二次函数经典解题技巧
二次函数动点问题的解题技巧
二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。
比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。
比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。
看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。
难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。
比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。
不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。
解二次函数的方法
解二次函数的方法解二次函数的方法有以下几种:1. 因式分解法:对于形如y = ax^2 + bx + c的二次函数,当a≠0时,可以尝试以因式分解的方式将其拆解成两个一次函数的乘积形式。
具体步骤如下:- 将二次项ax^2分解成两个一次函数的乘积形式,即找到两个数m和n,使得:m*n = a 且m + n = b;- 根据上述分解结果,将二次函数y = ax^2 + bx + c写成因式乘积形式,即y = (mx + p)(nx + q);- 求解得到m、n、p、q的值,得到最终的因式分解结果。
2. 完全平方公式法:通过完全平方公式,可以将二次函数表示成一个平方项加上一个常数的形式。
具体步骤如下:- 将二次函数y = ax^2 + bx + c变形成y = a(x-h)^2 + k的形式;- 根据变形后的形式可得,h = -b/(2a),k = c - b^2/(4a);- 根据上述求得的h和k的值,将二次函数写成完全平方的形式。
3. 配方法:对于一般形如y = ax^2 + bx + c的二次函数,当a≠0时,可以通过配方法来解。
具体步骤如下:- 首先将二次函数的二次项系数a提取出来,并将方程变形为y = a(x^2 + (b/a)x) + c;- 进一步变形为y = a(x^2 + (b/a)x + b^2/(4a^2)) + c - b^2/(4a);- 再次变形为y = a(x + b/(2a))^2 + (4ac - b^2)/(4a);- 根据上述变形,可以将二次函数表示为(x + b/(2a))^2的形式,并求出平移向量及其他信息。
4. 求根公式法:对于一般形如y = ax^2 + bx + c的二次函数,可以通过求根公式来解。
求根公式是利用一元二次方程的求根公式,得到二次函数的根的表达式。
一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a) ;根据上述公式,可以求得二次函数的根的值。
初中数学二次函数题型答题技巧和方法
初中数学二次函数题型答题技巧和方法一、理论基础1. 二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c分别为二次项系数、一次项系数和常数项。
2. 二次函数的图像特征二次函数的图像是抛物线,开口朝上还是朝下取决于a的正负性;顶点的横坐标为-x=b/2a;若a>0,则二次函数的图像开口朝上,最小值为y轴的对称轴;若a<0,则二次函数的图像开口朝下,最大值为y 轴的对称轴。
3. 二次函数的零点和值域二次函数的零点即其图像与x轴的交点,可通过解二次方程求得;值域是二次函数在定义域内所有纵坐标的集合。
二、基本题型及解题技巧1. 求二次函数的图像特征首先计算顶点的坐标,并根据a的正负性判断开口方向;然后通过y=ax^2的形式,可知函数的对称轴为x=0,即y轴;进而可以根据a 的值判断最值是最大值还是最小值。
2. 求二次函数的零点通过解二次方程的方法,将二次函数与x轴相交的点作为函数的零点。
3. 求二次函数的值域首先求得函数的最值,然后根据a的正负性来确定值域的范围。
三、提高解题能力的方法1. 多练习经典题目通过练习一些经典的二次函数题目,可以加深对二次函数的理解,掌握基本的解题技巧。
2. 多思考图像特征在解题过程中,要多思考二次函数的图像特征,如顶点坐标、开口方向、对称轴等,这样可以帮助更快地理解题目并找到解题方法。
3. 注意解题方法和步骤解二次函数题目时,要注意分类讨论,分步解题,并注意逻辑推理的合理性。
四、常见错误与纠正1. 混淆二次函数的图像特征有些学生容易混淆二次函数图像的开口方向和对称轴位置,应该在理论学习和练习中多加注意,加深对二次函数图像特征的印象。
2. 解题步骤混乱有些学生在解题时,步骤混乱,缺乏逻辑性,应该在解题过程中多加练习,养成条理清晰的解题习惯。
五、案例分析及解决方案1. 案例:已知二次函数f(x)=2x^2-4x+3,求解以下问题:(1)求f(x)的顶点坐标;(2)求f(x)的零点;(3)求f(x)的值域范围。
二次函数解题思路十大技巧
二次函数解题思路十大技巧
1、先求出二次函数的顶点:
设二次函数为y=ax2+bx+c,那么顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。
2、确定函数的性质:
判断a的正负,可以确定函数的单调性,从而确定函数的大致形状。
3、利用函数的性质,确定函数的根:
若函数为单调递增,则函数的根在顶点左边;若函数为单调递减,则函数的根在顶点右边。
4、利用绝对值函数的性质,确定函数的根:
若函数为绝对值函数,则函数的根在顶点两边,且根的绝对值相等。
5、利用函数的性质,确定函数的最大值和最小值:
若函数为单调递增,则函数的最大值在顶点右边;若函数为单调递减,则函数的最小值在顶点左边。
6、利用函数的性质,确定函数的极值:
若函数为单调递增,则函数的极大值在顶点右边;若函数为单调递减,则函数的极小值在顶点左边。
7、利用函数的性质,确定函数的极值点:
若函数为单调递增,则函数的极大值点在顶点右边;若函数为单调递减,则函数的极小值点在顶点左边。
8、利用函数的性质,确定函数的增量和减量:
若函数为单调递增,则函数的增量在顶点右边;若函数为单调递减,则函数的减量在顶点左边。
二次函数的实际应用问题解题技巧
二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。
