07第七章 假设检验与方差分析 习题答案
梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
第七章假设检验

第七章 假设检验一、单项选择1.关于学生t 分布,下面哪种说法不正确( )。
A 要求随机样本B 适用于任何形式的总体分布C 可用于小样本D 可用样本标准差S 代替总体标准差σ2.二项分布的数学期望为( )。
A n(1-n)pB np(1- p)C npD n(1- p)。
3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( )。
A 大于0.5B -0.5C 1D 0.5。
4.假设检验的基本思想可用( )来解释。
A 中心极限定理B 置信区间C 小概率事件D 正态分布的性质5.成数与成数方差的关系是( )。
A 成数的数值越接近0,成数的方差越大B 成数的数值越接近0.3,成数的方差越大C 成数的数值越接近1,成数的方差越大D 成数的数值越接近0.5,成数的方差越大6.在统计检验中,那些不大可能的结果称为( )。
如果这类结果真的发生了,我们将否定假设。
A 检验统计量B 显著性水平C 零假设D 否定域7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Z α/2=1.96,则当零假设被否定时,犯第一类错误的概率是( )。
A 20%B 10%C 5%D .1%8.关于二项分布,下面不正确的描述是( )。
A 它为连续型随机变量的分布;B 它的图形当p =0.5时是对称的,当p ≠ 0.5时是非对称的,而当n 愈大时非对称性愈不明显;C 二项分布的数学期望)(X E =μ=np ,变异数)(XD =2σ=npq ;D 二项分布只受成功事件概率p 和试验次数n 两个参数变化的影响。
9.事件A 在一次试验中发生的概率为41,则在3次独立重复试验中,事件A 恰好发生2次的概率为( )。
A21 B 161 C 643 D 649 10.设离散型随机变量X ~),2(p B ,若数学期望4.2)(=X E ,方差44.1)(=X D ,则参数p n ,的值为( ).A 4=n ,p =0.6B 6=n ,p =0.4C 8=n ,p =0.3D 12=n ,p =0.2三、多项选择1.关于正态分布的性质,下面正确的说法是( )。
统计学习题答案 第7章 方差分析与试验设计

第7章 方差分析与试验设计——练习题(全免)7.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。
7.2 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。
85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设; 85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设; 85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。
7.3554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。
7.4 有5种不同品种的种子和4种不同的施肥方案,在20快同样面积的土地上,分别采用5种种子和4种施肥方案搭配进行试验,取得的收获量数据如下表:2592.32397.705.0=>=F F 种子(或05.00033.0=<=-αvalue P ),拒绝原假设。
4903.32047.905.0=<=F F 施肥方案(或05.00019.0=<=-αvalue P ),拒绝原假设。
7.5 9443.60727.005.0=<=F F 地区(或05.09311.0=>=-αvalue P ),不能拒绝原假设。
9443.61273.305.0=<=F F 包装方法(或05.01522.0=>=-αvalue P ),不能拒绝原假设。
7.6 1432.575.1005.0=>=F F 广告方案(或05.00104.0=<=-αvalue P ),拒绝原假设。
9874.5305.0=<=F F 广告媒体(或05.01340.0=>=-αvalue P ),不能拒绝原假设。
六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)A Z检验B T检验C双样本t检验D成对数据t检验正确答案:A1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10分)A正确B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10分)A正确B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10分)A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
07《卫生统计学》第七章_假设检验基础(6版) (1)

sd t
n 1
n
2 7950 8832500
10 1
10
528.336IU / g
d d d 795.0 4.785 sd s d n 528.336 10
确定概率P:按ν =9查t 界值表,得P<0.01 判断结果:在α=0.05的水准上,拒绝H0,接受H1,可以认为 维生素E缺乏组大鼠肝脏维生素A含量低于正常饲料组。
二、 假设检验的基本步骤
• 确定检验水准: 检验水准(size of a test),亦称为 显著性水准(significance level),符号 为α,即拒绝或不拒绝H0所要冒出错的风 险大小。一般取α=0.05或α= 0.01。
二、 假设检验的基本步骤
• 确定单侧检验(one sided test)还是双侧检验(two sided test): 如果根据现有的专业知识无法预先判断该病 病人的脉搏是高于还是低于一般健康成年男,两 种可能性都存在,研究者对这两种可能性同等关 心,那么,就是要推断两总体均数有无差别,应 当采用双侧检验;如果根据专业知识,已知病人 的脉搏不会低于一般人,或是研究者只关心病人 的脉搏是否高于一般,而不关心是否低于一般, 则应当采用单侧检验(one sided test)。
二、 假设检验的基本步骤
本例的资料符合t 检验的应用条件,已知 μ=72次/min , x =75.572次/min ,s=5.0次/min , n=25,代入公式计算t 值,结果:
x x 75.5 72.0 t 3.50 sx s n 5.0 25
3. 确定P值
第二节 t 检验
1. 一组样本资料的 t 检验
假设检验练习题-(答案)

