灰色预测模型论文

合集下载

数学建模全国赛07年A题一等奖论文

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。

首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。

在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。

然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。

与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。

为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。

在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。

在模型求解的过程中,还对政府部门提出了一些有针对性的建议。

此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。

接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。

在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。

基于灰色GM(1,N)模型我国火电行业SO2排放量预测研究论文

基于灰色GM(1,N)模型我国火电行业SO2排放量预测研究论文

基于灰色GM(1,N)模型的我国火电行业SO2排放量预测研究摘要:火电厂的so2排放量受到各种因素的影响,本文利用各种影响因素与历史年份的so2排放数据建立关系,应用灰色gm(1,n)预测模型对我国火电行业so2排放量进行了预测,是对我国火电行业so2排放量进行预测的一种较为合理、科学的方法。

关键词:火电行业; so2排放量;灰色gm(1,n)模型中图分类号:x32 文献标识码:a 文章编号:1006-3315(2011)7-173-001一、前言根据国家有关统计资料表明,我国工业生产过程中所产生的so2占全国总的so2排放量基本在80%以上,而我国火电行业每年产生的so2又占工业行业总的so2排放量的50%以上,属于我国工业行业中的重污染行业,为防止so2对大气环境、人体健康、建筑、水体等社会生活中各个方面产生危害,对火电行业产生的so2进行重点控制就显得尤为重要。

掌握我国火电行业so2排放量状况对于修订排放标准和制定so2控制战略显得尤为重要。

因此要掌握我国火电行业so2的排放规律,摸清我国火电so2排放清单,为制定so2的排放控制提供理论支持和数据支持。

由于技术条件、工艺等各方面的限制,so2排放是混合在发电机组产生的烟气中,不能像发电量、燃煤量等一样进行简单计量,影响so2排放量的因素既有已知的信息,但更多的是一些未知的影响因素,因此,预测so2排放属于典型的“小样本”、“贫信息”灰色系统问题,采用灰色预测模型对排放量进行预测可取得较为良好的效果。

2.基于灰色gm(1,n)模型的我国火电行业so2排放量预测影响我国火电行业so2排放的主要因素或与so2排放量有密切关系的因素有:火电燃煤量、火电装机容量、火电发电量、国内生产总值(gdp)。

在灰色预测模型中,用x1表示火电行业的so2排放量,分别用x2,x3,x4,x5这四个序列来表示上述的影响因素。

预测的样本选取我国从2001年至2009年的我国火电行业的燃料用煤量、火电行业的装机容量、火力发电行业的发电量以及我国的国内生产总值的数据作为基础数据。

基于财务杠杆系数灰色灾变预测财务预警论文

基于财务杠杆系数灰色灾变预测财务预警论文

基于财务杠杆系数灰色灾变预测的财务预警分析摘要:由于受各种难以预料或控制因素的影响,企业的财务风险不可避免。

通过建立财务预警模型可以对企业的财务风险进行有效的防范。

而企业财务预警模型的构建,其方法及选用的指标体系是多种多样的。

本文从财务杠杆系数出发,通过运用灰色灾变预测的方法,结合实例对企业的财务风险进行预警分析。

结果证明,此方法具有很好的可行性和实用性。

关键词:财务杠杆系数灰色灾变预测财务预警在市场变化的不确定性及竞争日益激烈的环境下,由于财务的复杂性,企业的财务风险成为一种客观存在。

而企业财务活动的组织和管理过程中的某一方面或某个环节的问题,都可能促使这种风险转变为损失,导致企业发生财务危机。

因此,对企业财务状况进行预警分析并进行有效的防范,对规避企业财务风险,从而提高企业经济效益和竞争力。

一、财务预警模型的构造本文选择财务杠杆系数作为分析的财务指标,并根据灰色预测方法只需较少数据即可建立分析模型以及可处理财务风险无规则概率分布的特点,运用灰色灾变预测方法对企业的财务风险进行预警分析。

(一)财务杠杆系数企业可以通过借款或其他方式增加资本,只要债务成本低于这些资本投入的收益,财务杠杆就可以提高企业的资本收益率,但与此同时财务杠杆也提高了企业的财务风险。

资本结构决策需要在杠杆收益与其相关的风险之间进行合理的权衡。

(二)灰色灾变预测灰色灾变预测属于灰色理论中的一个部分,主要针对“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性问题,运用数学方法进行描述出来。

