MSA测量系统方法与程序
MSA测量系统分析流程及方法
MSA测量系统分析流程及方法MSA(测量系统分析)是对测量系统稳定性、可靠性和能力的评估,用于确认测量结果的准确性和可靠性。
它可以用于评估任何测量系统,包括设备、仪器和应用程序。
以下是MSA的流程和方法:1.确定测量系统的目的和应用:在开始MSA之前,首先需要明确测量系统的目的和应用。
这将有助于确定需要分析的关键因素以及选择适当的方法。
2.选择测量系统分析方法:根据测量系统的类型和目的,选择适当的MSA方法。
常见的方法包括GR&R(重复性与再现性)分析、准确性、稳定性和线性度分析。
3.收集数据:使用标准样本或实际样本来收集测量数据。
应该保证数据具有代表性和充分,以便能够全面评估测量系统的性能。
4.重复性与再现性(GR&R)分析:这是评估测量仪器和操作员之间的可重复性和再现性的方法。
它通常包括重复性(同一操作员重复测量同一样本)和再现性(不同操作员在不同时间重复测量同一样本)的分析。
5.准确性分析:准确性是评估测量结果与真实值之间的偏差程度。
可以使用标准样本或比较方法(如正交试验)来评估准确性。
如果测量系统有偏差,可以进行校正,以提高测量的准确性。
6.稳定性分析:稳定性是指测量系统的输出是否随时间而变化。
稳定性分析可以通过收集数据的不同时间点来进行。
7.线性度分析:线性度是指测量系统对于不同输入值的响应是否是线性的。
线性度分析可以通过收集不同输入值对应的测量数据来进行。
8.分析结果和改进措施:对收集到的数据进行分析,并得出结论和建议。
如果测量系统的性能不符合要求,应制定相应的改进措施,例如修理、更换或校准测量设备,培训操作员,改进测量方法等。
9.持续监控和改进:MSA是一个持续改进的过程,应确保测量系统的性能得到持续监控和改进。
定期重复MSA分析,以确保测量系统的稳定性和准确性,及时发现和纠正潜在问题。
总结起来,MSA的流程包括确定目的和应用、选择方法、收集数据、进行分析,最后制定改进措施和持续监控。
MSA测量系统的分析过程
MSA测量系统的分析过程简介MSA(测量系统分析)是用于评估和确定测量系统进行精确测量的能力和可靠性的一种方法。
MSA的目标是确定测量系统中存在的任何误差,并分析其对测量结果的影响。
本文将介绍MSA测量系统分析的过程,并提供一些常用的工具和技术。
MSA测量系统分析的步骤1. 定义测量系统的目的和类型首先,我们需要明确测量系统的目的和类型。
测量系统可以是某种仪器、设备、工具或软件程序。
在这一步,我们需要确定测量系统用于测量哪些特定的量,并了解它是被动型、主动型还是控制型测量系统。
2. 选择合适的测量技术在这一步,我们需要选择适合的测量技术,根据测量任务的要求来确定使用哪种技术。
这可能包括使用传感器、测量仪器、计算机软件等。
3. 收集数据在进行测量系统分析之前,我们需要收集足够的测量数据。
数据收集可以通过对样本进行测量,或者从已有的数据集中获取。
收集的数据应包括尽可能多的不同样本,以便对测量系统的变化性进行评估。
4. 进行数据分析通过对收集的数据进行分析,我们可以得到一些关于测量系统的重要统计数据和指标。
这些数据可以帮助我们评估测量系统的稳定性、可重复性和准确性。
数据分析的方法包括平均值和标准偏差的计算、方差分析、相关性分析等。
我们可以使用统计软件工具,如Excel、Minitab等来进行数据分析。
5. 进行测量系统评估在这一步,我们将基于数据分析的结果对测量系统进行评估。
评估的目的是确定测量系统是否满足所需的精度要求,并识别系统中可能存在的任何问题或缺陷。
通常,我们使用一些指标来评估测量系统的能力,如控制图、方差分析图、偏差图等。
这些图形可以帮助我们直观地了解测量系统的性能并发现问题。
6. 优化测量系统如果评估发现测量系统存在问题或不满足要求,我们需要采取适当的措施来优化系统。
这可能包括调整测量设备、改进测量方法、培训操作人员等。
优化测量系统的目的是提高系统的稳定性、重复性和准确性,以确保测量结果的可靠性。
测量系统分析(MSA)控制程序
(5)如果操作者在不同的班次,可以使用一个替换的方法。让操作者A测量10个零件,并将读数记录在第一行。然后,让操作者A按照不同的顺序重新测量,并把结果记录在第2行和第3行。操作者B和C也同样做。
(9) 将4,9和14行的平均值(指XaXbXc)中最大和最小值填入第18行中适当的空格处。并确定它们的差值,将差值填入第18行标有XDIEF处的空格内(表1)。
(10) 将每个零件每次测量值相加并除以总的测量次数(试验次数乘以操作者数)。将结果填入第16行零件均值Xp的栏中(表1);
(11) 用最大的零件平均值减去最小的零件平均值,将结果填入第16行标有Rp的空格内。Rp是零件平均值的极差(表1);
(7)将行(第1、2、3、6、7、8、11、12、和13行)中的值相加。把每行得到和除以零件数并将结果填入表1中最右边标有“平均值”的列内。
(8) 将第4、9和14行的平均值(排在最后一列)相加除以试验次数,结果填入第4行的Xa格内。对第6、7和8;第11、12和13行重复这个过程,将结果分别填入第9和第14行的Xb,Xc格内(表1)
6.3表3量具研究表(典型极差法)
6.4表4计数型测量系统分析法(小样法)。
4.3.2收集数据后的计算
量具的重复性和再现性的计算如附表1和2所示。表1是数据表格,记录了所有研究结果。表2是报告表格,记录了所有识别信息和按规定公式进行的所有计算。