本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。
正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。
在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。
- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。
- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。
例如,抛物线可以用来描述通货膨胀率的变化。
2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。
- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。
- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。
- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。
3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。
例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。
此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。
二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。
掌握这些技巧,可以帮助我们更好地理解和解决实际问题。
二次函数典型题解题技巧
二次函数典型题解题技巧一有关角1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点点A 在点B 的左边,与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式;2连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.思路点拨:对于第1问,需要注意的是CD 和x 轴平行过点C 作x 轴的平行线与抛物线交于点D对于第2问,比较角的大小a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条解:1∵CD ∥x 轴且点C0,3,∴设点D 的坐标为x,3 .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D -2,3 .根据抛物线的对称性,设顶点的坐标为M -1,y,又∵直线y= x+5经过M 点,∴y =-1+5,y =4.即M -1,4.∴设抛物线的解析式为2(1)4y a x =++. ∵点C0,3在抛物线上,∴a=-1.即抛物线的解析式为223y x x =--+.…………3分 2作BP ⊥AC 于点P,MN ⊥AB 于点N .由1中抛物线223y x x =--+可得 点A -3,0,B1,0,∴AB=4,AO=CO=3,AC=32. ∴∠PAB =45°.∵∠ABP=45°,∴PA=PB=22.∴PC=AC -PA=2.在Rt △BPC 中,tan ∠BCP=PBPC =2.在Rt △ANM 中,∵M-1,4,∴MN=4.∴AN=2.tan ∠NAM=MN AN =2.∴∠BCP =∠NAM .即∠ACB =∠MAB .后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角圆分开再说,所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.I 求抛物线的解析式;II 探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形若存在,求出P 点坐标,若不存在,请说明理由;III 直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.思路点拨:II 问题的关键是直角,已知的是AC 边,那么AC 边可能为直角边,可能为斜边,当AC 为斜边的时,可知P 点是已AC 为直径的圆与坐标轴的交点,且不能与A 、C 重合,明显只有O 点;当AC 为直角边时,又有两种情况,即A 、C 分别为直角顶点,这时候我们要知道无论是A 或者C 为直角顶点,总有一个锐角等于∠OCA 或Rt △PAC 和Rt △OAC 相似,利用这点就可以求出OP 的长度了III 从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全是特殊角30°,45°,60°,90°,在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能在没有学反三角函数的前提下,就是他们的差是特殊角,再联系到∠ABC=45°,可知,这两个角的差就是45°,那么我们需要证明的就是∠ABD=∠CBE,再想想上一题所说的,就明白是利用相似三角形来证明了,即证明△BCE 是一个直角三角形且与△BAD 相似解:I ()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.代入32-+=bx ax y ,得 {{12030339=-==--=-+∴a b b a b a322--=∴x x yII ①当190,PAC ∠=︒时可证AO P 1∆∽ACO ∆ 31tan tan 11=∠=∠∆∴ACO AO P AO P Rt 中,.)31,0(1P ∴②同理: 如图当)0,9(9022P CA P 时,︒=∠③当)0,0(9033P A CP 时,︒=∠综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是)31,0(1P )0,9(2P ,)0,0(3P . III ()1,0,131D x y 得由+-=.()4,1322---=E x x y ,得顶点由. ∴52,2,23===BE CE BC .为直角三角形BCE BE ∆∴=+,CE BC 222.31tan ==∴CB CE β. 