精品课件-数字通信原理与技术-第4章
合集下载
通信原理(第四章)

27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理第四章ppt课件

通信原理第四章
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
《通信原理教程》(第3版)-樊昌信-编著----第四章--PPT课件

*
由 有 为了保持信号量噪比恒定,要求: x x 即要求: dx/dy x 或 dx/dy = kx, 式中 k =常数 由上式解出: 为了求c,将边界条件(当x = 1时,y = 1),代入上式,得到 k + c =0, 即求出: c = -k, 将c值代入上式,得到 由上式看出,为了保持信号量噪比恒定,在理论上要求压缩特性为对数特性 。 对于电话信号,ITU制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 - 13折线法和15折线法。
*
由抽样信号恢复原信号的方法 : 从频域看:当fs 2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。 从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如图所示。这些冲激响应之和就构成了原信号。 理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs 必须比 2fH 大较多。 例如,典型电话信号的最高频率限制在3400 Hz,而抽样频率采用8000 Hz。
*
4.4 脉冲编码调制 4.4.1脉冲编码调制(PCM)的基本原理 抽样 量化 编码 例:见右图 3.15 3 011 3.96 4 100 方框图:
*
A压缩率 式中,x为压缩器归一化输入电压; y为压缩器归一化输出电压; A为常数,决定压缩程度。 A律中的常数A不同,则压缩曲线的形状不同。它将特别影响小电压时的信号量噪比的大小。在实用中,选择A等于87.6。
*Hale Waihona Puke *求量化噪声功率的平均值Nq : 式中,sk为信号的抽样值,即s(kT) sq为量化信号值,即sq(kT) f(sk)为信号抽样值sk的概率密度 E表示求统计平均值 M为量化电平数 求信号sk的平均功率 : 由上两式可以求出平均量化信噪比。
精品课件-通信原理(第二版)(黄葆华)-第4章

y(t) kx(t td )
(4-3-1)
式中,k和td均为常数,k是衰减(或放大)系数,td为固定的 时延。
第4章 信道
对上式进行傅氏变换,得到
Y ( f ) F y(t) F kx(t td ) k X ( f )e j2 ftd
因此,传输特性为
H ( f ) Y ( f ) k e j2 ftd H ( f ) e j( f ) X( f )
第4章 信道
调制信道的共性如下: (1) 有一对(或多对)输入端和一对(或多对)输出端。 (2) 绝大多数的信道都是线性的,即满足线性叠加原理。 (3) 信号通过信道具有一定的延迟时间,而且它还会受到固 定的或时变的损耗。 (4) 即使没有信号输入,在信道的输出端仍可能有一定的噪 声输出。 根据上述共性,我们可以用一个二对端(或多对端)的时变线 性网络来表示调制信道,该网络称为调制信道模型,如图4.2.2所 示。
P(0 / 0) 1 P(1/ 0)
P(1/1) 1 P(0 /1)
Pe P(0)P(1/ 0) P(1)P(0 /1)
第4章 信道
图4.2.3 二进制编码信道模型
第4章 信道
4.3 恒参信道特点及其对信号传输的影响
1.无失真传输 无失真传输是指信号通过信道后波形形状并未发生改变, 即输出信号的波形与输入信号波形相比只是成比例地缩小(或 放大)和时间上的延迟。因此,无失真传输时,输入输出信号
(4-3-2)
式(4-3-2)表明,要保证信号通过信道不产生失真,信道传 输特性必须具备下列两个条件:
(1)幅频特性为一条水平直线,即|H(f)|=k(常数)。
第4章 信道
(2)相频特性是一条通过原点且斜率为2πtd的直线, 或者其群时延特性是一条水平直线(常数)。即
《通信原理》第04章模拟信号的数字化精品PPT课件

ห้องสมุดไป่ตู้