收集数据后的计算程序如下:
(1)从第1、2、3行中的最大值减去它们中的最小值,把结果记入第5行。在第6、7和第8行,11、12、13行重复第一步骤,并将结果记录在第10行和15行(表1)。
MSA测量系统分析控制程序
MSA测量系统分析控制程序1 目的明确测量系统的评价方法,从而确定测量系统变差,并利用研究结果采取措施,减少测量系统的变差,确保测量系统始终处于可接受状态。
2 适用范围适用于対产品控制计划所渋及到的测量系统的分析、评定的管理。
3 基本职责3.1品管部门负责测量系统稳定性、偏倚、线性、重复性、再现性数据的采集、分析、评定。
4 工作程序4.1测量系统分析対象范围4.1.1在如下情况下须进行测量系统分析:新产品的试生产阶段、采用了新的量具的分析。
4.2 测量系统必须具备以下统计特性a)测量系统必须处于统计控制中,変差只能由普通原因产生而不是特殊原因产生;b)测量系统的変异小于制造过程的変异,并小于制品公差带(设定界限値);c)测量系统精度是过程変差和公差带两者中精度较高者的十分之一;d)测量系统的最大変差是小于过程変差和公差带两者中的较小者。
4.3 测量系统分析方法的要求4.3.1能正确反映测量系统的统计特性:偏倚、稳定性、线性、重复性和再现性。
4.3.2评定并确认测量系统是否在测量正确的変量。
4.4 测量系统分析方法4.4.1偏倚:4.4.1.1 在精密测量设备上获得被测样件或标准器件的基准値。
4.4.1.2 使用被研究的测量系统测量该样件或标准器件,次数应≧10,求出观测平均値。
4.4.1.3 计算公式: 偏倚=观测平均値-基准値偏倚占过程変差百分比= ×100% 4.4.1.4 如果偏倚相对比较大,应分析其可能原因并作相应措施,可参考以下几方面:a) 标准或基准值误差,应检讨校准程序;b) 仪器磨损,应制定维护或重新修理计划;c) 制造的仪器尺寸不対时,应更换仪器;d) 测量了错误的特性时,应变更测量对象;e) 仪器校准不正确时,应复查校准方法;f) 评价人操作不当时,应复查检验说明书;g) 仪器修正计算不正确时,应重新计算。
4.4.1.5 偏倚分析结果记入《量具的偏倚分析》(FM-6-1102-06)。
测量系统分析MSA程序(含表格)
测量系统分析(MSA)程序(IATF16949-2016/ISO9001-2015)1.0目的 :对所有量具、量测及试验设备实施统计分析, 藉以了解量具系统之准确度与精确度。
2.0范围 :所有控制计划(Control Plan)中包含的/或客户要求的各种量测系统均适用之。
3.0定义 :3.1MSA:量测系统分析3.2量具:是指任何用来获得测量结果的装置。
经常是用在工厂现场的装置,包括通/止规(go/nogodevice)。
3.3量测系统:是对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境和假设的集合;也就是说,用来获得测量结果的整个过程。
3.4量具重复性(EV):一个评价人多次使用一件测量仪器,对同一零件的某一特性进行多次测量下的变差。
3.5量具再现性(AV):由不同的评价人使用相同的量具,测量一个零件的一个特性的测量平均值的变差。
3.6偏性:同一人使用同一量具在管制计划规划地点与在实验室量测同一产品之相同特性所得平均值与真值之间的差异。
3.7稳定性:指同一量具于不同时间量测同一零件之相同特性所得之变异。
3.8线性:指量具在预期内之偏性表现。
4.0权责:4.1量测系统测试的排定、数据分析、仪器操作人员的选择:品保部4.2测试执行:各相关单位4.3MSA操作人员的培训:品保部5.0执行方法5.1QA工程师人员依公司PCP文件建立《xx年MSA实施计划表》或客户要求,并依据计划表之排程进行对仪器做量测系统分析。
5.2取样方法:5.2.1计量型取样:从代表整个工作范围的过程中随机抽取10件样品,但所抽取的10件样品其数值必须涵盖该产品的公差带。
5.2.2计数型取样:取50PCS样品,其中包含临近值,不良品与合格品。
5.2.3.需要2或3个测量者随机抽取对每个产品各测量取一定数量样品.5.3计数型:5.3.1被评价的零件的选定随机抽取50个零件,把零件编号,由研究小组给出该50个零件的标准,必须含合格,不合格,模糊品,条件允许的情况下最好各占1/3。
测量系统分析(MSA)方法
测量系统分析(MSA)方法测量系统分析(MSA)方法**** 1.目的对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。
2.范围适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。
3.职责3.1质管部负责测量系统分析的归口管理;3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析;3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。
4.术语解释4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。
4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。