又31tan ==∠∆∴OB OD DBO DOB Rt 中.β∠=∠∴DBO . ︒=∠=∠-∠=∠-∠45OBC DBO αβα.二线段最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果我们公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值3、抛物线()20y ax bx c a =++≠交x 轴于A 、B 两点,交y 轴于点C,已知抛物线的对称轴为直线x = -1,B1,0,C0,-3.⑴ 求二次函数()20y ax bx c a =++≠的解析式;⑵ 在抛物线对称轴上是否存在一点P,使点P 到A 、C 两点距离之差最大 若存在,求出点P 坐标;若不存在,请说明理由.思路点拨:点P 到A 、C 两点距离之差最大,即求|PA -PC|的最大值,因P 点在对称轴上,有PA=PB,也就是求|PB -PC|,到了这儿,易知当P 点是BC 所在直线与对称轴的交点,易知最大值就是线段BC 的长;具体解题过程略4、研究发现,二次函数2ax y =0≠a 图象上任何一点到定点0,a 41和到定直线ay 41-=的距离相等.我们把定点0,a 41叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.1写出函数241x y =图象的焦点坐标和准线方程; 2等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点, 求等边三角形的边长;3M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P1,3 为定点,求MP+MF 的最小值.思路点拨:2因△OAB 是等边三角形,易知AB 平行于X 轴,且∠AOB=60°,知OA 、OB 于y 轴的夹角等于30°,利用这点容易求出三角形的边长3由题目可知MF 的长度等于M 点到直线y=-1的距离,那么MP+MF 就是P 点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P 点做y=-1的垂线段的长 解:1焦点坐标为0,1, 准线方程是1-=y ;2设等边ΔOAB 的边长为x,则AD=x 21,OD=x 23. 故A 点的坐标为x 21,x 23. 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x 舍去,或38=x .∴ 等边三角形的边长为38.3如图,过M 作准线1-=y 的垂线,垂足为N,则MN=MF.过P 作准线1-=y 的垂线PQ,垂足为Q,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. 5、思路点拨:2要求AE 和AM 的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA 和OE 的长以及E 点到x 轴的距离,我们作EG ⊥x 轴,垂足为G,那么容易求出OG 的长,从而求出AE 的长;要求AM 的长,先做OK ⊥AE,垂足为K,要求AM 的长,首先我们利用已知的OA 的长和∠EAO 的函数值来求出AK 和OK 的长,利用OK 的长和三角形OMN 是等边三角形求出MK 和NK 的长,AM 的长也就知道了3这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P 点在什么位置时,PA+PB+PO 才能取最小值,P 点应该在线段AE 上,至于具体的位置我们还不知道,我们就在线段AE 上任取一点P,把PA 、PB 、PO 连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△OAB 内的M 点重合,PA 的长就是AM 的长,m 的最小值就是AE 的长答案详见前段时间发过的从近近几年北京中考模拟及中考压轴题谈起额外讲解一个与二次函数无关的有关线段最值的问题6、2009年中考第25题如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A -6,0,B 6,0,C 0,43,延长AC 到点D ,使AC CD 21=,过D 点作DE ∥AB 交BC 的延长线于点E . 1求D 点的坐标;2作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点.若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短. 要求:简述确定G 点位置的方法,但不要求证明思路点拨:3首先要把速度转化成路程,也就是线段的长度,直线与y 轴的交点假设为M,则OM=63,设P 点在y 轴上的速度为2v,那么在GA 上的速度为v,P 点到达A 点所用的时间为,要使时间最短,也就是求AG+GM/2的最小值,那么我们要把它转化成我们熟悉的两条线段的和,因为∠BMO=30°,GM/2也就是G 点到BM 的距离,我们作GK ⊥BM,垂足为K,问题转化成求GA+GM 的最小值,易知,A 、G 、M 必须共线且垂直BM,所以G 点就是过A 点作BM 的垂线与y 轴的交点解:1∵A -6,0,C 0,43,∴OA =6,OC =43.设DE 与y 轴交于点M .由DE ∥AB 可得△DMC ∽△AOC .又AC CD 21=,21===∴CA CD CO CM OA MD . ∴CM =23,MD =3.同理可得EM =3.∴OM =63.∴D 点的坐标为3,63.2由1可得点M 的坐标为0,63.由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.由点B6,0,点M0,63在直线y=kx+b上,可得直线BM的解析式为y=-3x+63.第25题答图3确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°.∴∠BAH=30°.在Rt△OAG中,OG=AO·tan∠BAH=23.∴G点的坐标为0,23.