主要任务是利用模型预测出下一个或几个异常值出现的时刻,以使人们提前做好防备,采取对策,减少损失。

灰色灾变预测的准确率较高、实用性也较强,目前被大量应用于预测实践当中。

二、实证分析以下结合具体实例进行分析,该企业为河南省某一著名企业,企业近年来发展势头良好,做出了不殊的成绩。

以下数据来源于集团公司各年中期和年度财务报告,数据为集团母子公司的合并后数据。

中国人口增长模型(灰色预测模型)

中国人口增长模型(灰色预测模型)

中国人口增长模型论文摘要:人口问题涉及人口质量和人口结构等因素,是一个复杂的系统工程,稳定的人口发展直接关系到我国社会、经济的可持续发展。

如何从数量上准确的预测人口数量以及各种人口指标,对我国制定与社会经济发展协调的健康人口发展计划有着决定性的意义。

近年来我国的人口发展出现了许多新的特点,这些都影响着我国人口的增长。

鉴此,本文依据灰色预测方法和年龄移算理论,基于人口普查统计数据,从人口系统发展机理上展开讨论。

首先根据灰色预测理论,建立了一级的灰色预测模型,再将近几年我国的人口数量带入模型,便得到未来较短时间内我国的人口数量。

所得结果为我国总人口将于2006年、2007,2008,2009,2010年分别达到13.1495,13.2212,13.2909,13.3587,13.4246亿人。

然后分析人口发展方程中按年龄死亡率及生育模式等参数函数的内在变化规律,及其对总人口的影响,建立了莱斯利主模型,并在此基础上针对各参数函数的不同特点,建立了生育模型和死亡模型等子模型。

在将所得子模型和主模型结合,依据当前人口结构现状对我国的人口做了长期的预测。

所得结果是我国总人口将于2010年、2020年、2030年分别达到13.51058,14.38295,14.78661亿人与国家发展战略报告数据一致。

最后对所建模型的优缺点进行了客观的评价。

一、问题的提出1.1 问题:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。

2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。

关于中国人口问题已有多方面的研究,并积累了大量数据资料。

试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。

灰色预测模型在公路货运量预测中应用论文

灰色预测模型在公路货运量预测中应用论文

灰色预测模型在公路货运量预测中的应用摘要:为了提高公路运输行业的管理水平,为设计、修建货运场站或现代物流中心提供数据依据和决策支持,就必须要准确的预测公路货运量。

在运输业今年运量统计的基础上,利用灰色预测理论的gm(1,1)模型,给出了gm(1,1)模型的详细步骤,并以公路货运量历年数据预测为例进行了实际应用。

可有效处理小样本、贫信息的不确定性,并在一定预测时段内有良好的预测精度和实用性。

关键词:公路货运量 gm(1,1)模型预测1.现有的预测方法当前普遍存在的对于社会经济的预测方法主要有时间序列法、回归分析法、灰色预测法、指数平滑法、神经网络预测法以及将不同的预测方法结合起来,按照提供信息量的多少和精度的不同,分别取不同的权重形成的组合预测模型。

货运量作为交通运输的一个重要评价指标,对于货运量的预测可以采取不同的方法进行预测,不同的方法提供的有价值信息各不相同,预测精度也各异。

本文主要采用灰色预测模型对公路货运量进行预测。

2.灰色理论与灰色预测模型由于环境对系统的干扰,系统信息中原始数据序列往往呈现离乱情况,离乱数列即为灰色数列或称灰色过程,灰色理论利用那些较少的或不确切的表示系统行为特征的原始数据序列作生成变换后建立微分方程,建立的模型称为灰色模型(greymodel),简称gm模型。

gm(1,1)表示一阶单个变量微分方程,是最常用的灰色预测模型,其形式为:式中,x=x(t),u和b为待估参数。

这个微分方程的解是:3.灰色预测模型的应用3.1灰色模型建模机理灰色系统建模是利用离散的时间序列数据建立近似连续的微分方程模型。

在这一过程中,累加生成运算(ago)是基本手段,其生成函数是灰色建模、预测的基础。

来自所收集的描述过去、现在状况的数据,是构造系统数学模型的依据。

在贫信息情况下,用概率统计方法寻求其统计规律,或用模糊统计方法寻求其隶属规律是困难的,但对于离散过程,在一定程度上相对强化确定性(规律性)和弱化不确定性是可能的,其途径就是通过累加生成运算得到生成时间序列x。