4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。
4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。
用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。
关于有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。
4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。
4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。
测量系统分析(MSA)管理程序
测量系统分析(MSA)管理程序该计划包括测量系统的分析方法、分析人员、产品抽样编号、测量设备校准过程以及措施效果验证等内容,以确保测量系统的准确性和可信度。
5.2 确定分析方法: 确定适合本公司的分析方法,例如重复性和再现性分析、稳定性分析、线性分析和小样法分析等。
5.3 确定测量者: 确定具有测量能力的人员进行测量分析,以确保测量结果的准确性和可信度。
5.4 测量设备校准过程: 对测量设备进行校准,以确保其测量准确性和可靠性。
5.5 措施效果验证: 对采取的措施进行效果验证,以确保其有效性并纠正任何不足之处。
6、控制流程:本程序的控制流程如下图所示,包括MSA计划、测量系统分析、纠正和预防措施等环节,以确保测量系统处于受控状态,保证测量结果的准确性和可信度。
每年12月,需要编制下一年度的MSA计划,对控制计划中涉及的测量系统进行至少一次分析,且分析间隔不大于12个月。
此外,在以下情况下也需要制定MSA计划:初装的测量设备在安装、调试、验收合格后;测量装置维修或搬迁;操作人员变动;每天使用频率高于7小时;产品出现大批不合格;过程能力Cpk<1.33;GRR在10-30%之间;以及顾客的要求。
在实施计划时,需要确定分析方法。
对于计量型量具,应该使用量具重复性和再现性(GRR)研究分析方法;对于需要监控过程参数的量具,应使用稳定性分析方法;对于计数型量具,应使用小样法。
在需要时,也可以对测量系统进行偏倚、线性分析。
确定测量者时,应从日常操作人员中选择,并规定测量人数m及测量次数t。
对于计量型量具,GRR时m=2-3,t=2-3;稳定性时m=1,t=5(定期);线性时m=1,t≥10.对于计数型量具,m=2,t=2.确定样件时,应从同一批产品的不同班次中选取。
对于计量型量具,GRR时n=10;稳定性时n=1;线性时n≥5(样件的被测量值需包含量具的测量范围);对于计数型量具,n=20(必须包含不合格品)。
测量系统分析MSA控制程序
测量系统分析MSA控制程序测量系统分析(Measurement System Analysis,MSA)是一种常用于评估测量系统稳定性、准确性和重复性的方法。
通过进行MSA,我们能够确定测量系统的可靠性,并对系统进行必要的改进和优化。
本文将对MSA 的控制程序进行详细分析。
首先,MSA的控制程序应包括测量系统评估的标准和流程。
评估标准应明确规定测量系统的准确性、重复性、稳定性和灵敏度等指标。
流程则应明确整个评估过程的步骤和方法,包括选择适当的测量工具、获取样本数据、计算和分析结果等。
其次,控制程序应确定测量系统评估的频率和时机。
根据测量系统的应用领域和重要性,确定合适的评估频率是必要的。
一般而言,对于关键性的测量系统,应定期进行评估,以确保其性能的稳定和准确。
此外,控制程序还需要明确负责执行MSA评估的责任人。
这些责任人应具备相关的技术知识和经验,能够准确理解并执行评估标准和流程。
他们还应及时记录和报告评估结果,并采取必要的纠正措施,以确保测量系统的稳定性和可靠性。
另外,控制程序还应包括对受控变量的统计分析方法。
通过对样本数据的收集和分析,可以确定测量系统的稳定性和准确性。
常用的统计方法包括测量系统的平均值、方差、正态分布和相关性分析等。
在进行统计分析时,应注意样本的选择和数据的收集方式,以确保结果的准确性和可靠性。
最后,控制程序还应包括对测量系统的改进和优化的方案。
通过对评估结果的分析,可以确定测量系统存在的问题和不足之处。
根据这些问题和不足,可以采取相应的改进措施,比如调整测量仪器的校准和维护计划、优化测量工艺等。
改进和优化方案应具体、可行,并能够有效地提升测量系统的性能。
综上所述,测量系统分析(MSA)的控制程序应包括评估标准和流程、评估的频率和时机、执行MSA评估的责任人、对受控变量的统计分析方法以及改进和优化的方案。
通过严格执行这些控制程序,可以确保测量系统的稳定性、准确性和可靠性,从而提高产品和过程的质量。
测量系统分析(MSA)方法
测量系统分析(MSA)方法测量系统分析(MSA)方法**** 1.目的对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。
2.范围适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。
3.职责3.1质管部负责测量系统分析的归口管理;3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析;3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。