t
…
t
…
t
S(f)
( f ) Sk ( f ) Sˆ( f )
f
…
f
…
f
t
f
7
4.2.1 低通模拟信号的抽样
频谱混叠
S(f)
spectrum aliasing
f ( f )
f
Sk ( f )
…
…
f
8
4.2.1 低通模拟信号的抽样
ideal lowpass filter
抽样信号恢复低通滤波器
s(t)
s(t)
t
t
δT (t)
c (t)
t
t
sk(t)
sk(t)
t
t
3
4.2.1 低通模拟信号的抽样
band-limited signal
低通抽样定理 一个带宽有限信号 s (t) 的最高频率为 fH ,若
抽样频率 fs ≥ 2 fH ,则可以由抽样信号序列 sk (t) 无 失真地恢复原始信号 s (t) 。 说明
抽样频率与信号频率的关系曲线
fs 4B
3B
2B
B
O
B 2B 3B 4B 5B 6B
fL
15
4.2.2 带通模拟信号的抽样
带通抽样的频谱
fH = 4 kHz fL = 3 kHz B = 1 kHz
fs = 2 kHz
S(f)
−4B
0
4B
Sk( f )
bandpass sampling
f
−4fs −3fs −2fs −fs O fs 2fs 3fs 4fs
领域也有广泛应用
pulse amplitude modulation (PAM)
t
…
t
…
t
S(f)
( f ) Sk ( f ) Sˆ( f )
f
…
f
…
f
t
f
7
4.2.1 低通模拟信号的抽样
频谱混叠
S(f)
spectrum aliasing
f ( f )
f
Sk ( f )
…
…
f
8
4.2.1 低通模拟信号的抽样
ideal lowpass filter
抽样信号恢复低通滤波器
s(t)
s(t)
t
t
δT (t)
c (t)
t
t
sk(t)
sk(t)
t
t
3
4.2.1 低通模拟信号的抽样
band-limited signal
低通抽样定理 一个带宽有限信号 s (t) 的最高频率为 fH ,若
抽样频率 fs ≥ 2 fH ,则可以由抽样信号序列 sk (t) 无 失真地恢复原始信号 s (t) 。 说明
抽样频率与信号频率的关系曲线
fs 4B
3B
2B
B
O
B 2B 3B 4B 5B 6B
fL
15
4.2.2 带通模拟信号的抽样
带通抽样的频谱
fH = 4 kHz fL = 3 kHz B = 1 kHz
fs = 2 kHz
S(f)
−4B
0
4B
Sk( f )
bandpass sampling
f
−4fs −3fs −2fs −fs O fs 2fs 3fs 4fs
领域也有广泛应用
pulse amplitude modulation (PAM)
通信原理第4章 数字基带传输

其功率谱示意图如图(b)中实线所示。
2020/1/25
第4章 数字基带传输
16
4.3 数字基带传输系统及码间干扰
数字基带传输系统模化为
其中
d(t) bk (t kTs )
k
H( f ) HT ( f )HC ( f )HR ( f )
h(t) F 1[H ( f )] H ( f )e j2 ft df
14
4.2 数字基带信号的功率谱分析
【例4-2】试分析下图a)所示双极性全占空矩形脉冲序列 的功率谱。设“1”、“0”等概。
2020/1/25
第4章 数字基带传输
15
4.2 数字基带信号的功率谱分析
AMI码数字基带信号如下图(a)所示,“1”、“0”等 概,则其功率谱表达式为 P( f ) A2Ts Sa2 ( fTs ) sin2 ( fTs )
y(t) bk h(t kTs ) nR (t) k
研究表明,影响系统正确接收的 因素有两个: ① 码间干扰(Inter-Symbol
Interference—ISI)
② 信道中的噪声
2020/1/25
第4章 数字基带传输
17
4.3 数字基带传输系统及码间干扰
2020/1/25
第4章 数字基带传输
1
第4章 数字基带传输
将输入数字信号 变换成适合信道 传输的信号
低通型 信道
滤除噪声和 校正信道引 起的失真
输入
a
码型
发送
变换 b 滤波器
信道
c
定时脉冲
噪声 n(t)
接收 d
滤波器
取样 判决
2020/1/25
第4章 数字基带传输
16