基于灰色模型的中国能源需求预测

基于灰色模型的中国能源需求预测
梅、 魏一 鸣等 (04年 ) 情 景分析 法 和投入 产 出法 相 结合 , 20 将 建立 了基 于投 入产 出 的能 源模 型 和能 源 强度
情景分析模型。他们的研究表明: 对能源需求量影响较大的因素是人 口因素和收人 因素 , 对能源强度影 响最大的因素是科技进步。张明慧、 李永峰(04年) 20 对引入能源 、 资本、 就业人数 、 D G P的对数生产 函数
设 节约 和谐社 会具 有重要 的战略意 义 。
0 引 言
2 0世纪 7 年代以前 , 0 国外学者在采用单 目 函数能源模型对能源需求进行预测和规划中, 标 往往简化 了很多 条件 , 并把 一些 不确 定 因素加 以确定 化 , 导致 预 测结 果 的失 败 ¨ 。2 J 0世纪 7 0年 代 , 尼斯 ・ 多 丹 梅 斯 ( ens .M ao s [等人 以整个世界为研究对象 , D n iL edw ) 2 J 建立了所谓的“ 世界末 日 型” 认为“ 模 , 如果维持 人口增长率和资源消耗速度不变的话 , 世界资源将会耗竭 ” usn Jr no (94年 ) Brd(9 5 。H do 和 o es 17 g n 、 e t17 n 年)Jr no (9 1 等人在 C rt sn 17 、 g s 18 年) oe n h s ne (93年) ie 建立的模 型基础上进行深入研究 , 对其进行 了不 同 程度的补充和修正 。G f (96年 ) J rf 17 ii n 建立 了基于截 面组数 据 的能 源需求模 型E 。B es c (9 1 4 ent k 18 ] o 年) K ui 18 年) Bp (94 )Pos (9 5 ) 、or (9 3 s 、op 18 年 、r e 18 年 等人 基于经济学 的需求理论 , sr 通过分析影响能

灰色模型在社会经济预测中的应用

灰色模型在社会经济预测中的应用

根据 ( 可 以建立 白化形式微分方程 , 1 并解得 G 11 M( ,)
模型 。
第四步 : 求解发 展灰数 。和内生控 制灰数 , n和 设
灰色系统模型建模是利 用离散 的时间序列 数据建 立近 似( 灰色) 连续的微分模 型 , 在这一过程 中 , 累加生成 ( G A O) 是基本手段 , 其生成 函数是灰色建模 、 预测的基础 。 ( ( ) 自所 收集 的描述 过去 、 0 k来 现在状 况 的数据。但

‘( +1 ’ )=[ ‘ ( )一 L] ‘ 上 。 1 上 e + 第六步 : 求还原 函数
‘ ( +1 。 J )=(一 ) ‘ ( )一 ) 一 i } 口 ( 。 1 e
() 9
() J 。生成时序与原始 时序 相 比, } 明显 的波动和随机性 被弱
() 5
标, , 为此 本论文采用国民生产总值作为主要 的经济指标 。
3 灰 色 系统
第二步 : 将不 同年份 ( 累加得到新的数列 ( : 。 即
‘ =∑ ‘ ( ’ 。 m)

美国控制论专家 N wee 和英国科学 家 A i o曾用 白 .i r n .s h
i , , '. … . ( ) =12 3 -… N 6
盒和黑盒来称呼 内部信息未知的对象。从此 以后 , 们就常 人 用颜色深浅来表示系统信息的完备程度 , 内部特性已知的 把
信息系统称为白色系统 ; 把未知 的或非确知 的信息系统称为 黑色系统 ; 即含有已知 的、 又含有未 知的或 非确定 的信 息系
阶线 性 微 分 方 程 :
变化 , 随着经济 的不断发展 和就业人 数 的增 加 , 区域 性交通 需求也必然稳定增 长 , 对社 会经济 预测 的方 法很多 , 了使 为

