楚地看到物体的侧面形状和细节。

俯视图是指从物体的上方俯视,得到的视图。

俯视图可以清楚地看到物体的顶部形状和细节。

四、如何绘制视图?为了正确地绘制视图,我们需要了解物体的投影。

以正视图为例,可以从俯视图中获取物体在平面上的投影形状和尺寸,然后根据这些投影进行绘制。

首先,我们可以在平面上绘制出物体的投影。

然后,根据投影的形状和尺寸,再根据一定的比例关系,绘制出物体的正面形状和细节。

绘制侧视图和俯视图的方法与此类似,只需根据不同的视角和投影,绘制出对应的视图即可。

五、为什么学习投影和视图?学习投影和视图的目的是为了更好地理解和描述三维空间中的物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影视图知识点汇总(要点详细版)
要点一、平行投影
1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做的,像这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:
(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子 .
(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于
的长度.
2. 物高与影长的关系
(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.
(2)在同一时刻,不同物体的物高与影长成正比例.
即:.
利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.
注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.
要点诠释:
1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.
2.物体与影子上的对应点的连线是平行的就说明是平行光线.
要点二、中心投影
若一束光线是从发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:
(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子,离点光源远的物体它的影子 .
(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越;离点光源越远,影子越,但不会比物体本身的长度还短.
在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.
要点诠释:
光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.
要点三、中心投影与平行投影的区别与联系
1.联系:
(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.
(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.
2.区别:
(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.
(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.
要点诠释:
在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.
要点四、正投影
正投影的定义:
如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.
(1)线段的正投影分为三种情况.如图所示.
①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;
②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;
③线段AB垂直于投影面P时,它的正投影是一个点.
(2)平面图形正投影也分三种情况,如图所示.
①当平面图形平行于投影面Q时,它的正投影与这个平面图形的、大小完全相同,即正投影与这个平面图形全等;
②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.
③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.
(3)立体图形的正投影.
物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.
要点诠释:
(1)正投影是特殊的平行投影,它不可能是中心投影.
(2)由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影.
(3)由于正投影的投影线垂直于投影面,一个物体的正投影与我们沿投影线方向观察这个物体看到的图象之间是有联系的.
要点五、三视图
1.三视图的概念
(1)视图
从某一角度观察一个物体时,所看到的图象叫做物体的一个视图.
(2)正面、水平面和侧面
用三个互相垂直的平面作为投影面,其中正对我们的面叫做,正面下面的面叫做水平面,右边的面叫做 .
(3)三视图
一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做 .主视图、左视图、俯视图叫做物体的三视图.
2.三视图之间的关系
(1)位置关系
三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(1)所示.
(2)大小关系
三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.
要点诠释:
物体的三视图的位置是有严格规定的,不能随意乱放.三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.
要点六、画几何体的三视图
画图方法:
画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:
(1)确定主视图的位置,画出主视图;
(2)在主视图的正下方画出俯视图,注意与主视图“”;
(3)在主视图的正右方画出左视图,注意与主视图“”,与俯视图“”.
几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.
要点诠释:
画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.
要点七、由三视图想象几何体的形状
由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.
要点诠释:
由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.。

相关文档
最新文档