有理数知识点考点难点总结归纳修订稿
有理数知识点重点难点易错点梳理总结
有理数知识点重点难点易错点梳理总结有理数是数学中的一个重要概念,它包括整数、分数和小数,是可以用分数形式表示的数字。
有理数在实际生活中的应用非常广泛,对学生来说,掌握有理数的概念和运算规则是非常关键的。
本文将会对有理数的知识点进行重点、难点和易错点的梳理总结,帮助读者更好地理解和掌握有理数的相关知识。
一、有理数的概念和性质有理数是指可以表示为两个整数的比值形式的数字。
它可以分为正有理数、负有理数和零三种类型。
正有理数是大于零的数,负有理数是小于零的数,零既不是正数也不是负数。
有理数的加减乘除运算遵循相应的规则。
加法的运算规则是同号相加、异号相减;减法的运算规则是加上相反数;乘法的运算规则是正负数相乘结果为负数,同号相乘结果为正数;除法的运算规则是除法运算可以转化为乘法运算,即a÷b = a × (1/b)。
二、有理数的符号和绝对值有理数的符号表示其正负,正数和零的符号一般省略不写,负数则在数值前加上负号“-”。
而有理数的绝对值表示该数离零点的距离,绝对值是非负数。
任何一个非零的有理数a的绝对值记作|a|,当a大于零时,|a| 等于 a 的值;当a小于零时,|a|等于 a 的相反数的值。
三、有理数的比较和大小关系当比较两个有理数的大小时,可以按照以下准则:1. 若两个有理数 a 和 b 的符号相同,且 |a| 大于 |b|,则 a 大于 b;2. 若两个有理数 a 和 b 的符号相同,且 |a| 小于 |b|,则 a 小于 b;3. 若两个有理数 a 和 b 的符号相反,且 a 是正数,b 是负数,则 a 大于 b;4. 若两个有理数 a 和 b 的符号相反,且 a 是负数,b 是正数,则 a 小于 b;5. 若两个有理数 a 和 b 的符号相反,且 |a| 等于 |b|,则 a 等于 b。
四、有理数的加法和减法有理数的加法和减法是在两个有理数之间进行的运算。
加法的运算规则已经在前面提到,同号相加、异号相减。
(完整版)有理数的性质及其运算知识点汇总
(完整版)有理数的性质及其运算知识点汇总有理数的性质及其运算知识点汇总一、有理数性质有理数是可用两个整数的比表示的数,包括正整数、负整数和零。
有理数的性质如下:1. 有理数可以进行加法、减法、乘法和除法运算。
2. 有理数的加法和乘法满足交换律和结合律。
3. 有理数的乘法满足分配律。
4. 有理数的加法、减法和乘法仍然是有理数。
5. 有理数可以用小数形式表示。
二、有理数运算知识点1. 有理数的加法有理数的加法满足以下规则:- 两个正有理数相加,结果仍为正有理数。
- 两个负有理数相加,结果仍为负有理数。
- 正有理数和负有理数相加,结果为它们的差的绝对值的符号与较大绝对值的符号相同。
2. 有理数的减法有理数的减法可以转化为加法运算,规则如下:- 减去一个有理数等于加上这个有理数的相反数。
3. 有理数的乘法有理数的乘法满足以下规则:- 正有理数乘以正有理数,结果仍为正有理数。
- 负有理数乘以负有理数,结果仍为正有理数。
- 正有理数乘以负有理数,结果为它们的积的符号为负。
- 任何数乘以零,结果为零。
4. 有理数的除法有理数的除法可以转化为乘法运算,规则如下:- 除以一个有理数等于乘以这个有理数的倒数(除数不为零)。
5. 有理数的运算顺序有理数的运算顺序遵循以下规则:1. 先计算括号中的内容。
2. 然后按照先乘除,后加减的顺序计算。
3. 如果有多个乘法或除法,按照从左到右的顺序进行。
6. 有理数的小数形式表示有理数可以用小数形式表示,其中:- 有限小数是按照小数位数为限的。
- 循环小数是具有重复循环数字的。
以上是有理数的性质及其运算知识点的汇总,希望对你有所帮助。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳大家好,今天我们来聊聊有理数这个知识点。
有理数是我们日常生活中经常会遇到的一种数,它们可以表示为两个整数的比值,比如1/2、3/4等等。
有理数在数学中非常重要,因为它们可以帮助我们解决很多问题。
有理数有哪些知识点呢?下面我们就来一一梳理。
我们来说说有理数的基本概念。
有理数包括正有理数、负有理数和零。
正有理数就是大于零的有理数,比如1/2、3/4等等;负有理数就是小于零的有理数,比如-1/2、-3/4等等;零是有理数,但它既不大于零也不小于零。
我们来看一下有理数的运算。
有理数的加法、减法、乘法和除法都很简单,我们可以通过以下几个例子来说明。
例一:正有理数相加。
假设我们有两个正有理数a和b,那么它们的和就是a+b。
例如,1/2+1/3=5/6。
例二:正有理数相减。
假设我们有两个正有理数a和b,那么它们的差就是a-b。
例如,3/4-1/2=1/4。
例三:正有理数相乘。
假设我们有两个正有理数a和b,那么它们的积就是a*b。