4.术语解释4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。
4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。
4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。
4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。
用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。
关于有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。
4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。
4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。
TS16949程序文件:MSA控制程序完整版
TS16949程序文件:MSA控制程序完整版1、目的本程序的目的在于规范测量系统分析(MSA)的方法和流程,确保测量数据的准确性和可靠性,以满足产品质量控制和持续改进的要求。
2、适用范围本程序适用于公司内所有用于产品质量控制和过程监控的测量系统,包括但不限于量具、测量设备、测试仪器等。
3、职责31 质量部门负责制定和维护 MSA 计划,并组织实施测量系统分析工作。
32 各使用部门负责提供测量系统的相关信息和协助质量部门进行MSA 工作。
33 计量部门负责测量设备的校准和维护,确保其处于良好的工作状态。
4、术语和定义41 测量系统:是指对测量单元进行量化或对被测的特性赋值的操作、程序、量具、设备、软件以及操作人员的集合。
42 重复性:是指由同一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。
43 再现性:是指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
44 稳定性:是指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
45 线性:是指在量具预期的工作范围内,偏倚值的差值。
5、测量系统分析的时机51 新购入的测量设备在投入使用前。
52 测量设备经过维修、校准后。
53 产品的测量特性发生变更时。
54 顾客有特殊要求时。
6、测量系统分析的准备工作61 确定需要进行分析的测量系统和测量特性。
62 选择适当的测量方法和样本数量。
63 准备所需的测量设备和样本零件,并确保其处于良好的状态。
7、测量系统分析的方法71 计量型测量系统分析重复性和再现性分析(GR&R)稳定性分析线性分析72 计数型测量系统分析小样法大样法8、重复性和再现性分析(GR&R)81 选取 10 个代表过程变异的样本零件。
82 选择 3 名测量人员,每名测量人员对每个零件测量 3 次。
83 将测量数据记录在数据表格中。
84 计算重复性和再现性的变差。
MSA测量系统分析控制程序
MSA测量系统分析控制程序文件编号:版本号:AO发布日期:2023-03-11审批:编制:1.目的对测量系统变差进行分析评估,以确定测量系统是否满足规定要求,确保测量系统满足测量要求,确保产品质量。
2.范围本程序适用于本公司所要求的或顾客要求的所有测量设备的测量系统分析。
3.定义3.1MSA:指MeaSUrementSystemsAna1ySiS(测量系统分析)的英文简称。
3.2测量系统:指用来对被测特性赋值的操作、程序、量具、设备、软件以及操作人员的集合;用来获得测量结果的整个过程。
3.3偏倚(准确度):指测量结果的观测平均值与基准值的差值。
一个基准值可通过采用更高级别的测量设备(如:计量实验室或全尺寸检验设备)进行多次测量,取其平均值来确定。
3.4重复性:指由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。
3.5再现性:指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
3.6稳定性:指测量系统在某持续时间内测量同一基准或零件的单一性时获得的测量值总变差。
3.7线性:指在量具预期的工作范围内,偏倚值的差值。
3.8盲测:指测量系统分析人员将评价的5—10个零件予以编号,然后要求评价人A用测量仪器将这些已编号的5—10个零件第一次进行依此测量(注意:每个零件的编号不能让评价人知道和看到),同时测量系统分析人员将评价人A第一次所测量的数据和结果记录于相关测量系统分析表中,当评价人A第一次将5—10个零件均测量完后,由测量系统分析人员将评价人A已测量完的5-10个零件重新混合然后要求评价人A用第一次测量过的测量仪器对这些已编号的5-10个零件第二次进行依此测量,同时测量系统分析人员将评价人A第二次所测量的数据和结果记录于相关测量系统分析表中,第三次盲测以此类推。
3.9AN0VA:方差分析法3.10计量型数据:定量的数据,可用测量值来分析。
3.11计数型数据:可以用来记录和分析的定性数据。
测量系统分析(MSA)基础知识及操作指导
测量系统分析(MSA)基础知识及操作指导在进行MSA之前,需要明确测量系统的目标,例如测量系统是否要用