4.3 数字基带传输系统及码间干扰
数字基带传输系统模化为
其中
d(t) bk (t kTs )
k
H( f ) HT ( f )HC ( f )HR ( f )
h(t) F 1[H ( f )] H ( f )e j2 ft df
14
4.2 数字基带信号的功率谱分析
【例4-2】试分析下图a)所示双极性全占空矩形脉冲序列 的功率谱。设“1”、“0”等概。
2020/1/25
第4章 数字基带传输
15
4.2 数字基带信号的功率谱分析
AMI码数字基带信号如下图(a)所示,“1”、“0”等 概,则其功率谱表达式为 P( f ) A2Ts Sa2 ( fTs ) sin2 ( fTs )
y(t) bk h(t kTs ) nR (t) k
研究表明,影响系统正确接收的 因素有两个: ① 码间干扰(Inter-Symbol
Interference—ISI)
② 信道中的噪声
2020/1/25
第4章 数字基带传输
17
4.3 数字基带传输系统及码间干扰
2020/1/25
第4章 数字基带传输
1
第4章 数字基带传输
将输入数字信号 变换成适合信道 传输的信号
低通型 信道
滤除噪声和 校正信道引 起的失真
输入
a
码型
发送
变换 b 滤波器
信道
c
定时脉冲
噪声 n(t)
接收 d
滤波器
取样 判决
数字通信原理第四章课件

B 1 Hz
τ
(4.6)
忽略第一零点以外的频率分量,则门函数的最高频率(截止频
率) f H 为 100 Hz 。由抽样定理可知,奈奎斯特抽样速率为
f s 2 f H 200 Hz
《通信原理课件》
宽平稳随机信号的抽样定理
对于一个携带信息的基带信号,可以视为随机基带信号。若 该随机基带信号是宽平稳的随机过程,则可以证明:一个宽 平稳的随机信号,当其功率谱密度函数限于 fH 以内时,若以 不大于1 2fH 秒的间隔对它进行抽样,则可得一随机样值序 列。如果让该随机样值序列通过一截止频率为 fH 的低通滤波 器,那么其输出信号与原来的宽平稳随机信号的均方差在统 计平均意义下为零。也就是说,从统计观点来看,对频带受 限的宽平稳随机信号进行抽样,也服从抽样定理。
➢在衡量量化器性能时,单看绝对误差的大小是不够的,因为
信号有大有小,同样大的量化噪声对大信号的影响可能不算
什么,但对小信号却可能造成严重的后果,因此在衡量量化
器性能时应看信号功率与量化噪声功率的相对大小,用量化
信噪比表示为
S E x2
Nq E m mq 2
(4.18)
其中,S 表示输入量化器的信号功率, Nq 表示量化噪声功率。
产生,称为量化误差,用 ekTs 表示:
ekTs = mq kTs mkTs
其中,Ts 表示抽样间隔。 mkTs 为抽样值, mq kTs 为量化值。
➢量化后的信号 mq kTs 是对原来信号 mkTs 的近似,最大的量化误差不超
过半个量化间隔 Δ/ 2 。当量化值选择适当时,随着量化级数的增加,可 以使量化值与抽样值的近似程度提高,即量化误差减小。
因此将PAM信号转换成PCM信号之前,将幅度连续的PAM信 号利用预先规定的有限个量化值(量化电平)来表示,这个 过程叫“量化”。
数字通讯原理第4章

并自动纠正错码。前向纠错方式的特点是无需反向信道,延
时小,实时性好,但译码设备比较复杂。随着编码理论和大 规模集成电路的发展,性能优良的实用编译码方法不断涌现, FEC方式得到了越来越广泛的应用。
第 4 章 信 道 编 码 (3) 混合纠错(HEC)。它是FEC方式和ARQ方式的结合, 即发送端发送具有检错和纠错能力的信息码元序列,接收端 检查错码情况,如果错码在其纠错能力范围内,则自动纠错;
BSC是无记忆的,它的输出仅与对应时刻的输入有关,而与 前后输入无关。BSC是研究二进制编码解码最简单、最常用的 模型。
第 4 章 信 道 编 码
0 输入 1 P
1-P P
0 输出
1-P
1
图 4-3
二进制对称信道(BSC)
第 4 章 信 道 编 码
2) 离散无记忆信道(DMC)
离散无记忆信道(DMC)模型如图4-4所示。假设信道的离散 输入是q元符号,即输入符号集由q个元素X={x0,x1,…,xq-1} 构成;信道的离散输出是Q元符号,即信道输出符号集由Q个 元素Y={y0 ,y1 ,…,yQ-1 }构成,且信道是无记忆的,则信道
如果错码超过了其纠错能力,但能检测出来,则通过反向信