例如,1/2*3/4=3/8。
例四:正有理数相除。
假设我们有两个正有理数a和b(b≠0),那么它们的商就是a/b。
例如,3/4÷1/2=3/2=1.5。
有理数的运算还有很多其他的形式,比如负有理数的加法、减法、乘法和除法等。
但是这些都比较复杂,我们以后再学吧。
除了基本的运算之外,有理数还有一些重要的性质和定理。
比如,有理数的相反数是它的负倒数;有理数的绝对值是它的大小;有理数的平方根有两个,一个是正的,一个是负的;有理数的小数部分可以无限精确地表示为分数形式等等。
这些性质和定理在解决一些实际问题时非常有用。
我们来说说有理数的解题方法。
其实,有理数的解题方法和其他类型的题目差不多。
我们需要先理解题目的意思,然后根据题目的要求选择合适的方法进行计算。
有时候,我们还需要运用一些特殊的技巧来简化计算过程。
只要我们掌握了有理数的基本知识和解题方法,就可以轻松地解决很多数学问题了!今天我们就来聊到这里。
有理数(归纳与讲解)(解析版)
专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。
有理数知识点总结归纳
有理数知识点总结归纳有理数是指整数和分数的统称,包括正整数、负整数、零以及正分数和负分数。
有理数是数学中的重要概念,它们在实际生活中有着广泛的应用。
下面将对有理数的基本概念、性质和运算规律进行总结归纳。
一、有理数的基本概念。
1. 整数,包括正整数、负整数和零,用...,-3,-2,-1,0,1,2,3...表示。
2. 分数,包括正分数和负分数,是两个整数的比值,形如a/b(b≠0,a和b为整数,且a与b互质)。
3. 有理数,包括整数和分数,用有限小数或无限循环小数表示。
二、有理数的性质。
1. 有理数的比较,可以通过数轴上的位置进行比较,数轴上数值较大的数对应的点在数轴上的位置较右。
2. 有理数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
3. 有理数的加法性质,加法交换律、结合律,加法逆元,即对任意有理数a,都存在一个有理数-b,使得a+(-b)=0。
4. 有理数的乘法性质,乘法交换律、结合律,乘法逆元,即对任意非零有理数a,都存在一个有理数1/a,使得a(1/a)=1。
5. 有理数的分配律,对任意有理数a、b、c,有a(b+c)=ab+ac。
三、有理数的运算规律。
1. 有理数的加法和减法,同号两数相加(减),异号两数相减(取相减数的符号,绝对值相加),加法和减法可以统一为加法运算。
2. 有理数的乘法和除法,同号得正,异号得负,0与任何数相乘得0,除法可以统一为乘法运算。
3. 有理数的混合运算,按照四则运算的优先级进行计算,先乘除后加减。
四、有理数的应用。
1. 有理数在代数方程中的应用,代数方程中常常涉及到有理数的加减乘除运算,解方程时需要对有理数进行计算。
2. 有理数在几何中的应用,几何中的坐标、距离、面积等概念都涉及到有理数的运算。
3. 有理数在实际生活中的应用,有理数在温度、海拔、财务等方面都有着广泛的应用。
总结,有理数是数学中的重要概念,它包括整数和分数,具有一系列的性质和运算规律。
有理数知识点汇总
汇报人: 2023-11-24
contents
目录
• 有理数的定义与分类 • 有理数的运算 • 有理数的性质 • 有理数在实际生活中的应用 • 有理数与其他数学概念的关系 • 有理数的意义与重要性
01
有理数的定义与分类
有理数的定义
有理数是有理数
有理数是可以用有限个数位来表 示的数,包括整数和分数。
有理数的范围
有理数的分类:整数和分数。
有理数的范围:有理数包括所有的有限小数和无限循环小数,以及开方 开不尽的数,如1/3=0.333333……。
有理数的扩展:在有理数的基础上,还扩展出了无理数,无理数是指无 限不循环小数,如π、根号2等。
04
有理数在实际生活中的应用
时间与计量的应用
时间的计量
VS
速度的表示
在表示速度时,我们也会用到有理数,如 公里/小时、米/秒等单位都是基于有理数 来表示的。
面积与体积的应用
面积的计量
在面积的计量中,我们也会用到有理数,如平方米、平方公里等单位都是基于有理数来定义的。
体积的计量
在体积的计量中,有理数也有着广泛的应用,如立方米、立方厘米等单位都是基于有理数来定义的。
乘法与除法
总结词
有理数的乘法和除法是高级的数学运算,它们分别通过重复相加和相减来得出 结果。
详细描述
有理数的乘法定义为将两个有理数相乘,例如,(-2) x (-3) = 6。有理数的除法 定义为乘以一个数的倒数,例如,(-3) / (-2) = 1.5。
乘方与开方
总结词
有理数的乘方和开方是更高级的数学运算,它们分别通过重 复相乘和取相反数来得出结果。
有理数在时间的计量中有着广泛的应 用,如秒、分、时、日、月、年等单 位都是基于有理数来计算的。
