冀教版七年级数学下册 图形的平移教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形的平移》教案

第1课时

教学目标

1、经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.

2、通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质.

3、通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美,体会美的价值所在,进而追求美并创造美.

教学重难点

重点:探索图形平移的主要特征和基本性质.

难点:从生活中的平移现象中概括出平移的特征.

教学过程

一、创设情境

通过多媒体展示现实生活中平移的具体实例,展示画面:

(1)电视机在传送带上移动的过程.

(2)手扶电梯上人的移动的过程.

教师提问:

(1)你能发现传送带上的电视机、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?

(2)在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其它部位向什么方向移动?移动了多少距离?

(3)如果把移动前后的同一台电视机屏幕分别记为四边形和四边形,那么四边形与四边形的形状、大小是否相同?

二、探求新知

根据上述分析,你能说明什么样的图形运动称为平移?

在学生发现和归纳的基础上板书:

平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.

同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化.

例题、如图所示,△ABE 沿射线XY 的方向平移一定距离后成为△CDF .找出图中存在的平行且相等的三条线段和一组全等三角形.

引导学生从“对应点所连线段”、“对应线段”两个方面找平行且相等的线段.

三、课堂练习

图中的四个小三角形都是等边三角形,边长为2cm ,能通过平移△ABC 得到其它三角形吗?若能,请画出平移的方向,并说出平移的距离.

四、图案欣赏

将搜集来的一些图案通过多媒体展示出来,让学生感受“平移”给我们带来的美.

第2课时

教学目标

1、简单的平移作图.

2、确定一个图形平移后的位置的条件.

3、经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力.

4、能按要求作出简单平面图形平移后的图形.

教学重难点

重点:能按要求作出简单平面图形平移后的图形.

难点:简单平面图形平移后的图形的作法.

教学过程

一、巧设情景问题,引入课题

[师]通过上节课的学习,我们知道了生活中的许多现象属于平移,哪位同学能说一下什么是平移呢?平移的基本性质是什么?

[生]在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.

平移的基本性质是:

经过平移,对应线段,对应角分别相等,对应点所连的线段平行且相等.

[师]很好,了解了平移的涵义及其基本性质后,能否把一些简单的平面图形进行平移呢?我们这节课就来研究:简单的平移作图.

二、讲授新课

[师]下面来看大屏幕

如图,经过平移,线段AB的端点A移到了点D,你能作出线段AB平移后的图形吗?与同伴交流.

[生甲]因为经过平移,线段AB的端点A移到了点D,所以点A与点D是对应点;又因为对应点所连的线段平行且相等,所以连结AD,然后过点B作线段BC与线段AD平行且相等,最后连结CD,则线段CD就是线段AB平移后的图形.

[生乙]因为平移不改变图形的形状和大小,所以在作线段AB平移后的图形时,可过点D作DC∥AB,且DC=AB,则线段DC就是线段AB平移后的图形.

[师]很好,这个题实际是平移的基本性质的直接应用.由此可知:按要求进行平移一些简单的平面图形时,一般都是应用平移的基本性质进行的.

下面我们通过例题来进一步说明如何平移一些简单的平面图形.

[例1]经过平移,△ABC的顶点A移到了点D,(如图),作出平移后的三角形.

分析:设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.

注意:作图时可用尺规进行作图,也可用三角板与直尺进行作图.

解:如上图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连结D E、DF、EF,则△DEF就是△ABC平移后的图形.

[师]同学们想一想,议一议:

(1)本题还有没有其他方法作出如图所示的△DEF呢?

[生甲]过点D分别作出与AB、AC平行且相等的线段DE、DF,连接EF,则△DEF就是所要求作的三角形.

[生乙]过点B作BE∥AD且BE=AD,然后分别以D、E为圆心,以线段AC、BC的长为

半径画弧,两弧交于F点,连结EF、DF,则△DEF就是所要求作的三角形.

[师]同学们找到了“△ABC平移后的图形△DEF的其他作法”.很好,现在大家来想一想,分组讨论.

(2)确定一个图形平移后的位置,除需要原来的位置外,还需要什么条件?

[生甲]确定一个图形平移后的位置,除需要原来的位置外,还需要平移的距离.

[生乙]还需要方向,要弄清一个图形是往左平移还是往右平移,是往上平移,还是往下平移.

[师]完全正确,这就是确定一个图形平移后的位置的条件:

1)图形原来所在的位置.

2)图形平移的方向.

3)图形平移的距离.

接下来我们来平移一个图形:

[例2]如图,将字母A按箭头所指的方向平移3cm,作出平移后的图形.

[师生共析]平移字母A的条件:字母A的位置,平移的方向——箭头所指,平移的距离是3cm,三个条件都具备,所以可以确定字母A平移后的位置.那如何作图呢?一般情况下,画图时,先确定点,然后就可以作出所要求的图形.因此本题可以在原图形上找几个能反映本图形的关键的点,根据“经过平移对应点所连的线段平行且相等”,确定出这几个关键点的对应点,然后按原来的方式连接,即可得到字母A平移后的图形.

解:在字母A上,找出关键的5个点(如图所示),分别过这5个点按箭头所指的方向作5条长3cm的线段,将所作线段的另5个端点按原来的方式连接,即可得到字母A平移后的图形.[师]在这个例题的解题过程中,通过确定几个关键点平移后的位置,得到字母A平移

相关文档
最新文档