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
作业题07 假设检验

第七章 假设检验 作业习题答案7.1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=.7.2 设1225,,,ξξξ 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题001:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c xx x x c μ=-≥ ,试决定常数c,使检验的显著性水平为0.057.3 设子样1225,,,ξξξ 取自正态总体20(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=> ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0.05,20σ=0.004,α=0.05,n=9,求μ=0.65时不犯第二类错误的概率。
7.4 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。
7.5 设某产品指标服从正态分布,它的根方差σ已知为150小时。
今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?7.6 某电器零件的平均电阻一直保持在2.64Ω,根方差保持在0.06Ω,改变加工工艺后,测得100个零件,其平均电阻为2.62Ω,根方差不变,问新工艺对此零件的电阻有无显著差异?去显著性水平α=0.01。
六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试•1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A•1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C•2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B•3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D•4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B•5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D•1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10分)A正确B错误正确答案:错误•2、在假设检验中,原假设和备择假设必须设置为一致的。
(10分)A正确B错误正确答案:错误•3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)A正确B错误正确答案:正确•4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)A正确B错误正确答案:正确。
六西格玛绿带:假设检验与方差分析

六西格玛绿带:假设检验与方差分析1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10 分)✔ AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A多选题1、基础统计学中的描述性统计可以分为(10 分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10 分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10 分)A将检验统计量的值与α水平的临界值进行比较。
B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。
C反映实际观测到的数据与原假设之间不一致的程度。
D被称为观察到的(或实测的)显著性水平。
正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10 分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10 分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D判断题1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。
(10 分)A正确✔ B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。
(10 分)A正确✔ B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。
(10 分)✔ A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。
(10分)✔ A正确B错误正确答案:正确。
概率论第七章 习题解答

第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。
方差分析习题与答案完整版

方差分析习题与答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映的是样本数据与其组平均值的差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B的离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4.单因素方差分析中,计算F统计量,其分子与分母的自由度各为()A r,nB r-n,n-rC r-1.n-rD n-r,r-1二、多项选择题1.应用方差分析的前提条件是()A 各个总体报从正态分布B 各个总体均值相等C 各个总体具有相同的方差D 各个总体均值不等E 各个总体相互独立2.若检验统计量F= 近似等于1,说明()A 组间方差中不包含系统因素的影响B 组内方差中不包含系统因素的影响C 组间方差中包含系统因素的影响D 方差分析中应拒绝原假设E方差分析中应接受原假设3.对于单因素方差分析的组内误差,下面哪种说法是对的()A 其自由度为r-1B 反映的是随机因素的影响C 反映的是随机因素和系统因素的影响D 组内误差一定小于组间误差E 其自由度为n-r4.为研究溶液温度对液体植物的影响,将水温控制在三个水平上,则称这种方差分析是()A 单因素方差分析B 双因素方差分析C 三因素方差分析D 单因素三水平方差分析E 双因素三水平方差分析三、填空题1.方差分析的目的是检验因变量y与自变量x是否,而实现这个目的的手段是通过的比较。
2.总变差平方和、组间变差平方和、组内变差平方和三者之间的关系是。
3.方差分析中的因变量是,自变量可以是,也可以是。
4.方差分析是通过对组间均值变异的分析研究判断多个是否相等的一种统计方法。
5.在试验设计中,把要考虑的那些可以控制的条件称为,把因素变化的多个等级状态称为。
第七章 方差分析