新最中考初中数学有理数与整式必考点难点总结
新最中考初中数学有理数与整式必考点难点总结一、有理数的概念与性质1.有理数的定义:有理数是整数和分数的统称,可表示为a/b的形式,其中a为整数,b为非零整数。
2.有理数的分类:正数、负数、零。
3.有理数的比较:可使用大小比较法则、绝对值法则等进行比较。
4.有理数的运算:加法、减法、乘法、除法。
5.有理数的四则运算性质:封闭性、可逆性、交换律、结合律、分配律等。
6.有理数的乘方:有理数的乘方等于将该有理数连乘若干次。
二、整式的概念与性质1.整式的定义:由常数、变量及其乘积、乘方及其和、差组成的代数式。
2.整式的运算:加法、减法、乘法法则。
3.整式的乘方:整式的乘方等于将该整式连乘若干次。
4.整式的因式分解:将整式表示为若干个因式的乘积。
5. 二次整式的因式分解:将形如ax^2+bx+c的二次整式表示为两个一次整式的乘积。
三、有理数的运算1.四则运算:加法、减法、乘法、除法。
时需注意:有理数相加减时,同号为正,异号为负;有理数相乘除时,同号为正,异号为负。
分数相加减乘除时,需找到最小公倍数进行计算。
2.有理数的乘方运算。
四、整式的运算1.四则运算:加法、减法、乘法、除法。
时需注意:变量的指数相加减时,同底数的幂要进行分配率;2.整式的因式分解。
五、较难的考点1.有理数的分数形式与小数形式的转化。
2.有理数的比较。
3.有理数的四则运算法则的应用。
4.小数的除法运算。
5.整式的乘法运算。
6.有理数及整式的因式分解。
7.分数的计算。
六、解题思路与方法1.深刻理解有理数与整式的概念与性质,掌握其应用方法。
2.通过各种练习题,对有理数与整式的运算法则有充分的掌握。
3.理解思想方法,能灵活应用,举一反三4.注意计算方法与步骤的正确性,同时注重换位思考,寻找不同的解决途径。
5.善于总结归纳,将知识点进行梳理、分类,形成完整的知识体系。
七、题目解析与例题1.题目解析(1)明确题目要求与考点。
(2)理解题目的意思与背景,分析解题需要运用的知识与方法。
精编七年级数学《有理数》知识点总结
有理数是整数和分数的统称,它包括正整数、负整数、零以及正分数和负分数。
一、有理数的概念及表示方法1.有理数的定义:有理数是可以表示为两个整数比值的数字。
2.有理数的表示方法:可以用分数表示,也可以用小数表示。
二、有理数的比较1.有理数的比较:对于两个有理数a和b,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b。
2.有理数比大小的常见方法:可以通过小数部分的大小判断大小关系,若小数部分相等,则比较整数部分的大小。
三、有理数的运算1.有理数的加法:-同号有理数相加,绝对值相加,符号保持不变。
-异号有理数相加,绝对值相减,符号由绝对值大的数确定。
2.有理数的减法:-减去一个有理数等于加上它的相反数。
-a-b等于a+(-b)。
3.有理数的乘法:-同号有理数相乘,结果为正;-异号有理数相乘,结果为负。
4.有理数的除法:-除以一个非零有理数等于乘以它的倒数。
-a÷b等于a×(1/b)。
5.有理数的混合运算:按照顺序先做乘法和除法,再做加法和减法。
四、有理数的约分与化简1.有理数的约分:将一个有理数的分子与分母同时除以一个公因数,使其变成最简分数。
2.有理数的化简:通过约分将一个有理数变成最简形式。
五、绝对值与有理数间的关系1.绝对值的定义:一个数a的绝对值记作,a,表示a到原点的距离,若a≥0,则,a,=a;若a<0,则,a,=-a。
2.有理数的绝对值运算法则:-,a,≥0,且,a,=0的充要条件是a=0;-,-a,=,a;- ,ab,=,a,·,b。
六、有理数的乘方运算1.相同数连乘法则:a^n=a×a×a×…×a(n个a相乘,其中n是大于1的正整数)。
2.有理数的乘方公式:-a^0=1,其中a≠0;-a^1=a;-a^(-n)=1/(a^n),其中a≠0。
七、实际问题中的有理数运算1.实际问题中的有理数加减法:根据实际情景将问题转化为有理数的加法或减法运算。
有理数知识点考点难点总结归纳
有理数知识点考点难点总结归纳有理数是数学中一种重要的数的概念,在数学学科的学习中经常会涉及到有理数的运算和性质。
掌握有理数的相关知识点、考点和难点,对于学习数学和解题非常重要。
本文将就有理数的知识点、考点和难点进行总结归纳,希望能够对读者有所帮助。
一、有理数的定义有理数是指可以表示为两个整数之比(分数形式)的数,包括正有理数、负有理数和0。
二、有理数的四则运算1. 加法:有理数的加法运算要注意符号的变化,同号相加取相同符号,异号相加取绝对值较大数的符号。
2. 减法:有理数的减法可以转化为加法运算,对减数取相反数,然后进行加法运算。
3. 乘法:有理数的乘法运算结果符号遵循正负号相同为正,正负号不同为负的原则。