基于模式搜索法改进单桩极限承载力灰色预测模型论文

基于模式搜索法改进单桩极限承载力灰色预测模型论文

基于模式搜索法改进的单桩极限承载力灰色预测模型摘要:根据拉格朗日中值定理建立了变权背景值构造形式,背景值权值采用具有全局寻优能力的模式搜索法求解,工程实例应用结果显示基于模式搜索法改进的单桩极限承载力灰色预测模型提高了预测精度,具有更好的工程应用价值。

abstract: according to the lagrange’s mean value theorem, the paper established variable weight background value structure form. the background value right value uses pattern search method of global optimization ability to solve, engineering example application results show that the improved single pile limit bearing capacity grey forecasting model based on pattern search method improves the accuracy of the predictions, and has better applied value in engineering.关键词:极限承载力;灰色预测模型key words: ultimate bearing capacity;grey forecasting model中图分类号:tu71 文献标识码:a 文章编号:1006-4311(2012)32-0094-020 引言目前应用最广泛的是单桩极限承载力非等步长灰色预测模型,但是该模型是以紧邻均值为背景值进行参数估计的,这就造成了该模型的白化方程和灰微分方程达不到统一,因此根据拉格朗日中值定理提出了变权背景值构造形式,并采用具有全局寻优能力的模式搜索法求解背景值构造中的权值,建立基于模式搜索法改进的单桩极限承载力灰色预测模型。

学年论文--许申平

学年论文--许申平

本科生学年论文(设计)(2008级)论文(设计)题目灰色GM(1,1)模型及其应用作者许申平分院、专业理学分院数学与应用数学班级数学081班指导教师(职称)唐少芳(讲师)字数10802字成果完成时间2010年11月17日杭州师范大学钱江学院教学部制灰色GM(1,1)模型及其应用数学与应用数学081班许申平指导教师唐少芳摘要:本文详细介绍了灰色系统中的GM(1,1)模型及其关联度分析,对实际问题——高校传染病发病率,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率,并对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论Grey GM(1,1)M odel and I ts A pplicationXu Shen-ping Instructor:Tang Shao-fangAbstract:In this paper,the grey GM(1,1)model and its correlation analysis are described.The real problem,the incidence of infectious diseases in the higher school,is solved to establish its GM(1,1) prediction model and the disease incidence in1993is predicted.Then the grey correlation degree of the dysentery,hepatitis and malaria is analized,to find that dysentery is most close with the infectious disease, and hepatitis,malaria are less close.Key words:Grey prediction model;Grey correlation degree;Grey system theory目录1引言 (1)1.1研究背景 (1)1.1.1国内研究现状 (1)1.1.2国外研究现状 (1)1.2研究意义 (1)2灰色系统及灰色预测的概念 (1)2.1灰色系统理论发展概况 (1)2.1.1灰色系统理论的提出 (2)2.1.2灰色系统理论的研究对象 (2)2.1.3灰色系统理论的应用范围 (2)2.1.4三种不确定性系统研究方法的比较分析 (2)2.2灰色系统的特点 (3)2.3常见灰色系统模型 (3)2.4灰色预测 (4)2.5基本概念 (4)2.5.1灰数的概念 (4)2.5.2灰色生成数列 (4)2.5.3累加生成 (5)2.5.4累减生成 (5)2.5.5加权邻值生成 (5)2.5.6关联度 (5)3简单的灰色预测——GM(1,1)预测 (6)3.1GM(1,1)预测模型的基本原理 (6)3.2GM(1,1)模型检验 (9)3.2.1残差检验 (9)3.2.2关联度检验 (9)3.2.3后验差检验 (9)3.3GM(1,1)残差模型 (10)3.4GM(1,N)模型 (10)3.5灰色系统建模的基本思路 (12)4灰色关联度分析 (12)4.1灰色关联分析理论及方法 (12)4.2灰色关联技术的应用 (12)4.3灰色关联度计算式及改进 (13)5传染病的问题 (14)5.1传染病发病率的的预测 (15)5.2三种传染病的关联分析 (17)6小结 (18)参考文献 (18)附录 (20)灰色GM(1,1)模型及其应用数学与应用数学081班许申平指导教师唐少芳1引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。

灰色预测模型及应用论文

灰色预测模型及应用论文

灰色预测模型及应用论文公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]灰色系统理论的研究GM(1,1)预测与关联度的拓展摘要:科学地预测尚未发生的事物是预测的根本目的和任务。