A.完全等价且F=t
B.完全等价且t=√F
C.t检验结果更准确
D.方差分析结果更准确
答案:B
6.无重复试验的方差分析中,一定有( )
A. MST=MSA+ MSB+MSE
B .SST≤SSA+SSB+SSE
C.MST≤MSA+MSB+MSE
D.SST=SSA+SSB+SSE
答案:D
7.单因素方差分析中的SSA表示( )
A.某因素效应与抽样误差综合结果
B.某因素效应大小
C.抽样误差大小
D.不可预见的误差
答案:A
8.在方差分析中,如果P≤a,则( )
A.各个总体均数全相等
B.至少有两个样本均数不等
C.至少有两个总体均数不等
D.各个样本均数不全相等
答案:C
34.在方差分析中,方差分析的目的是( )
A.分析各个正态总体的方差是否相同B.分析各个正态总体的标准差是否相同
C.分析来自正态总体各组的样本均值是否相同D.分析各个正态总体的均值是否相同E.无正确选项
答案:D
二、填空题
1.方差分析用于两个或多个总体均数间的比较、分析两个或多个因素的交互作用、_____________________的假设检验和方差齐性检验。
答案:C
9.方差分析的前提条件不包括()
A.独立性
B.正态性
C.均匀性
D.方差齐性
答案:C
10.方差分析的主要目的是
A.判断各总体是否存在方差
B.比较各总体的方差是否相等
C.分析各样本数据之间是否存在显著差异
第七章_假设检验与方差分析习题答案

第七章_假设检验与方差分析习题答案第七章假设检验与方差分析习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,进行统计检验时预先建立的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:通过对数据总变异进行分解,来检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,n x σμ0-,标准正态;),(),(2/2/+∞--∞n z n z σσαα2. 参数检验,非参数检验3. 弃真,存伪4. 方差5. 卡方, F6. 方差分析7. t ,u 8. n s x 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.0111.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和13.连续,离散14.总体均值15.因子,水平16.组间,组内17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B2.B 3. B 4.A 5. C 6. B 7. C 8. A 9. D 10. A 11. D 12. C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
统计学相关-概率论与数理统计第七章参考答案

2 00.05 , n Nhomakorabea9
,
2
(n
1)
2 0.95
(8)
2.733
拒绝域为: 2 2.733
又由题知: s2 0.00862
2 0
0.012
2
(n 1)s 2
2 0
8 0.0086 2 0.012
5.9186
2.733
2 未落入拒绝域,故接受 H 0 ,认为 0.01
10、(1)检验假设: H 0 : 3315 , H1 : 3315 这是 2 未知关于 的左边检验
拒绝 H 0 ,即认为 3315 (2) 检验假设: H 0 : 525 , H1 : 525 这是 未知,关于 2 的右边检验,则
检验统计量为: 2 (n 1)s 2
2 0
0.05 , n
30
,
2
(n
1)
2 0.05
(29)
42.557
拒绝域为: 2 42.557
又由题知: s2 4882
0.05 , n1 9 , n2 4 , t0.05 (n1 n2 2) t0.05 (11) 1.7959
拒绝域为: t
xy
sw
11 94
t 0.05
(11)
1.7959
由题,A 班、B 班考试成绩的样本均值和样本方差分别为:
x 80 , s12 110.25
y 65 , s22 174
s 27.28
0 200
t X 0 210.2 200 1.1217 1.8331
s / n 27.28 / 9
接受 H 0 ,即认为 200 。
6、检验假设: H 0 : 2 5000 , H1 : 2 5000 解:这是 未知,关于 2 的双边检验
概率论与数理统计及其应用课后答案(浙大版)第7章 假设检验