4. 除法:有理数的除法可以转化为乘法运算,对除数取倒数,然后进行乘法运算。
三、有理数的性质1. 有理数的封闭性:有理数的加法、减法、乘法和除法的运算结果都是有理数。
2. 有理数的整除性:如果有理数a除以非零有理数b,商等于有理数c,则称a能被b整除,b能整除a;如果商c是整数,则a和b是整数关系;如果商c不是整数,则a和b是非整数关系。
3. 有理数的传递性:对于任意三个有理数a、b、c,如果a<b<c,则a和c之间也存在一个有理数,即b。
四、有理数的比较1. 同号比较:两个正有理数比较大小,绝对值较大的数较大;两个负有理数比较大小,绝对值较小的数较大。
2. 异号比较:正有理数大于负有理数;负有理数小于正有理数。
五、有理数的绝对值有理数a的绝对值表示为|a|,其中正有理数的绝对值等于其本身,负有理数的绝对值等于去掉负号。
六、有理数的约分和化简1. 约分:对于有理数a/b,如果a和b有公因数,可以将a和b同时除以最大公因数,使得a/b约分为最简形式。
2. 化简:对于有理数a+b/c,可以先将a和b进行整数部分的运算,然后将分数部分化简为最简形式。
七、有理数的应用有理数在实际生活中的应用非常广泛,例如在温度计上的正负温度、货币的盈亏计算、海拔的升降等。
《有理数》章节知识点归纳总结(可编辑修改word版)
⑦相反数是它本身的数是 0
数之最
①最小的正整数是1②最大的负整数是-1
③绝对值最小的数是0④平方最小的数是0
( 9) 、24,( 10)、
(
( 11) 、(2)3,( 12)、
⑤最小的非负数是0⑥最大的非正数0
⑦没有最大和最小的有理数
⑧没有最大的正数和最小的负数
1
( 13) 、
⑥的平方与它的立方互为相反数;
(21)、(2)2=--------------(22)、
-----
32=---------
⑦_的倒数与它的平方相等;
⑧的平方是4,的绝对值是4;
(23)、
(2)2=
3
(24)、
22=
有理数章节知识点归纳总结
(3)、
(6)(9),(4)、
一、基本运算和基本概念
本身之迷
① 倒数是它本身的数是±1
② 绝对值是它本身的数是非负数(正数和 0)
(56)(14),
(5)、1647,(6)、
③平方等于它本身的数是0,1
(7)、
(3)3,(8)、
④立方等于经本身的数是±1,0
⑤偶数次幂等于本身的数是 0、1
3
(5)(3)
610
1,( 14)、
2
,
(15)、0.253,(16)、0.54,
8
例、填空:
( 17) 、
55,( 18)、
①两个互为相反数的数的和是;
②与它绝对值的差为0;
③两个互为相反数的数的商是;(0除外)
④的倒数等于它本身;
(19)、(5.9)(6.1),
(
⑤的绝对值与它本身互为相反数;
第一章 有理数知识点、考点、难点总结归纳
负数:比 0 小的数;正数:比 0 大的数。
0 既不是正数,也不是负数字母 a 可以表示任意数,当 a 表示正数时, -a 是负数;当 a 表示负数时, -a是正数;当 a 表示 0 时, -a 仍是 0。
强调:带正号的数不一定是正数,带负号的数不一定是负数。
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量 .习惯把前“进、上升、收入、零上温度”等规定为正,后“退、下降、支出、零下温度”等规定为负 .比如:零上8℃表示为:+8℃;零下8℃表示为: -8℃⑴正整数、 0、负整数统称为整数( 0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
( 1 )数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
注意: O数轴是一条向两端无限延伸的直线;原点、正方向、单位长度是数轴的三要素,三者缺一不可;同一数轴上的单位长度要统一;数轴的三要素都是根据实际需要规定的。
( 2 )数轴上的点与有理数的关系O所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示, 0 用原点表示。
所有的有理数都可以用数轴上的点表示出来。
( 3 )利用数轴表示两数大小O在数轴上数的大小比较,右边的数总比左边的数大;正数都大于 0 ,负数都小于 0,正数大于负数;两个负数比较,距离原点远的数比距离原点近的数小。
(4)数轴上特殊的最大(小)数O最小的自然数是 0 ,无最大的自然数;最小的正整数是 1 ,无最大的正整数;最大的负整数是 -1 ,无最小的负整数(1)只有符号不同的两个数叫做互为相反数; 0 的相反数是 0;(2)互为相反数的两数的和为 0,即:若 a、 b 互为相反数,则 a+b=0( 3 ) 相反数的求法:O求一个数的相反数,只要在它的前面添上负号“ -”即可求得(如:5 的相反数是 -5 ) ;求多个数的和或差的相反数是,要用括号括起来再添“ - ”,然后化简(如; 5a+b 的相反数是 - ( 5a+b ),化简得 -5a-b ) ;求前面带“ - ”的单个数,也应先用括号括起来再添“ - ”,然后化简 (如:-5 的相反数是- ( -5 ),化简得 5)( 4 ) 多重符号的化简多重符号的化简规律:O“+”号的个数不影响化简的结果,可以直接省略;“ -”号的个数决定最后化简结果;即:“ -”的个数是奇数时,结果为负,“ - ”的个数是偶数时,结果为正。