于决策、控制过程或产品规范。
这将决定需要评估哪些方面的测量系统性能。
主要的MSA指标包括可重复性、再现性和准确性。
可重复性是指在相
同条件下,同一测量人重复测量同一件物品时,测量结果的一致性。
再现
性是指在相同条件下,不同测量人重复测量同一件物品时,测量结果的一
致性。
准确性是指测量结果与真实值之间的偏差,通常通过与已知参考值
进行比较来评估。
进行MSA的一种常用方法是通过使用方差分析(ANOVA)来评估测量
系统的偏差和变异。
这涉及到对多个测量人、多个测量仪器和多个样本进
行测量,并使用统计工具来分析数据。
ANOVA可以帮助确定是否存在系统
误差、测量人和仪器之间的差异以及这些差异对测量结果的影响。
进行MSA时,还需要确保测量系统的稳定性。
这意味着测量仪器应该
经过校准和维护,以确保其在测量过程中的稳定性和精确性。
此外,测量
人员也需要受过培训和了解测量程序,以减少人为误差。
基于MSA的结果,可以采取相应措施来改善测量系统的性能。
例如,
如果发现测量仪器存在较大的偏差,则可能需要调整或更换仪器。
如果发
现测量人员之间存在较大的差异,则可能需要对其进行培训或重新分配任务。
总之,测量系统分析(MSA)是一个评估测量系统性能的重要工具,
可用于确保测量结果的准确性和可靠性。
通过对测量系统进行分析和改进,可以提高质量控制和过程改进的效果,进而提高产品或服务的质量。
MSA测量系统分析程序
5.17分析样品R&R图,测量人R&R图,测量人平均值控制图,样品、测量人交互分布图,得到测量系统的相关情况,根据这些情况对公司内部的测量仪器和系统进行改善以及对相关测量人员的技术培训。
3.定义
3.1测量:对某具体事物赋予数据,以表示他们对于特定特性之间的关系。赋予数据的过程称为测量过程,而数据称为测量值。
3.2量具:任何用来获取测量结果的装置,经常用来特指用在车间的装置,包括用来测量合格/不合格装置。
3.3测量系统:用来对被测特性赋值的操作、准则、量具和其它设备、软件及指定之一群待测量之集合,用来获得测量结果的全过程。
4.3.1外观标准板由品质部标准组负责制作,分发到相关车间,各车间负责对本部质检员的考核。
4.3.2MSA分析用的样板由品质部测试组制作,并负责车间的考核工作。
4.4考核频率:
4.4.1精磨检查、白片检查、丝印检查、成品检查等对产品外观进行全检,需每月对质检员考核一次。
4.4.2丝印质检、电膜质检等对产品外观进行抽检,每三个月对质检员考核一次。
修订履历
修订次
页码
修订内容
日期
2
新版发行
新增:①4.3考核样板制作;②4.4考核频率;
2011-4-12
2011-6-12
拟制
审核
批准
日期
日期
日期
测量系统分析(MSA)程序--
1.3.3是否有人为因素造成失准;
1.3.4是否需要修正校验的周期及频率。
2.0适用范围
本程序适用于公司测量系统相关之设备。
3.0名词定义
3.1量测仪器:用来量测产品特性之仪器皆称为量测仪器;
3.2测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件以及操作人员的集合;
版本修订历史记录
版本号
修订内容
修订时间
1.0
第一次下发
2009年06月21日
起草:
日期:
审核:
日期:
批准:
日期:
1.0目的
1.1了解测量系统的性能,是否能够满足测量要求;
1.2对新进或维修后的量测设备,能提供一个客观正确的变异分析及评价量测质量;
1.3运用测量系统分析结果作为下列各项事项之参考;
1.3.1试验设备是否需要校验;
4.2设备使用部门安排检测人员参加测量系统分析工作及送校;
4.3各线体跟线工程师负责测量设备的维护保养,生产部门负责测量设备的日常保养。
5.0参考文件
MSA手册(戴姆勒克莱斯勒、福特和通用汽车公司所有)
6.0程序说明
6.1 MSA计划的制定
6.1.1设备仪校工程师于每月5日之前根据生产过程在用计量器具和检测设备的特点、使用频繁度、测量特性对产品品质的影响度、分析的可操作性等状况编制月度测量系统分析计划报设备主管批准;
6.3.3.1作业者对测量仪器的操作方法及数据读取方式需加强,或修订作业指导书,使其有关的操作要点更详细;
6.3.3.2测量仪器的校验不完善及仪器读表刻度表示不准确;
6.3.3.3可能需要夹具协助操作,使测量的数据更具有一致性;
6.3.4适用性评价
MSA讲义
第一章通用测量系统指南一、MSA目的:选择各种方法来评定测量系统的质量.........。
活动:测量、分析、校正二、适用范围:用于对每一零件能重复读数的测量系统。
三、测量和测量过程:1)赋值给具体事物以表示它们之间关于特殊特性的关系;2)赋值过程定义为测量过程;3)赋予的值定义为测量值;4)测量过程看成一个制造过程,它产生数字(数据)作为输出。
四、量具:任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。
五、测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。
六、测量变差:1)多次测量结果变异程度;表示;2)常用σm3)也可用测量过程过程变差R&R表示。
注:a.测量过程(数据)服从正态分布;b.R&R=5.15σm七、测量系统质量特性:测量成本;●测量的容易程度;●最重要的是测量系统的统计特性。