无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。

在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。

本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。

通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。

另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论The Research of Grey System TheoryGM(1,1) prediction and the expansion of correlationxueshenping Instructor: tangshaofangAbstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements.This paper is derived GM (1,1) model, the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing.Key words:Grey prediction model ; Grey relational grade;Grey system theory目录灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。

灰色预测模型论文

灰色预测模型论文

灰色预测模型论文
灰色预测模型是一种基于小样本数据的预测方法,该方法通过对已有数据的分析和处理,得到未来趋势的预测结果。

灰色预测模型适用于预测非常规变化或变化不规则的时间序列数据,具有简单、方便、快速的特点。

在灰色预测模型的基础上,研究者们持续进行着探索和研究。

相关的论文和研究逐渐丰富。

例如,张贵耀等人在《基于FFT变换与遗传算法的灰色预测模型及其在环境优化中的应用》中,提出了一种基于FFT变换和遗传算法的灰色预测模型,该方法在应用于环境优化中取得了较好的预测效果。

另外,魏伟等人在《基于灰色理论和神经网络的锂电池SOH 估计方法研究》中,将灰色理论与神经网络相结合,提出了一种新的锂电池SOH估计方法。

该方法不仅能够准确地评估锂电池的状态,而且还能够预测其未来的寿命。

此外,吕振国等人在《一种基于蚁群算法和灰色预测的PM2.5浓度预测方法》中,将蚁群算法和灰色预测模型相结合,开发出一种新的PM2.5浓度预测方法。

该方法在实际应用中,能够较准确地预测PM2.5浓度变化趋势。

综上所述,灰色预测模型是一种有效的预测方法,在各个领域得到了广泛的应用和研究。

未来,随着人工智能和大数据技术
的发展,灰色预测模型也将在更多领域得到应用并取得更好的预测效果。

灰色模型GM(1,1)在广告预测中的应用

灰色模型GM(1,1)在广告预测中的应用

浅谈灰色模型GM(1,1)在广告预测中的应用摘要预测科学作为一门新兴的学科虽然只有短短的历史,但它已经充分显示了强大的生命力,这主要是因为预测科学具有广泛应用的价值,应用它的理论和方法,可以综合地分析和预测社会的发展趋势,调查和预测科学技术的未来。

本文介绍了灰色系统理论的基本原理,分析灰色系统理论在广告中的预测作用,并与实际值相比较。

且发现具有很好的效果。

关键词灰色模型;网络广告;最小二乘法;相对误差;残差中图分类号n941 文献标识码a 文章编号 1674-6708(2011)45-0171-021 灰色模型1.1 灰色系统理论的背景对于只掌握部分信息系统的控制问题,我国邓聚龙教授从1979年开始研究参数不完全的大系统、未知参数的系统的控制问题,并于1982年在北荷兰出版公司的“系统与控制通讯”杂志上正式发表了奠基性论文“灰色系统的控制问题”,创立了灰色系统理论。

1.2 灰色系统预测模型灰色预测是指根据过去及现在已知的或非确知的信息,建立一个从过去引伸到将来的gm模型,从而确定系统在未来发展变化的趋势,并为规划决策提供依据。

灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据。

不直接使用原始数据,而是由它产生累加生成数,对生成数列使用微分方程模型。

这样,可以抵消大部分随机误差,显示出规律性。

1.3 灰色系统gm(1,1)预测模型灰色系统理论的微分方程成为gm模型,g表示gray(灰色),m 表示model(模型),表示l阶的、1个变量的微分方程模型。