有理数知识点考点难点总结归纳
有理数知识点考点难点总结归纳有理数是中学数学中一个非常重要的知识点,涉及到正数、负数、分数等内容。
掌握有理数的概念、运算规则以及解题技巧,对学生学好数学具有重要意义。
本文将对有理数的相关知识点、考点和难点进行总结归纳。
一、有理数的定义有理数包括正数、负数和零,可以表示为分数的形式,例如2、-3、⅔等。
有理数集合为R。
二、有理数的运算1. 加法和减法:正数与正数相加减,负数与负数相加减,正数与负数相减,规则是符号相同则取绝对值相加减,符号不同则取绝对值相减,并保留绝对值的符号。
2. 乘法和除法:正数与正数相乘除,负数与负数相乘除,正数与负数相乘除,规则是符号相同得正数,符号不同得负数。
3. 混合运算:先乘除后加减,按照顺序进行运算。
三、有理数的比较1. 同号比较大小:绝对值大的有理数大。
2. 异号比较大小:正数大于负数。
3. 零的比较:整数大小比较,绝对值大的整数大;分数大小比较,分子乘分母再比较。
四、有理数的绝对值有理数a的绝对值表示为|a|,规则是正数的绝对值等于其本身,负数的绝对值等于去掉负号。
五、有理数的倒数有理数a的倒数表示为1/a,规则是一个非零有理数的倒数等于该有理数的倒数。
六、有理数的乘方有理数a的n次方表示为a^n,规则是一个有理数的正整数次方等于连乘自己n次,负整数次方等于该有理数的倒数的正整数次方。
七、有理数的分数表示在有理数中,每一个整数都可以表示为分数形式,并且满足分母为1。
八、有理数的约分有理数的约分就是将分子和分母同时除以一个相同的非零整数,使得所得分数的分子和分母没有公因数。
九、有理数的化简有理数的化简就是将其小数形式转化为分数形式。
十、有理数的加减运算有理数的加减运算可以通过化为相同的分母,再按照分数的加减法则进行。
十一、有理数的乘除运算有理数的乘除运算可以通过约分和化简,再按照分数的乘除法则进行。
十二、有理数的四则混合运算有理数的四则混合运算可以通过转化为分数形式,并根据运算法则进行运算。
有理数知识点考点难点总结归纳
有理数知识点考点难点总结归纳理数是数的一种,它包括整数、分数和小数。
在初中数学中,有理数是一个重要的知识点,学生需要掌握有理数的性质、运算和应用。
下面我来总结归纳一下有理数的知识点、考点和难点。
一、有理数的基本概念1.整数:正整数、负整数、零。
整数的性质:加法逆元、乘法逆元、绝对值。
2.分数:分子、分母、约分、通分、分数的比较大小、分数的性质。
3.小数:有限小数、无限循环小数、无限不循环小数。
二、有理数的运算1.四则运算:加法、减法、乘法、除法及其性质。
2.混合运算:不同运算符的运算顺序。
3.绝对值与大小比较:有理数的绝对值性质、绝对值大小的比较。
4.整数幂:整数的正、负、零幂及其性质。
5.分数的四则运算:加法、减法、乘法、除法及其性质。
6.有理数的乘方:有理数的正、负、零次幂及其性质。
三、有理数的应用1.推理与解答问题:通过有理数知识解答实际问题。
2.田字格法则:计算有理数乘法与除法的结果。
3.分数的应用:计算问题中的比例、百分数、利率等。
四、有理数的考点1.正数、负数、零的概念及其性质与运算。
2.分数的概念、运算、比较和应用。
3.分数与整数、分数与小数的转化。
4.有理数四则运算的规则与性质。
5.有理数乘方与有理数四则混合运算。
6.有理数的比较和绝对值的计算。
7.有理数运算在实际问题中的应用。
五、有理数的难点1.分数的约分、通分和比较大小。
2.分数与整数、小数的互化。
3.有理数四则运算的运算顺序。
4.有理数运算的特殊性质的把握。
6.有理数应用题的解答思路与方法。
以上是有理数的知识点、考点和难点的总结归纳。
通过系统学习和不断练习,学生可以掌握有理数的基本概念、运算规则和应用技巧,提高数学能力。
《有理数》章节知识点归纳总结
《有理数》章节知识点归纳总结有理数是数学中的一种数,包括整数、分数和小数。
这篇文章将对《有理数》这个章节的知识点进行归纳总结。
首先,我们先来了解一下有理数的概念。
有理数是可以表示为两个整数的比值的数,即可以写成分数形式的数。
有理数可以是正数、负数或零。
零、正整数、负整数、正分数和负分数统称为有理数。
那么,有理数的基本性质有哪些呢?1.有理数的加法和减法有理数的加法规则是:同号相加,异号相减。