第7章 假设检验1,解:这是一个方差已知的正态总体的均值检验,属于右边检验问题,检验统计量为nx Z /18σ-=。
代入本题具体数据,得到8665.19/62.418874.20=-=Z 。
检验的临界值为645.105.0=Z 。
因为645.18665.1>=Z ,所以样本值落入拒绝域中,故拒绝原假设0H ,即认为该工人加工一工件所需时间显著地大于18分钟。
2,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /4.38-=。
代入本题具体数据,得到0844.115/5.74.385.40=-=t 。
检验的临界值为1448.2)14(025.0=t 。
因为1448.20844.1<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为平均摄取量显著地为38.4%。
3,解:这是一个方差未知的正态总体的均值检验,属于左边检验问题,检验统计量为ns x t /42.8-=。
代入本题具体数据,得到4.149/025.042.83.8-=-=t 。
检验的临界值为8965.2)8(01.0-=-t 。
因为8965.24.14-<-=t (或者说8965.24.14>=t ),所以样本值落入拒绝域中,故拒绝原假设0H ,即认为铜含量显著地小于8.42%。
4,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /64.72-=。
代入本题具体数据,得到0134.016/338.864.72668.72=-=t 。
检验的临界值为1315.2)15(025.0=t 。
因为1315.20134.0<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为该地区成年男子的平均体重为72.64公斤。
5,解:这是一个方差未知的正态总体的均值检验,属于右边检验问题,检验统计量为ns x t /200-=。
第七章 假设检验(F检验与卡方检验)

• F检验
– 方差齐性检验 – 两个独立样本的方差齐性检验
• F检验
– – – – – 提出待检验的假设H0和H1 S12 确定并计算统计量 F S 2 2 根据df1和df2值,对给定的显著性水平α 建立拒绝虚无假设的规则 作出统计决策
• 将检验统计量的值与拒绝规则所指定的临界值相比 较,确定是否拒绝虚无假设
i 1 • 则2服从自由度为n的2(n)分布,记为 2~2(n)。
xi2
2
n
2的特点
• (1) 2是一个正偏态分布,n越大,曲线越趋于对称(趋于 正态分布),n越小,曲线越不对称。 • (2) 2值都是正值。
• (3)若X1,X2,…,Xm相互独立,且Xi~ 2(ni),i=1,2,…,m,则 X=X1+X2+Xm~ 2(n),其中n=n1+n2+…+nm。
性别 男生 女生 合计 录取人数 10(9) 8(9) 18 未录取人数 80(81) 82(81) 162 合计 90 90 180
对平均数差异的显著性检验的理论前提是假设两 个总体的方差是相同,或至少没有显著性差异。 Z检验和t检验 对两个总体的方差是否有显著性差异所进行的检 验称为方差齐性检验,即必须进行F检验。
F分布
• 若有两个服从正态分布的总体N1(μ1,σ1),N2(μ2,σ2)。检 验σ1和σ2是否有显著性差异? • 在方差分析中,需要检验某个因素是否对指标有显著 的作用时需要F分布来解决。 • 设有两个总体X,Y,已知X~2(n1),Y~2(n2),并且 X与Y相互独立,则称随机变量F,所服从的分布为第 一自由度为n1,第二自由度为n2的F分布,记为F~F (n1,n2)。
• • 若自由度df=1,α=0.900,查2分布表可知P(2>0.02)=0.900 记20.900(1)=0.02
《假设检验习题答案》课件

论语(节选)(一)颜渊问仁。
子曰:"克己复礼为仁。
一日克己复礼,天下归仁焉。
为仁由己,而由人乎哉?"颜渊曰:"请问其目?"子曰:"非礼勿视,非礼勿听,非礼勿言,非礼勿动。
"颜渊曰:"回虽不敏,请事斯语矣。
" ——《论语·颜渊》翻译:颜渊问什么是仁。
孔子告诉他:"严格要求自己按照礼的要求去做就是仁。
一旦做到克己复礼,天下就回到仁上了。
修养仁德靠自己,难道还能依靠别人吗?"颜渊接着问:"请问实践仁德的具体途径?"孔子告诉他说:"不符合礼制的东西不看,不符合礼制的信息不听,不符合礼制的话不说,不符合礼制的事情不做。
"颜渊说:"我虽然不聪明,但我一定照着您的话去做。
(二)仲弓问仁。
子曰:"出门如见大宾,使民如承大祭。
己所不欲,勿施于人。
在邦无怨,在家无怨。
"仲弓曰:"雍虽不敏,请事斯语矣。
" ——《论语·颜渊》翻译:仲弓问什么是仁。
孔子告诉他:"出门在外要像接见贵宾那样敬慎,治理百姓要像承担重大祭祀那样严肃谨慎。
自己不喜欢做的事情,不要强加给别人。
这样在朝廷和家族中都不会招致怨恨。
"仲弓说:"我虽然不聪明,但我一定照着您的话做。
"(三)子贡问曰:“有一言而可以终身行之者乎?”子曰:“其恕乎!己所不欲,勿施于人。
”——《论语·卫灵公》翻译:子贡问孔子:“有没有一个字可以终身奉行的呢?”孔子回答说:“那就是‘恕’吧!自己不愿意的,不要强加给别人。
”(四)有子曰:“其为人也孝弟,而好犯上者,鲜矣;不好犯上,而好作乱者,未之有也。
君子务本,本立而道生。
孝弟也者,其为仁之本与?”——《论语·学而》翻译:有子说:”孝顺父母,顺从兄长,而喜好触犯上层统治者,这样的人是很少见的。
假设检验习题答案