或G点的位置为线段OC的中点三平移对称旋转问题引子:平移问题以前讲过了,现在重点将对称旋转问题我们知道a,b关于x轴对称的点的坐标为a,-b,关于y轴对称的点的坐标为-a,b,关于原点对称的点的坐标为-a,-b,关于直线x=m的对称点为2m-a,b,关于直线y=n的对称点为a,2n-b,关于点m,n的对称点为2m-a,2n-b任意两点x1,y1和x2,y2的中点为对于抛物线关于x轴、y轴、x=a、y=b的对称抛物线,应该都会了吧,现在重点讲解抛物线关于某点m,n的对称抛物线解析式其他平移、关于直线对称都可以用这个方法解决,为了方便,选取抛物线的顶点式来证明例:对于一个抛物线y=ax-h2+ka≠0来说,坐标为x,y的所有点都在他的图像上,关于m,n的对称点为2m-x,2n-y,那么坐标为2m-x,2n-y都在抛物线关于m,n对称的抛物线上,我们把2m-x,2n-y代入y=ax-h2+ka≠0就可以得到它关于m,n对称的抛物线的解析式为2n-y=a2m-x-h2+k,变形为y=-ax-2m+h2+2n-k现在利用待定系数法来验证这个方法是否正确首先y=ax-h2+ka≠0和它关于点m,n的对称的抛物线的开口大小是一样的,所以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为相反数;其次原抛物线与对称抛物线的顶点是关于m,n对称的,原抛物线的顶点为h,k,它关于m,n的对称点的坐标为2m-h,2n-k,那么对称抛物线的解析式可以写成y=-ax-2m+h2+2n-k,和利用上述方法所得结果一致7、已知抛物线C1:y=ax2-2amx+am2+2m+1a>0,m>1的顶点为A,抛物线C2的对称轴是y轴,顶点为B,且抛物线C1和C2关于P1,3成中心对称(1)用含m的代数式表示抛物线C1的顶点坐标(2)求m的值和抛物线C2的解析式(3)设抛物线C2与x正半轴的交点是C,当△ABC为等腰三角形时,求a的值思路点拨:1很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐标,y=ax -m2+2m+1,故顶点坐标为m,2m+1(2)C1和C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2详解过程略。
二次函数解题思路十大技巧
二次函数解题思路十大技巧二次函数解题技巧:二次函数有点难,求点坐标是关键。
一求函数解析式,再求面积带线段。
动点问题难解决,坐标垂线走在前。
三角相似莫相忘,勾股方程解疑难。
二次函数解题思路技巧1.平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。
顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
2.轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。
顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。
但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
熟悉几个特殊型二次函数的图象及性质1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式。
.2 、理解图象的平移口诀“加上减下,加左减右”。
“y=ax2 → y=a ( x + h ) 2 + k ”“加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的。
.总之,如果两个二次函数的“二次项系数”相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般“形式”,应先化为顶点式再平移。
3 、通过描点“画图”、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;。
高一二次函数解题技巧及方法
高一二次函数解题技巧一、掌握二次函数的概念:1、二次函数是指未知数是二次的函数,形式为y=ax²+bx+c,其中中a、b、c是常数,且a≠0。
2、在二次函数中,自变量x的取值范围通常为全体实数。
二、理解二次函数的表达式:1、二次函数的表达式通常由一元二次方程给出,这个方程可以用来描述二次函数的性质。
2、例如,二次函数的顶点式y=a(x-h)²+k可以表示出函数的顶点坐标(h,k)。
三、掌握二次函数的图形特征:1、二次函数的图形是一个抛物线,其顶点坐标为(h,k),对称轴为x=h,开口方向由a的符号决定。
2、当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
四、掌握二次函数的对称轴及顶点:1、二次函数的对称轴是x=h,顶点坐标是(h,k)。
2、在解题时,可以根据对称轴和顶点坐标快速找到函数的最值或单调区间。
五、了解二次函数的增减性及最值:1、二次函数的增减性取决于a的符号。
2、当a>0时,开口向上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大。
3、当a<0时,开口向下,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小。
4、最值是指函数在某个区间内的最大值或最小值。
5、对于一般形式的二次函数y=ax²+bx+c,当x=-b/2a时,取得最值(4ac-b²)/4a。
六、掌握二次函数的交点及与X轴的交点坐标:1、二次函数的交点是指与x轴交点的横坐标。
2、当函数与x轴相交时,交点的横坐标就是方程ax²+bx+c=0的根。
3、注意判别式b²-4ac的符号,当b²-4ac>0时,与x轴有两个交点;当b²-4ac=0时,与x轴有一个交点;当b²-4ac<0时,与x轴没有交点。
七、熟悉二次函数的平移规则:1、平移规则是指通过平移抛物线来改变其形状和位置。
二次函数知识点、易错点、解题技巧
二次函数知识点、易错点、解题技巧第一部分知识点总结第二部分学习口诀二次函数图像与性质口诀二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a 相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