例如:同号相加:2/3+4/3=6/3=2异号相减:2/3-4/3=-2/3有理数的减法是加法的逆运算,同样遵循同号相加,异号相减的规则。
2.有理数的乘法和除法有理数的乘法规则是:同号相乘得正,异号相乘得负。
例如:同号相乘:2/3*4/3=8/9异号相乘:-2/3*4/3=-8/9有理数的除法是乘法的逆运算,同样遵循同号相乘得正,异号相乘得负的规则。
3.有理数的绝对值和相反数有理数的绝对值是一个非负数,表示有理数到0的距离。
例如:,-5,=5,,1/2,=1/2有理数的相反数是指与该数绝对值相等,但符号相反的数。
例如:-5的相反数是5,1/2的相反数是-1/24.有理数的大小比较两个有理数相等的条件是它们的分子、分母相等或它们互为相反数。
例如:2/3和4/6是相等的,-1/5和1/(-5)是相等的。
当两个有理数的分母相同,并且它们的分子比较,较大的分子对应的有理数较大。
如果两个有理数的分母不同,可以通过通分来进行比较。
例如:3/4与5/4进行比较,可以通过通分,变为6/8与5/4进行比较。
此外,有理数与0的大小比较是通过绝对值进行的,绝对值大的有理数较大。
5.有理数的约分有理数可以进行约分,即将分子和分母的公因数约去。
例如:4/6可以约分为2/3,12/16可以约分为3/46.有理数的四则运算和整除性质有理数的四则运算遵循一些基本性质,例如加法和乘法满足交换律、结合律和分配律;乘法满足零乘法等。
有理数的整除性质是指,对于任意非零有理数a和b,存在整数q和r,使得a = bq + r,并且r的绝对值小于b的绝对值。
有理数知识点整理
有理数考点1、正数和负数正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数)注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数考点2、有理数1、有理数的分类按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。
2、0是整数不是分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。
(4)同一数轴的单位长度必须一致1、 相反数(重点)定义:只有符号不同....的两个数叫做相反数...。
(在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。
)相反数的表示方法及多重符号的化简:(1)⎪⎩⎪⎨⎧=-=>-<>>0a ,00a ,00,0则当则当则-当a a a a4、绝对值(难点)绝对值的定义:数轴上表示a 的点与原点的距离叫做a 的绝对值,记为 ∣a ∣,读作:a 的绝对值因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。
即:任何数的绝对值都是正数(0的绝对值是0)绝对值的代数定义:1)一个正数的绝对值是它本身2)一个负数的绝对值是它的相反数3)0的绝对值是0绝对值的计算规律:(1) 互为相反数的两个数的绝对值相等(2) 若b a =,则a=b 或a=-b ;(3) 若0,0,0===+b a b a 则5、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数(2)两个负数,绝对值大的反而小考点3、有理数的加减(重难点)1、有理数加法(1)同号两数相加,取相同的符号,并把其绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得零;(4)一个数与零相加,仍得这个数。
《有理数》章节知识点归纳总结
《有理数》章节知识点归纳总结有理数是数学中的一个重要分支,它是数轴上所有的整数、分数以及它们的相反数所组成的集合。
在现实生活中,有理数广泛应用于商业、经济、金融、科学、工程等领域。
了解有理数的基本概念、性质、运算规律等知识点,可以帮助我们更好地理解数学中的相关问题。
下面进行有理数章节知识点归纳总结。
一、有理数的基本概念1. 有理数的定义:有理数是指可以表示为两个整数的比值的数。
其中,分母不为零。
2. 有理数的分类:(1)正有理数:大于零的有理数,如1/2、3、7.8等。
(2)负有理数:小于零的有理数,如-1/2、-3、-7.8等。
(3)零:0既不是正有理数也不是负有理数,它是唯一的一个既是整数又是分数的数。
3. 有理数的表示方法:有理数可以用分数的形式表示,也可以用小数的形式表示。
对于有限不循环小数,可以用有限小数的形式表示;对于无限循环小数,可以用循环小数的形式表示。
二、有理数的性质1. 有理数的比较:对于任意两个不相等的有理数a和b,它们之间只有三种关系:a>b、a<b或a=b。
2. 有理数的绝对值:一个有理数a的绝对值是它到原点的距离,记作|a|。
其中,若a>0,则|a|=a;若a<0,则|a|=-a。