八、常用统计特性:●重复性(针对同一人,反映量具本身情况)●再现性(针对不同人,反映测量方法情况)●稳定性●线性(针对不同尺寸的研究)注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。
九、测量系统对其统计特性的基本要求:●测量系统必须处于统计控制中;●测量系统的变异必须比制造过程的变异小;●变异应小于公差带;●测量精度应高于过程变异和公差带两者中精度较高者(十分之一);●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程变差和公差带中的较小者。
十、评价测量系统的三个问题:●有足够的分辨力;(根据产品特性的需要)●一定时间内统计上保持一致(稳定性);●在预期范围(被测项目)内一致可用于过程分析或过程控制。
(线性)十一、评价测量系统的试验:●确定该测量系统是否具有满足要求的统计特性;●发现哪种环境因素对测量系统有显著的影响;●验证统计特性持续满足要求(R&R)。
十二、程序文件要求:●示例;●选择待测项目和环境规范;●规定收集、记录、分析数据的详细说明;●关键术语和概念可操作的定义、相关标准说明、明确授权。
ISO9001 测量系统分析(MSA)程序
测量系统分析(MSA)程序DATE : 19-Sep-20141 OBJECTIVE目的The objective of this procedure is to assist in determining the precision, major problems, amount of variation, and acceptability of measurement systems.制定此程序,以帮助确定测量系统的准确度,重大问题,变差量及可接收性。
2 SCOPE范围This procedure is applicable to measurement systems used in Aztech Communication Device (DG) Ltd.此程序适用于Aztech Communication Device (DG) Ltd使用的测量系统。
3 DEFINITION定义3.1Measurement测量Measurement is defined as “the assignment of numbers [or values] to material things to represent therelations among them with respect to particular properties.” The process of assigning the numbers isdefined as the measurement process, and the value assigned is defined as the measurement value.测量的定义是 “对某具体事物赋予数字(或数值),以表示它们对于特定特性之间的关系”。
赋予数字的过程被定义为测量过程,所分配的数值被定义为测量值。
3.2Gage量具Gage is any device used to obtain measurements, frequently used to refer specifically to the devicesused on the shop floor, includes go/no-go devices.量具是指任何用来获得测量的装置,通常指用于工厂现场的装置,包括go/no-go装置。
MSA管理程序【精选文档】
1。
目的规定测量系统分析和评价的方法,以及明确测量系统的接收准则,从而确保测量数据的有效性。
2.范围控制计划中规定使用的测量系统并且离最近一次MSA评价六个月以上者。
3。
权责由质量部负责测量系统分析。
4.定义4.1 MSA:测量系统分析;4。
2 EV:重复性——设备变差;4。
3 AV:再现性——评价人变差;4.4 XYR:重复性和再现性;4.5 PV:零件变差;4.6 TV:总变差;4。
7 ndc:测量系统分辨率。
5。
作业内容5。
1工作流程5。
2计数性测量系统接受准则及评价:A.计算3个评价人两两之间的一致性Kappa=(p0—pe)/(1— pe)(p0=对角线单元中观测值的总和,pe =对角线单元中期望值的总和);B.再计算3个评价人与基准之间的一致性Kappa= (p0-pe)/(1-pe)(p0=对角线单元中观测值的总和,pe=对角线单元中期望值的总和)。
C。
Kappa的接收准则是:大于0.75表示好的一致性(Kappa最大为1);小于0.4表示一致性差。
D. 测量系统的有效性及漏发和误发接收准则:6。
相关文件化信息6.1 外来文件—测量系统分析(MSA)教材6。
2 QEP7。
1.7 监测资源控制程序6.3 QER7.1。
5—06 量具重复性和再现性数据收集表6。
4 QER7.1.5-07 量具重复性与再现性报告6。
5 QER7.1。
5-08 计数型数据小样法分析表6.6 QER8。
3—33 测量系统分析计划6。
修改栏编制:审核:批准:。
日期:日期 : 日期: .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章通用测量系统指南MSA目的:选择各种方法来评定测量系统的质量.........。