第三部分易错分析函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力.【知识结构】【知识梳理】3、性质注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背.4、二次函数与一元二次方程的关系【易错点剖析】一、忽略二次项系数不等于0二、忽略隐含条件三、忽略数形结合思想方法的应用四、求顶点坐标时混淆符号五、忽视根的判别式的作用第四部分巧选解析式二次函数解析式的确定是中考的高频考点,在压轴题的第一问就难倒了不少小伙伴。
那么如何巧选表达式来确定二次函数的解析式呢?【小试牛刀】【几种特殊情况】第五步法动态最值专题第六部分解题技巧学好函数还是有诀窍的,要结合图像说性质,结合性质画图像,正所谓数形结合,函数无敌!第七部分变式13解在初中三年数学学习中,二次函数一直是重难点,正是因为很多学生都没学会,因此让出题老师们钻了空子,在中考中最喜欢出二次函数的题,不管是选择,填空还是大题压轴题。
老师最喜欢给学生出难题,可是学生们就该叫苦不迭了,趁着中考前这段时间,多复习这一类知识,再做一个巩固加深印象。
以二次函数进行考查的题目,命题形式都是比较固定的,一般都是给一个含有字母系数的二次函数,通过给出条件确定解析式,然后讨论交点问题,往往看着简单的题目,最不容易做出来,出题稍微有点变化,学生就看不出来。
二次函数的最值与零点求解技巧归纳
二次函数的最值与零点求解技巧归纳二次函数是高中数学中的重要章节之一,了解二次函数的最值与零点求解技巧对于解题非常有帮助。
在本文中,我们将总结并归纳了二次函数的最值与零点求解技巧,帮助读者更好地理解和应用这些知识。
一、二次函数的最值求解技巧二次函数一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于零。
二次函数的最值即为函数的最大值或最小值,我们可以通过以下步骤求解二次函数的最值。
步骤1:首先,判断二次函数的对称轴。
对称轴的公式为x = -b / 2a。
对称轴是二次函数的中心线,可以通过此公式快速计算得出。
步骤2:通过对称轴求得的x值,代入二次函数,求得对应的y值。
这一步可以使用代入法或者直接计算得出。
步骤3:根据题目所需求的最值,判断二次函数的开口向上还是向下。
开口向上表示最小值,开口向下表示最大值。
从前两步中求得的y 值中找出最值即可。
二、二次函数的零点求解技巧二次函数的零点即为函数与x轴相交的点,也就是使得y = 0 的x 值。
我们可以通过以下步骤求解二次函数的零点。
步骤1:将二次函数转化为标准形式:y = ax^2 + bx + c = 0。
步骤2:使用因式分解、配方法、根公式等方法,将二次函数进行因式分解或求根,得到二次函数的根。
步骤3:根据题目的要求,求得的根可能有一个、两个或没有,可以对结果进行分类讨论和整理。
三、二次函数的最值与零点求解技巧的应用举例下面举例说明二次函数的最值与零点求解技巧的应用。
例1:求解二次函数y = 2x^2 + 3x + 1的最小值和零点。
解析:步骤1:计算对称轴的值:x = -3 / (2 * 2) = -3 / 4 = -0.75。
步骤2:代入对称轴的值得出最小值:y = 2 * (-0.75)^2 + 3 * (-0.75)+ 1 = 1.625。
步骤3:二次函数的开口向上,所以最小值为1.625。
步骤4:求解零点,将二次函数转化为标准形式:2x^2 + 3x + 1 = 0。
快速掌握二次函数的秘诀
快速掌握二次函数的秘诀二次函数是高中数学中的一个重要概念,在解题中经常会出现。
掌握二次函数的秘诀可以帮助我们更加快速地理解和解决相关问题。
本文将分享一些学习二次函数的方法和技巧,帮助读者快速掌握二次函数的特点与应用。
一、理解二次函数的定义及特点二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a ≠ 0。
理解二次函数的定义对于进一步学习与解题至关重要。
1. 标准形式与一般形式二次函数的标准形式为y = ax^2 + bx + c,其中a、b、c为常数。
而一般形式可以表示为y = a(x - h)^2 + k,其中(h, k)为顶点坐标。
2. 轴对称与顶点坐标二次函数关于y轴对称,轴线方程为x = -b/2a。
顶点坐标为(h, k),其中h = -b/2a,k = f(h)。
二、快速掌握二次函数的方法和技巧学习二次函数时,掌握以下方法和技巧能够帮助我们更好地理解和运用二次函数。
1. 求解二次函数的解若要求解二次函数的解,可以利用一元二次方程的求解公式或者图像解法。
若方程为ax^2 + bx + c = 0,则根据求解公式x = (-b ± √(b^2 - 4ac))/(2a)可以求得解。
若通过图像解法,可以观察函数图像与x轴的交点来确定解。
2. 理解二次函数的图像特点二次函数的图像是一个抛物线,具有一些特点值得注意。
- 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
- 当a的绝对值很大时,抛物线会变得很瘦高;当a的绝对值很小时,抛物线会变得很矮胖。
- 当抛物线开口向上时,顶点是最小值点;当抛物线开口向下时,顶点是最大值点。
3. 利用顶点坐标求解二次函数若已知二次函数的顶点坐标(h, k),可以通过平移和伸缩的方法确定函数图像。
平移方法可以通过减去或加上常数来实现,伸缩方法可以通过改变a的值来实现。
根据顶点坐标与图像特点,能够更快速地确定二次函数的图像。
二次函数的求解方法
二次函数的求解方法二次函数是数学中常见的一类函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为已知常数,x为自变量。
求解二次函数即是要找到满足函数方程的解,也就是求解方程f(x) = 0的根。
本文将介绍常见的二次函数求解方法。
1. 直接法(开平方法)直接法是最常见的求解二次函数的方法,它适用于一元二次方程的标准形式,即ax^2 + bx + c = 0(其中a ≠ 0)。
具体步骤如下:(1)对方程两边同时开平方,得到√(ax^2 + bx + c) = ±√0;(2)化简方程,得到两个等式:x = (- b ± √(b^2 - 4ac))/(2a);(3)根据求根公式,分别计算得到两个解。
2. 配方法配方法适用于一些特殊的二次函数,即a ≠ 0,且无法直接进行开平方的情况。