单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。
方差分析习题与答案

统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映的是样本数据与其组平均值的差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B的离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4.单因素方差分析中,计算F统计量,其分子与分母的自由度各为()A r,nB r-n,n-rC r-1.n-rD n-r,r-1二、多项选择题1.应用方差分析的前提条件是()A 各个总体报从正态分布B 各个总体均值相等C 各个总体具有相同的方差D 各个总体均值不等E 各个总体相互独立2.若检验统计量F= 近似等于1,说明()A 组间方差中不包含系统因素的影响B 组内方差中不包含系统因素的影响C 组间方差中包含系统因素的影响D 方差分析中应拒绝原假设E方差分析中应接受原假设3.对于单因素方差分析的组内误差,下面哪种说法是对的?()A 其自由度为r-1B 反映的是随机因素的影响C 反映的是随机因素和系统因素的影响D 组内误差一定小于组间误差E 其自由度为n-r4.为研究溶液温度对液体植物的影响,将水温控制在三个水平上,则称这种方差分析是()A 单因素方差分析B 双因素方差分析C 三因素方差分析D 单因素三水平方差分析E 双因素三水平方差分析三、填空题1.方差分析的目的是检验因变量y与自变量x是否,而实现这个目的的手段是通过的比较。
2.总变差平方和、组间变差平方和、组内变差平方和三者之间的关系是。
3.方差分析中的因变量是,自变量可以是,也可以是。
4.方差分析是通过对组间均值变异的分析研究判断多个是否相等的一种统计方法。
5.在试验设计中,把要考虑的那些可以控制的条件称为,把因素变化的多个等级状态称为。
6.在单因子方差分析中,计算F统计量的分子是方差,分母是方差。
7.在单因子方差分析中,分子的自由度是,分母的自由度是。
四、计算题1.有三台机器生产规格相同的铝合金薄板,为检验三台机器生产薄板的厚度是否相同,随机从每台机器生产的薄板中各抽取了5个样品,测得结果如下:机器1:0.236,0.238,0.248,0.245,0.243机器2:0.257,0.253,0.255,0.254,0.261机器3:0.258,0.264,0.259,0.267,0.262问:三台机器生产薄板的厚度是否有显著差异?2.养鸡场要检验四种饲料配方对小鸡增重是否相同,用每一种饲料分别喂养了6只同一品种同时孵出的小鸡,共饲养了8周,每只鸡增重数据如下:(克)配方:370,420,450,490,500,450配方:490,380,400,390,500,410配方:330,340,400,380,470,360配方:410,480,400,420,380,410问:四种不同配方的饲料对小鸡增重是否相同?3.今有某种型号的电池三批,它们分别为一厂、二厂、三厂三个工厂所生产的。
第七章 方差分析