道请求发送端重发。 由于HEC方式具有FEC和ARQ的优点, 可 实现较低的误码率, 因而得到了广泛的应用。
第 4 章 信 道 编 码 3. 信道编码分类 1) 线性码与非线性码
根据信息码元与监督码元之间的函数关系,信道编码可分
为线性码和非线性码。如果信息码元与监督码元之间的函数关
第 4 章 信 道 编 码 3) 检错码与纠错码 根据码的用途,信道编码可分为检错码和纠错码。检错码
以检错为目的,不一定能纠错;纠错码以纠错为目的,一定能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的方法。在频分多路复用中,信道的带宽被分成若干个相互不重 叠的频段,每路信号占用其中一个频段,因而在接收端可采用适 当的带通滤波器将多路信号分开,从而恢复出所需要的原始信号, 这个过程就是多路信号复接和分接的过程。
第4章 多路复用与数字复接
图4-1 (a)是频分多路复用的系统原理框图。设有N路相似的 消息信号f1(t),f2(t),…,fN(t),各消息的频谱范围为Wm。由 系统框图可见,在系统的输入端,首先要将各消息复接,各路输 入信号先通过低通滤波器(LPF), 以消除信号中的高频成分, 使 之变为带限信号。然后将这一带限信号分别对不同频率的载波进 行调制,N路载波ωc1,ωc2,…,ωcN,称为副载波。 若输入信 号是模拟信号,则调制方式可以是DSB-SC、AM、SSB、 VSB 或FM, 其中SSB方式频带利用率最高,若输入信号是数字信号, 则调制 方式可以是ASK、FSK、PSK等各种数字调制。
考虑两级调制,若将N个信号分成m个组,每组由n路单边带信 号组成, 每路调制在一个副载波上,则各组的副载波应当相同, 显然,这时选择的mn≥N。具有相同频谱宽度的m个已调信号再进 行第二次单边带调制,所用的m个主载波为ωa1, ωa2, , ωam , 这些载波间隔应大于nWm。最后将m组单边带信号合成为总信号fs(t) 送入信道传输。
第4章 多路复用与数字复接
在接收端,基本处理过程恰好相反。如果总信号是通过 BPF
滤出相应的支路信号,然后通过副载波解调,送低通滤波器 得到各路原始消息信号;如果总信号是经过主载波调制后送 到信道的,则先要用主解调器DEM把包括各路信号在内的总 信号从载波ωa上解调下来,然后就像上述无主载波调制信号 一样将总信号送入各路带通滤波器,完成原始信号的恢复。
实际的多路载波电话系统采用多级调制、分层结构形式, 图 4-3给出了实际系统的框图和频谱结构图。
第4章 多路复用与数字复接
… … …
基群
1 2
第一级
12
MU X
1
话 音 信道
2
5
第一级
MU X
(a)
超群
1 2 10
主群 第一级
MU X
图4-3 多路载波电 (b) 话音信号基带频谱图;
倍。N 频分
复用多用于模拟通信系统中,特别是在有线和微波通信系统
中应用广泛。
频分复用的缺点是设备庞大、复杂,路间不可避免地会
出现干扰,这是由系统中非线性因素引起的。
第4章 多路复用与数字复接
4.1.2 复级法FDM
当复用路数很大时,可以采用复级法实现FDM,通常利用多级 调制产生合成信号fs(t)。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
超 群1(L SB)
543 21
超 群2(USB)
1 2 3 45
1 2
1
1 2
1
1 2
1
1 2
1
1 2
1
312 kHz
552 kHz
1
1 2
1
1 2
1
1 2
1
1 2
1
1 2
60 kHz
300 kHz
(d)
图4-3 多路载波电话系统的组成及频谱结构图 (a) 多路载波电话系统原理框图; (b) 话音信号基带频谱图;
第4章 多路复用与数字复接
图4-1 直接法FDM系统的原理图及频谱图 (a)系统原理框图;(b)频谱图
第4章 多路复用与数字复接 在某些信道中,总信号fs(t)可以直接在信道中传输,这时所需的
WSSB=NWm+(N-1)Wg=Wm+(N-1)Ws
在无线信道中,如采用微波频分复用线路,总信号fs(t)还必须经 过二次调制,这时所使用的主载波ωa要比副载波ωcN高得多。 最 后,系统把载波为ωa的已调波信号送入信道发送出去。主载波调 制器MOD可以采用任意调制方式,视系统的具体情况而定, 通常 采用调频(FM)方式。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