具体步骤如下:(1)对二次函数进行变形,将一般形式变为完全平方的形式,即将f(x) = ax^2 + bx + c变为f(x) = a(x + p)^2 + q;(2)根据变形后的函数形式,得到方程a(x + p)^2 + q = 0;(3)化简方程,得到(x + p)^2 = -q/a;(4)对方程两边开平方,得到x + p = ±√(-q/a);(5)继续化简,得到x = -p ± √(-q/a);(6)根据求根公式,分别计算得到两个解。
3. 因式分解法因式分解法适用于一些可以直接因式分解得到解的二次函数。
具体步骤如下:(1)将二次函数进行因式分解,得到f(x) = (x - m)(x - n) = 0;(2)根据因式分解表达式,得到两个方程:x - m = 0和x - n = 0;(3)分别解这两个方程,得到x = m和x = n,即为函数的解。
4. 完全平方差公式完全平方差公式适用于一些特殊的二次函数,即a ≠ 0,且无法直接进行开平方的情况。
具体步骤如下:(1)将二次函数进行变形,将一般形式变为完全平方差的形式,即将f(x) = ax^2 + bx + c变为f(x) = a(x - p)^2 + q;(2)根据变形后的函数形式,得到方程a(x - p)^2 + q = 0;(3)化简方程,得到(x - p)^2 = -q/a;(4)对方程两边开平方,得到x - p = ±√(-q/a);(5)继续化简,得到x = p ± √(-q/a);(6)根据求根公式,分别计算得到两个解。
初中数学二次函数解题方法与技巧
2024年4月下半月㊀解法探究㊀㊀㊀㊀初中数学二次函数解题方法与技巧◉宁夏回族自治区固原市西吉县兴平乡中心小学㊀王建勤㊀㊀基于中考数学试题的研究可以发现,二次函数的知识点在初中数学试卷中所占比例较大,内容较多,题目较复杂,考题难度较大.特别是二次函数问题经常会在中考压轴题中出现.下面对有关二次函数的常见题型及解题方法进行总结.1解析式问题找㊁代㊁解在求解二次函数解析式的问题中,教师可以引导学生遵循 找㊁代㊁解 的解题思路,解决与二次函数有关的实际问题.图1例1㊀如图1所示,对称轴为直线x =12的抛物线经过B (2,0),C (0,4)两点,抛物线与x 轴的另一为点A ,求抛物线的解析式.找:找出题目中抛物线上的相应坐标信息.如B (2,0),C (0,4),对称轴直线x =12.代:代入到二次函数y =a x 2+b x +c (a ʂ0).解:进一步求解二次函数解析式.注:解析式问题需要学生具有较为扎实的二次函数学习基础.为此,在开展解析式问题教学前,教师可以利用对分课堂教学模式,引导学生梳理二次函数基本知识,提高学生的做题效果和课堂教学效率.2动点问题设㊁找㊁论有关动点问题,主要有x 轴上的动点问题㊁二次函数对称轴上的动点问题以及抛物线上的动点问题三种情况.求解时,首先假设出动点的坐标,由题干中的隐藏关系找出相应的等式,最后根据情况分类讨论,并根据合理性解出正确的结果.例2㊀已知抛物线y =-2x 2+2x +4与x 轴交于A ,B 两点,与y 轴交于点C ,若P 为抛物线第一象限内的一点,设四边形C O B P 的面积为S ,求S 的最大值.设:设P (n ,-2n 2+2n +4)(0<n <2).找:如图2,过点P 作x 轴㊁y 轴的垂线,垂足分别为F ,E ,连接O P .由此可知S =S әC O P +S әP O B =12O C n +12O B (-2n 2+2n +4)=-2(n -1)2+6.图2论:当且仅当n =1时,S 取得最大值,且最大值为6.注:动点问题需要学生耐心思考,找出题干中的关系式,这也是二次函数动点问题的重难点所在.为此,教师要引导学生克服解决动点问题时的恐惧心理,运用二次函数动点问题的三部解题法加强训练.3面积问题找㊁拆㊁设面积问题常以求解三角形面积或四边形面积的形式出现,主要考查求解三角形面积㊁求解两个三角形交点的坐标位置㊁求解三角形或四边形面积最大时的动点坐标这三大问题.图3例3㊀如图3所示,在平面直角坐标系中,抛物线y =-x 2+5x +6与x 轴相交于A ,B 两点,与y 轴相交于点C ,且直线y =x -6过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称,已知P 是线段O B 上的一个动点,过点P 作x 轴的垂线交抛物线于点M ,交直线B D 于点N .当әMD B 的面积最大时,求点P 的坐标.根据题干,可以发现本道题在考查面积的基础上,进一步提出了求点P 的坐标.但仍需先求出әMD B 面积的最大值,再从中寻找答案.找:找出әMD B 的面积关系.已知在әMD B 中,B 和D 是定点,M 是抛物线上的一个动点,可以使用铅垂模型求解,即线段MN 将әMD B 分割为有公共底边的两个三角形әMN D 和әMN B .拆:根据上述陈述,可以得到S әM D B =S әMN D +S әMN B =12MN |x B -x D |.设:设点P 坐标为(m ,0),则M (m ,-m 2+5m +6),N (m ,m -6),于是MN =-m 2+4m +12,所以S әM D B =12MN |x B -x D |=-3m 2+12m +36=-3(m -2)2+48,当且仅当m =2时,S әM D B 有最大值,且最大值为48,此时点P 的坐标为(2,0).注:教师在开展有关二次函数面积问题题型训练17解法探究2024年4月下半月㊀㊀㊀时,首先要引导学生学习如何找出面积关系.教师可以引导学生复习求面积的方法,如割补法㊁铅垂法等,从而提高学生的学习效率[1].其次,利用面积求解方法引导学生灵活解决面积问题.4几何图形存在性问题找㊁解㊁论中考有关二次函数几何图形存在性问题,主要考查三角形和四边形的存在性,且以考查特殊三角形和四边形居多.通常几何图形会与面积最值或动点问题搭配考查,灵活性较高,难度较大.图4例4㊀如图4所示,已知二次函数y =x 2+2x -3的图象与x 轴相交于点A 和B ,其中点A 的坐标为(-3,0),且过点B 作一条直线与抛物线相交于点D (-2,-3).过x 轴上的点E (a ,0)(点E 在点B 的右侧)作直线E F ʊB D ,且与该抛物线相交于点F ,试分析是否存在实数a ,使得四边形B D F E 为平行四边形若存在,请求出满足条件的实数a ;若不存在,请说明理由.找:根据题干内容,学生能够轻松求出直线B D 的解析式为y =x -1,则直线E F 的解析式为y =x -a .根据 两组对边分别平行的四边形是平行四边形 这一定理可知,若想四边形B D F E 为平行四边形,只需满足D F 与x 轴平行即可.