建模过程和机理如下:(1)记原始数据序列为非负序列。

式中,其相应的累加生成序列为:。

式中,为的紧邻均值生成序列。

于是定义的灰微分方程模型为:亦即(6)其中a,b是需要通过建模求解的参数,若为参数列。

且得到了的灰微分方程对应的白微分方程为:也叫影子方程。

回带数据利用最小二乘法则求的参数a,u的估计值。

灰色系统理论论文

灰色系统理论论文

灰色系统理论论文.doc
灰色系统理论是一种新兴的科学理论和方法,并且在很多领域得到了广泛应用。

灰色系统理论的核心思想是通过分析一些有限的数据来揭示一个系统的内在规律和本质特征,从而达到预测、控制及优化的目的。

这种理论被称为“灰色系统”,因为它的数据通常是不完全和不充分的,即呈现出“灰色”的状态。

灰色系统理论主要包括灰色模型和灰色控制两个方面。

灰色模型是将一组时间序列数据通过灰色预测模型来建立系统数学模型的方法。

而灰色控制是在灰色模型的基础上采取一些措施使得系统达到某种期望的状态的方法。

总之,灰色系统理论能够在数据不完全和不充足的情况下通过建立模型来解决问题,具有很高的实用价值。

工程造价预测灰色-卡尔曼滤波模型论文

工程造价预测灰色-卡尔曼滤波模型论文

工程造价预测的灰色-卡尔曼滤波模型摘要:对于工程建设者来说,准确进行工程造价预测决定着投标成败以及在工程实施过程中能否盈利的关键。

利用同一公司过去几年承建同类工程的资料,建立灰色gm(1,1)模型,同时,采用卡尔曼序贯滤波算法减弱数据序列的随机性。

通过实例仿真结果表明,该方法比传统灰色模型具有更好的预测效果,具有使用价值。

关键词:灰色系统预测造价卡尔曼滤波 gm(1,1)模型0 引言在工程项目招投标中,对于各投标单位来说,准确预测该工程项目的造价,据此确定标底是决定投标成败以及在工程实施过程中能否盈利的关键。

目前各工程单位通常采用的方法是预算部门利用工程法预测出该项工程的造价,该计算方法虽然较为精确,但普遍存在着周期长、速度慢、工作复杂等缺点,通常需要数个工作日才能完成。

当同一家建筑单位同时面临数个工程项目时,为了在各工程项目中进行权衡,快速算出各工程项目的造价,就显得尤为重要。

而对于同一家建筑单位来说,在许多已建的同类建筑工程项目之间,不同程度地存在某些相似性,因此,本文就是通过利用过去几年中这些已建的相似工程单方造价为基础数据,使用卡尔曼序贯滤波进行处理,然后应用灰色系统预测理论建立模型,对拟建工程单方造价进行预测,进而获得该工程项目的造价预测值,为招投标单位提供一种快速、简便、准确的参考数据,便于投标单位迅速做出相关决策。

1 模型的建立1.1 数据处理在处理工程投资费用数据时,为保证数据预测的准确度,要把各年度的投资费用数据换算到同一基准年度,这就需要考虑物价因素,特别是处理较长时间内的费用数据时,对于物价的考虑更是必不可少。

设年物价上涨率为β, a(n)是未来第n年投资的费用,则基准年的费用现值p为:p=(1)1.2 原始数据的卡尔曼序贯滤波处理对原始数据序列x(0)=(x(0)(1),x(0)(2),l,x(0)(n))进行一次累加生成,记为1-ago,得生成序列:x(1)=(x(1)(1),x(1)(2),l,x(1)(n))其中x(1)(k)=x(0)(i),(k=1,2,l,n)。

灰色GM(1,N)模型在经济中的预测与应用

灰色GM(1,N)模型在经济中的预测与应用

灰色GM(1,N)模型在经济中的预测与应用1 绪论1.1 研究的背景灰色系统理论是我国著名学者邓聚龙教授于1982年创立的(1), 灰色系统理论这一新兴理论刚一诞生,就受到国内外学术界和广大实际工作者的极大关注,不少著名学者和专家给予充分肯定和支持,许多中青年学者纷纷加入灰色系统理论研究行列,以极大的热情开展理论探索及在不同领域中的应用研究工作。

目前,英、美、德、日、台湾、香港、联合国世界卫生组织(WHO)等国家、地区及国际组织有许多知名学者从事灰色系统的研究和应用;海内外许高校开设了灰色系统课程;国际、国内多种学术期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。

在灰色系统理论发展的同时,灰色系统理论的实际应用日趋广泛,应用领域不断拓展,先后在生命科学、环保、电力,经济、能源、交通、教育、金融等众多科学领域[2-7],成功地解决了生产、生活和科学研究中的大量实际问题。