15
三、方差分析的原理
所有数据的误差称总平方和(
sum of squares for total),或总变异,记为SST。
SST xij x
c j 1 i 1
nj
2
例如:所抽取的20家专卖市场销售额之间的误差 平方和称总变异,反映全部观测值的离散程度。
SST=SS因子+SSE
商业区
超市位置
居民小区
写字楼
3个以上 470 500 390 430 420 530 240 270 320
2
第七章 方差分析
你是一名研究人员,会考虑从哪几方面进行分析呢?
你可以考虑单独分析超市位置的影响、竞争者数量的 影响,或是超市位置和竞争者数量搭配在一起的影响。
如果只考虑超市位置对销售额是否有显著的影响,实 际上也是要判断不同位置超市的销售均值是否相同。 若它们的均值相同,就意味着超市位置对销售额没有 显著影响;若均值不相同,则意味着超市位置对销售 额有显著的影响。 在这里超市位置和竞争者数量是定性自变量,销售额 售额是定量因变量。
2
…
N r ,
2
x11 , x12 ,...,x1n j x21 , x22 ,...,x2n j
…
xr1, xr 2 ,...,xrn j
x1 , s
2 1
x2 , s
2 2
…
xr , s
2 r
Back 20
二、单因素方差分析的步骤
Step1:建立假设
H0 : 1 2
r
16
三、方差分析的原理
将各类误差除以自身的自由度,以消除观测值对 其影响,得到均方(mean square),分别称为组 间方差或因子均方(MS因子)、组内方差或残差均方 (MSE)。 如果因子中不同水平对因变量没有影响,则组间 方差只有随机误差而没有系统误差,此时,组间 误差和组内误差应该很接近,两个比值接近1。 当H0为真时,两个比值可建构检验统计量F 进行 假设检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,n x σμ0-,标准正态; ),(),(2/2/+∞--∞n z n z σσαα2. 参数检验,非参数检验3. 弃真,存伪4. 方差5. 卡方, F6. 方差分析7. t ,u 8. n s x 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.0111.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和13.连续,离散14.总体均值15.因子,水平16.组间,组内17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B2.B 3. B 4.A 5. C 6. B 7. C 8. A 9. D 10. A 11. D 12. C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × )样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
3. 假设检验一般有哪几个步骤?【答题要点】提出假设,给定显著性水平;计算统计量;计算拒绝域,做出决策七、论述题根据题意回答要点,并适当从理论上进行阐述。
1. 小概率原则与假设检验是什么关系?【答题要点】假设检验的基本思想是利用概率意义下的“反证法”来拒绝或接受原假设,“反证法”的理论依据是小概率原理:即小概率事件在一次试验中不可能发生。
通过抽样,以样本资料为依据进行假设检验,由于样本的取得可以看作是一次试验,通过判断由样本构成的统计量是否为小概率事件,来判断假设是否成立。
2. 方差分析的基本思想是什么?【答题要点】将全部观察值总的离均差平方和及自由度分解为两个或多个部分除随机误差外,其余每个部分的变异可由某个因素的作用加以解释通过比较不同来源变异的均方,借助F分布做出统计推断,从而了解该因素对观察指标有无影响。
八、案例分析把学习过的统计学原理与教科书中的案例内容结合起来,讨论案例后提出的问题。
案例分析:《现金股利与上市公司未来收益的实证分析》(见梁前德主编的《统计学》(第二版),高等教育出版社,2008年版)问题1. 作者是如何运用假设检验方法论证现金股利与上市公司未来收益的?【答题要点】首先将股利进行分组,然后利用单因素方差分析法,来检验上市公司未来收益是否在各组之间有显著差异。
问题2. 结合案例内容,你认为应该怎样科学构建统计实证分析框架?【答题要点】结合专业背景知识、科学的选取指标是实证分析的基础,在此基础上选择正确的抽样方法,以降低抽样推断带来的误差,最后是基于具体问题,选择合适的统计分析方法。
问题3. 案例中采用了哪几种统计检验方法?与教材中的内容有何异同?【答题要点】案例中采用了两样本方差齐性的F 检验、两样本的异方差t 检验、单因素方差分析两样本等方差t 检验,以及成对样本的均值检验。
案例中,在应用统计分析方法之前,都检验了相应统计分析方法的前提条件是否得到满足,而不是想当然的选择某种统计方法。
九、能力训练根据提供的训练资料和相应的训练要求,用已经学过的统计学基本原理和统计方法,分析一些具体的社会经济问题,以加深理解假设检验与方差分析的方法及其运用。
训练目标1掌握总体均值的假设检验方法。