3. 有理数的反数:对于任意一个有理数a,它的相反数是一个数-b,使得a+b=0。
其中,a被称为-b的相反数,-a也被称为b的相反数。
4. 有理数的倒数:对于任意一个非零有理数a,它的倒数是一个数1/a,使得a×(1/a)=1。
5. 有理数的运算律:(1)加法交换律:a+b=b+a。
(2)加法结合律:(a+b)+c=a+(b+c)。
(3)乘法交换律:ab=ba。
(4)乘法结合律:(ab)c=a(bc)。
(5)分配律:a(b+c)=ab+ac。
三、有理数的运算1. 有理数加法:对于任意两个有理数a和b,它们的和记作a+b。
若a和b符号相同,则将它们的绝对值相加,并加上公共符号;若a和b符号不同,则将它们的绝对值相减,并取它们的绝对值的较大者,再加上符号。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。
下面我们来详细总结归纳一下有理数的知识点、考点和难点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。
二、有理数的分类1、按定义分类整数:正整数、0、负整数。
分数:正分数、负分数。
2、按性质分类正有理数:正整数、正分数。
负有理数:负整数、负分数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。
2、可以比较有理数的大小,数轴上右边的数总比左边的数大。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。
相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。
2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。
五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。
绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。
2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。
3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。
绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。
六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。
有理数综合复习(知识梳理、重难点、易错点)
有理数综合复习一、知识梳理1.相反意义的量:一是相反意义;二是相反意义上有量;0不表示没有2.有理数分类有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数或者 有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数零负整数分数⎩⎨⎧正分数负分数⎪⎩⎪⎨⎧⎩⎨⎧无限不循环小数无限循环小数无限小数有限小数小数 注:非负数包括:正数和零;非正数包括:负数和零;非正整数包括:0和负整数;非负整数包括:0和正整数;整数包括:0和正整数、负整数;分数即小数,无限不循环小数不是分数,也不是有理数;分数包括正分数、负分数,分数包括真分数、假分数、带分数、有限小数、无限循环小数。
形如......00010000010100100010.1是有规律的无限小数,但么有循环节,找不到循环节,无法化为分数,它既不是分数,也不是有理数,它是正无理数。
3.数轴三要素:原点、正方向和单位长度;4.相反数:只有符号不同的两个数叫做互为相反数.互为相反数的两个数的和为0,互为相反数的两个代数式的和为0,0的相反数0.5.绝对值:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值.一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值等于零.互为相反数的两个数绝对值相等.非负数的绝对值等于它本身,非正数的绝对值等于它的相反数。