由此可见,第一次复用是将12路话音信号合成为一个基 群;第二次调制是将5个基群复用为一个超群,共60路电话; 第三次再将10路超群复用为一个主群,共600路电话。如果需 要更多的电话,可以将多个主群再进行复用,组成超主群或 者巨群。每路电话信号的频率范围应在300~3400Hz,为了在 各路已调信号间留有保护间隔,每路电话信号取4000Hz作为 标准带宽。图4-3(a)是多路载波电话系统原理框图;4-3(b) 是话音信号基带频谱。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
0 4kHz f
(b)
基 群A(LSB)
基 群B(USB)
1 2
11 10
9
87
6
54
3
2
1
60 kHz
48 kHz
108 kHz
1
23
45
6
78
9
111 012
148 kHz
196 kHz
(c)
图4-3 多路载波电话系统的组成及频谱结构图 (a) 多路载波电话系统原理框图; (b) 话音信号基带频谱图;
频分多路复用就是利用各路信号在频域上互不重叠来区 分的,复用路数的多少主要取决于允许的带宽和费用,传输 的路数越多,则信号传输的有效性越高。
第4章 多路复用与数字复接
频分复用的优点是复用路数多,分路方便;多路信号可
同时在信道中传输,节省功率,当N路话音信号进行复用时,
总功率不是单个消息所需功率的N倍,而是
第4章 多路复用与数字复接
第4章 多路复用与数字复接
4.1 频分多路复用(FDM) 4.2 正交频分复用(OFDM) 4.3 时分多路复用(TDM) 4.4 波分多路复用(WDM) 4.5 码分多路复用(CDM) 4.6 多址通信技术
第4章 多路复用与数字复接
4.1 频分多路复用(FDM)
4.1.1 直接法FDM 当复用的路数不是很大时可用直接法实现FDM。 频分多路复用是指将多路信号按频率的不同进行复接并传输
复级法FDM的系统原理框图及频谱图如图4-2(a)、(b)所示。
第4章 多路复用与数字复接
图4-2 复级法FDM (a) 系统原理框图; (b) 频谱图
第4章 多路复用与数字复接
将直接法和复接法进行比较可知,两者最大容量均为N=mn, 但所用的载波数不同,直接法所用的载波数为mn,而复接法为 (m+n), 故可节约载波数为(mn-m-n)。 在两级复用系统中,复 级法需要(mn+m)个调制器, 而直接法需要mn个, 两级复用比单 级多用m个调制器。
第4章 多路复用与数字复接
图4-1 (a)是频分多路复用的系统原理框图。设有N路相似的 消息信号f1(t),f2(t),…,fN(t),各消息的频谱范围为Wm。由 系统框图可见,在系统的输入端,首先要将各消息复接,各路输 入信号先通过低通滤波器(LPF), 以消除信号中的高频成分, 使 之变为带限信号。然后将这一带限信号分别对不同频率的载波进 行调制,N路载波ωc1,ωc2,…,ωcN,称为副载波。 若输入信 号是模拟信号,则调制方式可以是DSB-SC、AM、SSB、 VSB 或FM, 其中SSB方式频带利用率最高,若输入信号是数字信号, 则调制 方式可以是ASK、FSK、PSK等各种数字调制。
考虑两级调制,若将N个信号分成m个组,每组由n路单边带信 号组成, 每路调制在一个副载波上,则各组的副载波应当相同, 显然,这时选择的mn≥N。具有相同频谱宽度的m个已调信号再进 行第二次单边带调制,所用的m个主载波为ωa1, ωa2, , ωam , 这些载波间隔应大于nWm。最后将m组单边带信号合成为总信号fs(t) 送入信道传输。
第4章 多路复用与数字复接
在接收端,基本处理过程恰好相反。如果总信号是通过 BPF
滤出相应的支路信号,然后通过副载波解调,送低通滤波器 得到各路原始消息信号;如果总信号是经过主载波调制后送 到信道的,则先要用主解调器DEM把包括各路信号在内的总 信号从载波ωa上解调下来,然后就像上述无主载波调制信号 一样将总信号送入各路带通滤波器,完成原始信号的恢复。
实际的多路载波电话系统采用多级调制、分层结构形式, 图 4-3给出了实际系统的框图和频谱结构图。
第4章 多路复用与数字复接
… … …