【解答】【训练资料1】(1)提出假设5.0:5.0:10≠↔=μμH H(2)计算统计量u=0.219(3)做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即认为包装机工作正常。
【解答】【训练资料2】(1)提出假设200:200:10>↔≤μμH H(2)计算统计量t=2.62(3)做出决策:给定显著性水平0.05,拒绝域为),83.1(∞,所以拒绝零假设,即电子元件的平均值有所提高。
【解答】【训练资料3】(1)提出假设5.32:5.32:10≠↔=μμH H(2)计算统计量u=-3.06(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以拒绝零假设,即认为这批零件的平均长度不是32.50mm 。
【解答】【训练资料4】(1)提出假设74:74:10≠↔=μμH H(2)计算统计量t=-4.65(3) 做出决策:给定显著性水平0.05,拒绝域为),13.2()13.2,(∞--∞ ,所以拒绝零假设,即经常参加体育锻炼的中学生心脏功能有显著差异。
【解答】【训练资料5】(1)提出假设250:250:10≠↔=μμH H(2)计算统计量u=3.33(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以拒绝零假设,即认为该批果酱不符合标准。
【解答】【训练资料6】(1)提出假设0:0:10≠↔=μμH H(2)计算统计量t=2.327(3) 做出决策:给定显著性水平0.05,拒绝域为),14.2()14.2,(∞--∞ ,所以拒绝零假设,即孪生兄弟先后出生的体重显著不同。
【解答】【训练资料7】(1)提出假设211210::μμμμ≠↔=H H(2)计算统计量u=0.97(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即使用原料A 与使用原料B 生产的产品重量的均值相等。
【解答】【训练资料8】(1)提出假设211210::μμμμ≠↔=H H(2)计算统计量u=0.268(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即两机床加工的零件外径无显著差异。
训练目标2掌握总体成数的假设检验方法。
【解答】【训练资料1】(1)提出假设95.0:95.0:10≠↔=P H P H(2)计算统计量u=1.03(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即该企业全部产品的合格率达到了95%。
【解答】【训练资料2】(1)提出假设6.0:6.0:10>↔≤P H P H(2)计算统计量u=0.41(3) 做出决策:给定显著性水平0.05,拒绝域为),645.1()645.1,(∞--∞ ,所以不拒绝零假设,即彩电的居民家庭拥有率没有增长。
【解答】【训练资料3】1. 提出假设98.0:98.0:10≠↔=P H P H计算统计量u=0.09做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即认为推销员的话真实。
2. 显著性水平α应该大,从而犯第二类错误的概率就小,损失就越小。
【解答】【训练资料4】(1)提出假设211210::μμμμ≠↔=H H(2)平均含脂率差为0.006,统计量t=0.058(3) 做出决策:给定显著性水平0.05,拒绝域为),1.2()1.2,(∞--∞ ,所以不拒绝零假设,即处理前后的含脂率无显著变化。
【解答】【训练资料5】(1)提出假设211210::μμμμ<↔≥H H(2)计算统计量t=-4.65(3) 做出决策:给定显著性水平0.05,拒绝域为),73.1()73.1,(∞--∞ ,所以拒绝零假设,即乙方案比率高于甲方案。
训练目标3掌握总体方差的假设检验方法。
【解答】【训练资料1】(1)提出假设2221122210::σσσσ≠↔=H H(2)计算统计量F=1.34(3) 做出决策:给定显著性水平0.05,拒绝域为),2.2(∞,所以不拒绝零假设,即两总体的方差相等。
【解答】【训练资料2】(1)提出假设64:64:2120=↔=σσH H(2)计算统计量65.102=χ(3) 做出决策:给定显著性水平0.05,拒绝域为),023.19()7.2,(∞-∞ ,所以不拒绝零假设,即车间铜丝折断力的方差是64。
【解答】【训练资料3】(1)提出假设2221122210::σσσσ≠↔=H H(2)计算统计量F=1.07(3) 做出决策:给定显著性水平0.05,拒绝域为),535.17()18.2,(∞-∞ ,所以不拒绝零假设,即在70℃和80℃的条件下针织品断裂强度没有差别。
【解答】【训练资料4】(1)提出假设2.1:2.1:10>↔≤σσH H(2)计算统计量94.452=χ(3) 做出决策:给定显著性水平0.05,拒绝域为),261.7(∞,所以拒绝零假设,即纱的均匀度变劣。
【解答】【训练资料5】(1)提出假设2:2:10>↔≤σσH H(2)计算统计量102=χ(3) 做出决策:给定显著性水平0.05,拒绝域为),348.9()216.0,(∞-∞ ,所以拒绝零假设,即熔点的标准差大于2℃。