活动:测量、分析、校正适用范围:用于对每一零件能重复读数的测量系统。
测量和测量过程:1)赋值给具体事物以表示它们之间关于特殊特性的关系;2)赋值过程定义为测量过程;3)赋予的值定义为测量值;4)测量过程看成一个制造过程,它产生数字(数据)作为输出。
量具:任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。
测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。
测量变差:●多次测量结果变异程度;●常用σ表示;m●也可用测量过程过程变差R&R表示。
注:a.测量过程(数据)服从正态分布;b.R&R=5.15σm测量系统质量特性:●测量成本;●测量的容易程度;●最重要的是测量系统的统计特性。
常用统计特性:●重复性(针对同一人,反映量具本身情况)●再现性(针对不同人,反映测量方法情况)●稳定性●线性(针对不同尺寸的研究)注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。
测量系统对其统计特性的基本要求:●测量系统必须处于统计控制中;●测量系统的变异必须比制造过程的变异小;●变异应小于公差带;●测量精度应高于过程变异和公差带两者中精度较高者(十分之一);●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程变差和公差带中的较小者。
评价测量系统的三个问题:●有足够的分辨力;(根据产品特性的需要)●一定时间内统计上保持一致(稳定性);●在预期范围(被测项目)内一致可用于过程分析或过程控制。
(线性)评价测量系统的试验:●确定该测量系统是否具有满足要求的统计特性;●发现哪种环境因素对测量系统有显著的影响;●验证统计特性持续满足要求(R&R)。
程序文件要求:●示例;●选择待测项目和环境规范;●规定收集、记录、分析数据的详细说明;●关键术语和概念可操作的定义、相关标准说明、明确授权。
包括:a. 评定,b. 评定机构的职责,c. 对评定结果的处理方式及责任第二章分析/评定测量系统的方法测量系统变差的类型:●偏倚●重复性●再现性●稳定性●线性偏倚:●定义:值。
又称为“准确度”。
注:基准值可通过更高级别的测量设备进行多次测量取平均值。
●确定方法:1)在工具室或全尺寸检验设备上对一个基准件进行精密测量;2)让一位评价人用正被评价的量具测量同一零件至少10次;3)计算读数的平均值。
●偏倚原因:1)基准的误差;2)磨损的零件;3)制造的仪器尺寸不对;4)仪器测量非代表性的特性;5)仪器没有正确校准;6)评价人员使用仪器不正确。
●定义:次测量同一零件的同一特性时获得的测量值变差。
测量过程的重复性意味着测量系统自身的变异是一致的。
●确定方法:1)采用极差图;2)如果极差图受控,则仪器变差及测量过程在研究期间是一致的;*;3)重复性标准偏差或仪器变差距(σe)的估计为R/d2*或4.65 R;4)仪器变差或重复性将为5.15R/d2注(假定为两次重复测量,评价人数乘以零件数量大于15)5)此时代表正态分布测量结果的99%。
●极差图失控:1)调查识别为失控不一致性原因加以纠正;2)例外:当测量系统分辨率不足时。
●定义:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
●确定方法:1)确定每一评价人所有平均值;2)从评价人最大平均值减去最小的得到极差(R)来估计;3)再现性的标准偏差(σ0)估计为R/d2*;4)再现性为5.15R0/d2*或3.65 R;5)代表正态分布测量结果的99%。
定义:Array是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
零件间变差:●定义:――零件间固有的差异;――不包含测量的变差。
●确定方法:使用均值控制图:1)子组平均值反映出零件间的差异;2)零件平均值的控制限值以重复性误差为基础,而不是零件间的变差;3)没有一个子组平均值在这些限值之外,则零件间变差隐蔽在重复性中,测量变差支配着过程变差,如果这些零件用来代表过程变差,则此测量系统用于分析过程是不可接受的;4)如果越多的平均值落在限值之外,该测量越有用。
(注:非受控,50%以上为好;即:R图受控,X图大部分点在界外)●测量系统标准差:σm = (σe2+σ2)●零件之间标准偏差的确定:――可由测量系统研究的数据或由独立的过程能力研究决定。
1)确定每一零件平均值;2)找出样品平均值极差(RP);3)零件间标准偏差(σP )估计为RP/d2*;4)零件间变差PV为5.15RP /d2*或3.65 RP;代表正态分布的99%测量结果。
5)总过程变差标准偏差:σt = (σp2+σm2) ;则零件间标准偏差:σP =(σt2-σm2) ;6)与测量系统重复性及再现性相关的容差的百分比R&R为5.15*[σm/容差] 100;产品尺寸的数:[σp /σm]*1.41或1.41(PV/R&R)确定。
PV=5.15σp TV=5.15σT线性:●定义:是在量具预期的工作范围内,偏倚值的差值。
注:●在量程范围内,偏倚不是基准值的线性函数。
●不具备线性的测量系统不是合格的,需要校正。