基群
1 2
第一级
12
MU X
1
话 音 信道
2
5
第一级
MU X
(a)
超群
1 2 10
主群 第一级
MU X
图4-3 多路载波电 (b) 话音信号基带频谱图;
倍。N 频分
复用多用于模拟通信系统中,特别是在有线和微波通信系统
中应用广泛。
频分复用的缺点是设备庞大、复杂,路间不可避免地会
出现干扰,这是由系统中非线性因素引起的。
第4章 多路复用与数字复接
4.1.2 复级法FDM
当复用路数很大时,可以采用复级法实现FDM,通常利用多级 调制产生合成信号fs(t)。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
超 群1(L SB)
543 21
超 群2(USB)
1 2 3 45
1 2
1
1 2
1
1 2
1
1 2
1
1 2
1
312 kHz
552 kHz
1
1 2
1
1 2
1
1 2
1
1 2
1
1 2
60 kHz
300 kHz
(d)
图4-3 多路载波电话系统的组成及频谱结构图 (a) 多路载波电话系统原理框图; (b) 话音信号基带频谱图;
第4章 多路复用与数字复接
图4-1 直接法FDM系统的原理图及频谱图 (a)系统原理框图;(b)频谱图
第4章 多路复用与数字复接 在某些信道中,总信号fs(t)可以直接在信道中传输,这时所需的
WSSB=NWm+(N-1)Wg=Wm+(N-1)Ws
在无线信道中,如采用微波频分复用线路,总信号fs(t)还必须经 过二次调制,这时所使用的主载波ωa要比副载波ωcN高得多。 最 后,系统把载波为ωa的已调波信号送入信道发送出去。主载波调 制器MOD可以采用任意调制方式,视系统的具体情况而定, 通常 采用调频(FM)方式。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
由此可见,第一次复用是将12路话音信号合成为一个基 群;第二次调制是将5个基群复用为一个超群,共60路电话; 第三次再将10路超群复用为一个主群,共600路电话。如果需 要更多的电话,可以将多个主群再进行复用,组成超主群或 者巨群。每路电话信号的频率范围应在300~3400Hz,为了在 各路已调信号间留有保护间隔,每路电话信号取4000Hz作为 标准带宽。图4-3(a)是多路载波电话系统原理框图;4-3(b) 是话音信号基带频谱。
(c) 基群信号的频谱配置; (d) 超群信号的频谱配置
第4章 多路复用与数字复接
0 4kHz f
(b)
基 群A(LSB)
基 群B(USB)
1 2
11 10
9
87
6
54
3
2
1
60 kHz
48 kHz
108 kHz
1
23
45
6
78
9
111 012
148 kHz
196 kHz
(c)
图4-3 多路载波电话系统的组成及频谱结构图 (a) 多路载波电话系统原理框图; (b) 话音信号基带频谱图;
频分多路复用就是利用各路信号在频域上互不重叠来区 分的,复用路数的多少主要取决于允许的带宽和费用,传输 的路数越多,则信号传输的有效性越高。
第4章 多路复用与数字复接
频分复用的优点是复用路数多,分路方便;多路信号可
同时在信道中传输,节省功率,当N路话音信号进行复用时,
总功率不是单个消息所需功率的N倍,而是
第4章 多路复用与数字复接
第4章 多路复用与数字复接
4.1 频分多路复用(FDM) 4.2 正交频分复用(OFDM) 4.3 时分多路复用(TDM) 4.4 波分多路复用(WDM) 4.5 码分多路复用(CDM) 4.6 多址通信技术
第4章 多路复用与数字复接
4.1 频分多路复用(FDM)
4.1.1 直接法FDM 当复用的路数不是很大时可用直接法实现FDM。 频分多路复用是指将多路信号按频率的不同进行复接并传输
复级法FDM的系统原理框图及频谱图如图4-2(a)、(b)所示。
第4章 多路复用与数字复接
图4-2 复级法FDM (a) 系统原理框图; (b) 频谱图
第4章 多路复用与数字复接
将直接法和复接法进行比较可知,两者最大容量均为N=mn, 但所用的载波数不同,直接法所用的载波数为mn,而复接法为 (m+n), 故可节约载波数为(mn-m-n)。 在两级复用系统中,复 级法需要(mn+m)个调制器, 而直接法需要mn个, 两级复用比单 级多用m个调制器。