灰色系统理论经过20年的发展,其蓬勃生机和广阔发展前景正日益广泛地为国际、国内各界所认识、所重视。

而灰色GM多维变量又是现代灰色系统理论的核心组成部分,它已成功地应用于经济生活、气象预报、人口预测、电力系统负荷预测等领域,并取得了可喜的成就。

灰色模型理论应用于经济预测也已成为国内外专家学者研究的热点,近年来一些专家对灰色预测模型进行了改进,相继出现了无偏GM(1,n)模型、动态多维GM(1,n)模型的应用。

对于本课题中的建模和预测,虽然有许多成功的实例,但也有不少偏差较大的实例。

用于短期预测时有较好的精度,但用于中长期预测时预测结果就存在较大的误差。

近年来不少学者提出对GM模型的改进与适用范围的研究,从不同的角度通过对背景值的改进来提高GM模型建模精度,通过优化灰导数白化值的方法改进了GM模型的建模精度。

本文将进一步研究了GM(1,N)模型及其精度,并作出预测和推广应用。

1.2研究的目的在灰色系统理论发展及其实际应用日趋广泛、应用领域不断拓展同时,灰色GM(1,N)模型在经济社会领域中尤为特出,如在农业、工业中研究经济效益受各因素的影响预测继而减少经济损失等,有助于国家、国民收入的整体提高。

数学建模一等奖优秀论文——房地产

数学建模一等奖优秀论文——房地产

房地产业可持续发展问题摘要房地产业是我国国民经济重要的组成部分,近年来房价问题成了人们热议的话题。

本文针对房地产业可持续发展问题进行了探究,建立了合适的模型。

问题一:利用灰色预测方法建立了杭州房地产价格的预测模型,查找2003年到2011年杭州房地产价格数据用MATLAB求解对接下来两年杭州的房地产价格进行了预测。

针对土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格这五个因素对商品房售价的影响建立了灰色关联度模型,按照各自关联度由大到小排序,最后得到五个因素影响程度由大到小为土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格。

问题二:考虑买房者的买房压力,用按揭还款公式计算出房价作为房地产价格合理区间的上限;同时考虑房地产商的合理利润,以利润为20%时的房价作为房地产价格合理区间的下限。

用最新数据求解得到房地产价格合理区间为(5435元,8069.5元)问题三:先综合考虑保障性住房比例以及其他各个因素对房价的影响,建立多元线性回归方程。

用SPSS求解出线性回归方程后再以其他因素相同时来考虑保障性住房比例对房价影响。

最后得出保障性住房比例的增加会使得房价减少,其系数为-0.104。

.这也说明影响程度并不大。

问题四:结合前三问的研究成果和目前的房地产市场形式。

从目前房价虚高的原因,制定符合中国国情的房价合理区间,处理房价问题手段探索三个方面对房地产市场进行了分析和总结。

对处理房价问题提出了4点建议。

关键词:灰色预测 MATLAB 按揭还款公式线性回归 SPSS一、问题重述房价问题是近几年人们热议的话题,“买房贵,买房难”成为当今社会的一大问题,已经严重的影响到了社会的和谐发展。

政府在也在不断的出台政策进行宏观调控,这些举措在一定程度上防止了房地产市场的大起大落,维护了房地产市场的可持续发展。

目前,房地产市场进入观望状态,成交量大幅减少,但大多数大中城市房价环比仍上涨。

(整理)灰色预测法

(整理)灰色预测法

灰色预测理论在数学建模中的应用作者:胡金杭摘要:灰色系统理论在自动控制领域中已取得了广泛的应用,本文针对灰色预测理论的特点,分析了它在数学建模中的具体应用。

首先,本文对如何将实际问题转化为灰色GM(1,1)预测模型给了具体的步骤,同时针对模型的特点,可以对其的预测精度进行后验差检验,随后,针对基本灰色GM(1,1)预测模型单调性的特点,我们可以采用改进的等维灰数递补模型,这样可以大大的提高模型对实际问题的预测精度。

关键字:GM(1,1)预测模型后验差检验等维灰数递补模型引言现实中的很多实际问题,都需要通过分析现有的数据,对该问题未来的发展趋势进行预测,随后决策者参考预测得到的结果,就可以制定合理的解决方案。

在预测分析中,最基本的预测模型为线性回归方程,针对一些规律性较强的数据,该模型能作出精确的预测,但在实际中,我们得到的常是一些离散的,规律性不强的数据,为解决此类问题,线性的方法就不适用了,此时,就需要采用灰色预测的方法。