解:若D F 与x 轴平行,则点D 和点F 的纵坐标相等,即点F 的纵坐标为-3.而F 为直线E F 与抛物线的交点,设F 的横坐标为m ,根据B E =D F ,可得a -1=m +2,即m =a -3,则F (a -3,-3).论:将F (a -3,-3)代入y =x 2+2x -3,可以解出a 1=1,a 2=3.当a =1时,点E (1,0)与点B 重合,不符合题意,舍去;当a =3时,点E (3,0)符合题意.所以,当且仅当a =3时,四边形B D F E 为平行四边形.注:关于二次函数几何图形存在性问题的内容较为丰富,出题方式较为灵活,因此,学生需要加强训练,把握解决二次函数几何图形存在性问题的解题思路,提高解题效率和解题质量.5最值问题设㊁找㊁论最值问题是二次函数的常考题型,最值问题通常与面积问题一同出现.因此,在面对这一问题时,教师可以引导学生运用割补法或铅垂(铅垂高,水平宽)法求出几何图形的面积,再通过数式关系求出最大值或最小值.例5㊀如图5,已知抛物y =a x 2-2a x +c 经过点C (1,2),与x 轴交于A ,B 两点,其中A 点坐标图5为(-1,0).(1)求抛物线的解析式;(2)直线y =34x 交抛物线于S ,T 两点,M 为抛物线上A ,T 之间的一个动点,过M 作M E 垂直x 轴于点E ,M F ʅS T 于点F ,求M E +M F 的最大值.本题根据解决解析式问题的步骤,可以很快得出抛物线y =-12x 2+x +32.对于第(2)问,可以通过设㊁找㊁论的步骤求解.设:设点M 的坐标为(t ,-12t 2+t +32),直线O T 交M E 于G ,则G (t ,34t ).找:找出M E +M F 的表达式.M E =-12t 2+t +32,O G =54t ,M G =-12t 2+14t +32.由s i n øO G E =s i n øM G F =45,得M F =45M G =-25t 2+15t +65.所以,可得M E +M F =-910t 2+65t +2710=-910(t -23)2+3110.论:当且仅当t =23时,M E +M F 有最大值,且最大值为3110.注:最值问题首先需要学生找到目标函数的表达式,然后化简等式.其次,最值问题需要学生正确计算出数式的答案,保证运算的准确率[2].综上所述,初中对二次函数的考查内容虽然灵活复杂[3],但是若学生能够利用解析式问题㊁动点问题㊁面积问题㊁几何图形存在性问题和最值问题的解题方法与解题技巧,并进行适当的训练,就能提高有关二次函数的解题能力.参考文献:[1]陆立明.二次函数综合题解题分析与备考策略 以南宁市中考数学二次函数题型为例[J ].中学教学参考,2022(17):22G24.[2]陈丽黎.类比探究透本质,数形结合双翼飞 二次函数的图象与性质(3) 的教学设计与反思[J ].中学数学,2022(12):45G46.[3]王国强,华云锋.慢教学:初中生数感培养的课堂新样态 以 二次函数 单元起始课教学为例[J ].中学数学,2022(10):7G10.Z27。
二次函数的实用技巧与技巧
二次函数的实用技巧与技巧二次函数是数学中常见的一种函数形式,它具有许多实际应用与技巧。
在本文中,我们将探讨二次函数的一些实用技巧与技巧,并提供一些例子来说明它们的应用价值。
1. 二次函数的标准形式二次函数的标准形式为:f(x) = ax² + bx + c,其中a、b和c为常数,a ≠ 0。
这种形式的二次函数可以通过解析法直接求得顶点坐标以及对称轴的方程。
2. 最值与顶点在标准形式中,二次函数的a决定了函数的开口方向,如果a>0,则函数开口向上,顶点为最小值点;如果a<0,则函数开口向下,顶点为最大值点。
因此,我们可以通过求顶点来确定二次函数的最值。
3. 对称轴对称轴是二次函数图像的一条线,它通过顶点,并且与x轴垂直。
对称轴的方程可以通过简单的计算得出:x = -b/2a。
这个方程可以帮助我们确定二次函数图像的对称性。
4. 解方程与零点解二次方程可以得到函数与x轴的交点,也就是函数的零点。
求解二次方程可以使用因式分解、配方法或求根公式。
有了这些技巧,我们可以轻松地找到函数的零点,进而更好地理解函数的特性。
5. 平移与缩放对二次函数进行平移和缩放可以改变函数图像的位置和形状。
平移可以通过在x轴和y轴上加上一个常数来实现,而缩放则需要对a进行变化。
熟练掌握这些变换技巧可以优化我们对二次函数图像的理解和利用。
6. 二次函数的应用二次函数在许多实际应用中发挥着重要的作用。
以下是一些例子:(1) 物体的抛体运动:二次函数可以描述抛体的运动轨迹,通过解方程和技巧来确定物体的落点和最大高度。
(2) 成本与收益分析:二次函数可以用来分析成本与收益之间的关系,通过求最值来确定最优的经营策略。
(3) 函数图像的绘制:通过掌握二次函数的性质和技巧,我们可以更准确地绘制函数的图像,并对函数的行为有更深入的理解。
(4) 金融领域中的应用:二次函数在投资和贷款领域有着广泛的应用,可以帮助我们做出更明智的决策。
初中二次函数最值问题解题技巧
初中二次函数最值问题解题技巧
1. 嘿,你知道吗?配方法可是二次函数最值问题的一大绝招啊!就像给函数穿上合适的衣服,一下子就变得精神了。
比如说对于函数y=x²+2x-3,咱就可以配方成y=(x+1)²-4,这样最值不就一目了然啦!
2. 哇塞,还有公式法呢!这可是超级厉害的工具哟!就如同有了一把万能钥匙。
像求二次函数y=2x²-4x+1 的最值,直接代入公式,不就轻松搞定啦!
3. 嘿呀,判别式法也不能小瞧呀!它就像是一个侦探,能帮我们找出很多线索呢。
比如已知一个二次函数与某个条件的关系,用判别式说不定就能找到最值啦!
4. 哎呀呀,图像法可是直观得很呐!简直就是把二次函数展现在你眼前。
像看二次函数 y=-x²+2x+3 的图像,最高点不就是最大值嘛,多清楚呀!
5. 哇哦,构造法也很奇妙哟!就好似搭建一个独特的模型。
比如根据已知条件构造一个新的二次函数来求最值,是不是很有意思呀?
6. 嘿,别忘了还有变量替换法呢!这就像给函数变个小魔术,巧妙得很呐。
假设一个变量来替换某个式子,然后求最值,噫,真神奇!
7. 哈哈,对称性质法也是很有用的呀!相当于找到了函数的一个秘密通道。
知道二次函数的对称轴,那最值还远吗?
8. 哟呵,参数法也可以试试呀!就好像加入了一个特别的元素。
通过参数来求解最值,那感觉超棒的!