●确定方法:1)在测量仪器的工作范围内选择一些零件;2)被选零件的偏倚由基准值与测量观察平均值之间的差值确定;3)最佳拟合偏倚平均值与基准值的直线的斜率乘以零件的过程变差是代表量具线性的指数;4)将线性乘以100然后除以过程变差得到“%线性”。
●非线性原因:1)在工作范围上限和下限内仪器没有正确校准;2)最小或最大值校准量具的误差;3)磨损的仪器;4)仪器固有的设计特性。
第三章 测量系统研究程序1. 准备工作:1) 先计划将要使用的方法;2) 确定评价人的数量、样品数量及重复读数:● 关键尺寸需要更多的零件和/或试验;● 大或重的零件可规定较少样品和较多试验;3) 从日常操作该仪器的人中挑选评价人;4) 样品必须从过程中选取并代表其整个工作范围;5) 仪器的分辨力应允许至少直接读取特性的预期过程变差的十分之一;6) 确保测量方法(即评价人和仪器)在按照规定的测量步骤测量特征尺寸。
2. 测量顺序:1) 测量应按照随机顺序;2) 评价人不应知道正在检查零件的编号;3) 研究人应知道正在检查零件的编号,并相应记下数据;即:评价人A ,零件1,第一次试验;评价人B ,零件2,第二次试验等;4) 读数就取至最小刻度的一半;5) 研究工作应由知其重要性且仔细认真的人员进行;6) 每一位评价人应采用相同的方法(包括所有步骤)来获得读数。
3. 计量型测量系统研究指南:A. 确定稳定性用指南:1) 获得一样本并确定其相对于可追溯标准的基准值;2) 定期(天、周)测量基准样品3~5次;3) 或控制图中标绘数据;4) 确定每个曲线的控制限并按标准曲线图判断失控或不稳定状态;5) 计算测量结果的标准偏差并与测量过程偏差相比较,确定测量系统稳定性是否适于应用。
B.确定偏倚用指南:独立样本法:1)获取一样本并确定其相对可追溯标准的基准值;2)让一位评价人以通常的方法测量该零件10次;3)计算这10次读数的平均值;4)通过该平均值减去基准值来计算偏倚:偏倚=观测平均值-基准值过程变差=6δ极差偏倚%=偏倚过程变差C.确定重复性和再现性用指南:常用方法:极差法、均值和极差法.方差分析法等。
极差法:极差法是一种改进的计量型量具研究方法,可迅速提供一个测量变异的近似值。
使用两名评价人和五个零件进行分析:例:零件评价人A 评价人B 极差(A-B)1 0.85 0.80 0.052 0.75 0.70 0.053 1.00 0.95 0.054 0.45 0.55 0.105 0.50 0.60 0.10平均极差(R)=∑Ri/5=0.35/5=0.07GR&R=5.15( R)/d2*=5.15(0.07)/1.19=0.303过程变差=0.40%GR&G=100[GR&G/过程变差]=100[0.303/0.40]=75.5%均值和极差法:均值和极差法是一种提供测量系统重复性和再现性估计的数学方法。
重复性比再现性大的原因:仪器需要维护;量具应重新设计来提高刚度;夹紧和检验点需要改进;存在过大的零件变差。
再现性比重复性大的原因:评价人需要更好的培训如何使用量具仪器和读数;量具刻度盘上的刻度不清楚;需要某种夹具帮助评价人提高使用量具的一致性。
研究程序:I.取等得包含10个零件的一个样本,代表过程变差的实际或预期范围;II.指定评价人A、B和C,并按1至10给零件编号(评价人不能看到数字);III.如果校准是正常程序中的一部分,则对量具进行校准;IV.让评价人A随机测量10个零件,由观测人记录结果填入第1行,让评价人B和C随机测量这10个零件,由观测人记录结果填入第6、11行,三人测量时应互相不看对方的数据;V.使用不同的随机顺序重复上述操作过程;VI.数值计算:VII.从第1、2、3行的最大值减去它们中的最小值;把结果记入第5行。
在第6、7和8行,11、12和13行重复这一步骤,并将结果记录在第10和15行;VIII.把填入第5、10和15行的数据变为正数;IX.将第5行的数据相加并除以零件数量,得到第一个评价人的测量平均极差Ra。
同样对第10和15行的数据进行处理得到Rb和Rc;X.将第5、10和15行的数据(Ra、Rb、Rc)转记到第17行,将它们相加并除以评价人数,将结果记为R(所有极差的平均值);XI.将R(平均值)记入第19和20行并与D3和D4相乘得到控制下限和上限。
注意:如果进行2次试验则,D3为零,D4为3.27。
单个极差的上限值(UCL)填入第19行。
小于7次测量的控制下限R极差值(LCL)等于0;RXII.使用原来的评价人和零件重复读取任何极差大于计算的UCL R的读数,或剔除那些值并重新计算平均值;XIII.将行(第1、2、3、6、7、8、11、12和13行)中的值相加。
把每行的和除以零件数并将结果填入表中最右边标有“平均值“的列内;XIV.将第1、2第3行的平均值相加除以试验次数。
结果填入第4行的Xa格内。
对第6,7和8;第11,12和13行重复这个过程,将结果分别填入第9和14行的Xb,Xc格内;XV.将第4、9和14行的平均值中最大和最小值填入第18行中适当的空格处,确定它们的差值,填入第18行X Diff处的空格内;XVI.将每个零件每次测量值相加并除以总的测量次数,填入第16行零件平均值的栏中;XVII.从最大的零件平均值减去最小的零件平均值,将结果填入第16行标有Rp的空格内;XVIII.将R,Xdiff 和Rp的计算值转填入报告表格的栏中;XIX.在表格左边标有“测量系统分析”的栏下进行计算;XX.在表格右边标有“总变差%”的栏下进行计算;XXI.检查结果确认没有产生错误。