灰色预测理论是将看似离散的数据序列经数据变换后形成有规律的生成数列( 如累加生成、累减生成) ,然后对生成数列建立微分方程,得到模型的计算值后,再与实测值比较获得残差,用残差再对模型作修正,然后便可用建立的灰色模型对该问题进行预测。

一、具体的灰色GM(1,1)预测模型的建立:我们设已知数据变量组成序列,则我们可得到数据序列,用1-AGO生成一阶累加生成序列为:其中 (1-1) 由于序列具有指数增长规律,而一阶微分方程的解恰是指数增长形式的解,因此我们可以认为序列满足下述一阶线性微分方程模型(1-2)我们利用离散差分方程的形式对上微分方程可以得到下矩阵形式:(1-3)简记为: (1-4)式中;;上述方程组中,和B 为已知量,A 为待定参数。

可用最小二乘法得到最小二乘近似值。

因此,式(1-4)可改写为式中,E —误差项。

利用矩阵求导公式,可得(1-5)解得结果代入(2-2)中,我们可以得到(1-6)写成离散形式(令),得到GM(1,1)模型的时间响应函数(K =1,2,…)(1-7) 我们对其做累减还原,即可得到原始数列的灰色预测模型为:(K =1,2,…) (1-8) 将相关数据代入公式中进行运算,我们得到系数的具体值,即得到了具体的预测公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GM(1,1)灰色预测模型
摘要
灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。

灰数的生成,就是从杂乱中寻找出规律。

同时,灰色理论建立的是生成数据模型,不是原始数据模型,因此,灰色预测的数据是通过生成数据的gm(1,1)模型所得到的预测值的逆处理结果。

本文利用灰色预测对重庆市的人均收入进行模拟,容易理解,操作简单灵活,直接面向用户,精度较高。

一、GM(1,1)预测模型的基本原理:
灰色预测的基本原理时间序列预测是采用趋势预测原理进行的.然而时间序列预测存在以下问题:(1)时间序列变化趋势不明显时,很难建立起较精确的预测
模型.(2)它是在系统按原趋势发展变化的假设下进行预测的,因而未考虑对未来
变化产生影响的各种不确定因素.为克服上述缺点,邓聚龙教授引入了灰色因子的概念,采用“累加”和“累减”的方法创立了灰色预测理论.1.1 GM(1,1)模型的基本原理当一时间序列无明显趋势时,采用累加的方法可生成一趋势明显的时间序列.如时间序列X(0)={32,38,36,35,40,42}的趋势并不明显,但将其元素进行“累加”所生
成的时间序列X(1)={32,70,106,141,181,223}则是一趋势明显的数列,按该数列的
增长趋势可建立预测模型并考虑灰色因子的影响进行预测,然后采用“累减”的方法进行逆运算,恢复原时间序列,得到预测结果,这就是灰色预测的基本原理.
数据来源:重庆市统计年鉴
重庆城市居民家庭人均可支配收入:
收入
4375.43
5022.96
5302.05
表1
二、利用软件对数据进行模拟:
模拟值残差相对误差
4375.43
2 3910.0859 -1112.8741 -22.155743
3 4368.869126 -933.18087
4 -17.600379
4 4881.482893 -561.357107 -10.31368
5 5454.243318 -374.186682 -6.420025
6 6094.20760
7 -82.092393 -1.329152
7 6809.261006 236.961006 3.60545
8 7608.213972 370.143972 5.113849
9 8500.910713 407.240713 5.031595
10 9498.350496 277.390496 3.00826
11 10612.823165 368.833165 3.600483
12 11858.060575 288.320575 2.492023
13 13249.40578 -465.84422 -3.396542
14 14804.00209 -904.73791 -5.759456
15 16541.004292 -650.095708 -3.781583
16 18481.814669 -617.915331 -3.235205
三、实验结果
表2
19952000
20052010
x 104时间(年)人均收入(元)
图1
所得预测值与实测值折线比较 如图 1。

从表 2 和图 1 来看,预测的结果较好,精度较高。

四、实验结论
本文用到的是一款专业进行GM (1,1)预测的软件,用起来比较容易简单,结果较为准确,只是灰色预预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

这仅仅是种理论,与实际还是存在一定的差异。

相关文档
最新文档