9. 总之呢,这么多的解题技巧,可得好好掌握呀!它们都是我们解决二次函数最值问题的有力武器,可别小瞧它们哦!用对了技巧,这些难题都不叫事儿!。
二次函数经典解题技巧
龙文教育学科教师辅导讲义之迟辟智美创作对点P (x 0,y 0)到直线滴一般式方程 ax+by+c=0滴距离有2200a b a c by x d +++=经常使用记牢2、如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点 B (0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP 的周长最小.请求出点P 的坐标.解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …2分解得 ⎩⎨⎧-==.5,1c a …………………………3分∴二次函数的表达式为542--=x x y .……4分 (2)令y =0,得二次函数542--=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点,连结AB ,由于2622=+=OB OA AB ,要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC .因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分设直线BC 的解析式为b kx y +=,根据题意,可得⎩⎨⎧+=-=.50,5b k b 解得⎩⎨⎧-==.5,1b k所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组⎩⎨⎧-==5,2x y x 的解,解得⎩⎨⎧-==.3,2y x所求的点P 的坐标为(2,-3).……………………………10分压轴题中求最值此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值. 典范例题:1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点动身,沿射线BC 向右匀速F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式暗示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部份面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式;⑶探求⑵中获得的函数y 在x 取含何值时,存在最年夜值,并求出最年夜值.A DG解:⑴ x ,D 点⑵①当0<x ≤2时,△EFG 在梯形ABCD 内部,所以y =43x 2; ②分两种情况:Ⅰ.当2<x <3时,如图1,点E 、点F 在线段BC 上, △EFG 与梯形ABCD 重叠部份为四边形EFNM ,∵∠FNC =∠FCN =30°,∴FN =FC =6-2x.∴GN =3x -6. 由于在Rt △NMG 中,∠G =60°, 所以,此时 y =43x 2-83(3x -6)2=2392398372-+-x x . Ⅱ.当3≤x ≤6时,如图2,点E 在线段BC 上,点F 在射线CH 上,△EFG 与梯形ABCD 重叠部份为△ECP , ∵EC =6-x, ∴y =83(6-x )2=239233832+-x x . ⑶当0<x ≤2时,∵y =43x 2在x >0时,y 随x 增年夜而增年夜, ∴x =2时,y 最年夜=3;当2<x <3时,∵y =2392398372-+-x x 在x =718时,y 最年夜=739; 当3≤x ≤6时,∵y =239233832+-x x 在x <6时,y 随x 增年夜而减小, ∴x =3时,y 最年夜=839.综上所述:当x =718时,y 最年夜=739如图,直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45=△ACD 重叠部份(阴影部份)的面积为S (平方单元),点E 的运动时间为t (秒). (1)求点C 的坐标.(2)当0<t<5时,求S 与t 之间的函数关系式. (3)求(2)中S 的最年夜值. (4)当t>0时,直接写出点(4,29)在正方形PQMN 内部时t 的取值范围.【参考公式:二次函数y=ax 2+bx+c 图象的极点坐标为(ab ac a b 44,22--).】解:(1)由题意,得⎪⎪⎩⎪⎪⎨⎧=+-=.45,643x y x y 解得⎪⎩⎪⎨⎧==.415,3y x∴C (3,415).(2)根据题意,得AE=t ,OE=8-t. ∴点Q 的纵坐标为45(8-t),点P 的纵坐标为43t , ∴PQ=45 (8-t)-43t=10-2t.当MN 在AD 上时,10-2t=t ,∴t=310.B E F CA DGNM图1B EC F A DG P H图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育学科教师辅导讲义
因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得⎩⎨
⎧+=-=.
50,5b k b 解得⎩⎨⎧-==.5,
1b k
所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组⎩
⎨
⎧-==5,
2x y x 的解,解得⎩⎨⎧-==.3,2y x
所求的点P 的坐标为(2,-3).……………………………10分 压轴题中求最值
此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。
典型例题:
1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式;
⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值.
解:⑴ x ,D 点
⑵ ①当0<x ≤2时,△EFG 在梯形ABCD 内部,所以y =4
3x 2
;
②分两种情况:
Ⅰ.当2<x <3时,如图1,点E 、点F 在线段BC 上,
△EFG 与梯形ABCD 重叠部分为四边形EFNM ,
∵∠FNC =∠FCN =30°,∴FN =FC =6-2x.∴GN =3x -6. 由于在Rt △NMG 中,∠G =60°,
所以,此时 y =
4
3
x 2
-
8
3(3x -6)2
=2392398372-
+-x x . Ⅱ.当3≤x ≤6时,如图2,点E 在线段BC 上,点F 在射线CH 上,
△EFG 与梯形ABCD 重叠部分为△ECP , ∵EC =6-x, ∴y =
8
3(6-x )2
=239233832+
-x x . ⑶当0<x ≤2时,∵y =4
3x 2
在x >0时,y 随x 增大而增大, ∴x =2时,y 最大=
3;
当2<x <3时,∵y =2
3
92398372-
+-x x 在x =718时,y 最大=739; 当3≤x ≤6时,∵y =2
3
9233832+-x x 在x <6时,y 随x 增大而减小, ∴x =3时,y 最大=8
3
9.
综上所述:当x =718时,y 最大=73
9
如图,直线
64
3+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45=
与AB 交于点C ,与过点A 且平行于y 轴的直线交于点D.
点E 从点A 出发,以每秒1个单位的速度沿x 轴向左运动.过点E 作x 轴的垂线,分别交直线AB 、OD 于P 、Q 两点,以PQ 为边向右作正方形PQMN.设正方形PQMN 与△ACD 重叠部分(阴影部分)的面积为S (平方单位),点E 的运动时间为t (秒). (1)求点C 的坐标.
B E → F → C
A D
G B E F C
A D
G
N
M
图1
B E
C F A
D G P H
图2
(注:可编辑下载,若有不当之处,请指正,谢谢!)。