分数⎭⎬⎫两个负数,绝对值大的反而小.数轴上A,B两点分别表示数a,b,则两点间的距离为|a-b|或|b-a|.6.实数的运算:①加法:同号取同号,绝对值相加,异号取(绝对值)大号,绝对值(大-小)相减.计算一般步骤:先确定符号,再算绝对值.加法交换律、结合律,在有理数范围内同样适合,即:两个数相加,交换加数的位置,和不变.式子表示为a+b=b+a;三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为(a+b)+c=a+(b+c).②减法:减去一个数等于加上这个数的相反数;字母表示:a-b=a+(-b).③加减混合运算,可以先运用减法法则把加减法统一成加法运算,再写成省略加号和括号形式,然后可运用加法运算律进行简便运算;④乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.乘积为1的两个数互为倒数.先确定符号,再算绝对值.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.几个数相乘,如果其中有一个因数为0,积等于0.乘法交换律:两个数相乘,交换因数的位置,积相等.即:ab=b a.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:(ab)c =a ( b c).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.⑤除法法则:除以一个不等于0的数,等于乘这个数的倒数.有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的.⑥有理数的乘方(1)求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在式子a n中,a叫做底数,n 叫做指数.(2)式子a n 表示的意义是n 个a 相乘(3)从运算上看式子a n ,可以读作a 的n 次方,从结果上看式子a n ,可以读作a 的n 次幂. 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.⑦有理数的混合运算中,运算顺序是:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.7.科学记数法、近似数科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数知识点考点难点
总结归纳
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
第一章有理数知识点总结归纳一、正数和负数?
⒈正数和负数的概念?
负数:比0小的数;正数:比0大的数。
0既不是正数,也不是负数?
注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。
强调:带正号的数不一定是正数,带负号的数不一定是负数。
2.具有相反意义的量?
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量.习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.
比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃
二、有理数?
1.有理数的概念?
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数?
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π
是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2.数轴
(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
注意:数轴是一条向两端无限延伸的直线;
原点、正方向、单位长度是数轴的三要素,三者缺一不可;
同一数轴上的单位长度要统一;
数轴的三要素都是根据实际需要规定的。
(2)数轴上的点与有理数的关系
所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
所有的有理数都可以用数轴上的点表示出来。
(3)利用数轴表示两数大小
在数轴上数的大小比较,右边的数总比左边的数大;
正数都大于0,负数都小于0,正数大于负数;
两个负数比较,距离原点远的数比距离原点近的数小。
(4)数轴上特殊的最大(小)数
最小的自然数是0,无最大的自然数;
最小的正整数是1,无最大的正整数;
最大的负整数是-1,无最小的负整数
3.相反数:
(1)只有符号不同的两个数叫做互为相反数;0的相反数是0;
(2)互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0
(3)相反数的求法:
求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b),化简得-5a-b);
求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)
(4)多重符号的化简
多重符号的化简规律:
“+”号的个数不影响化简的结果,可以直接省略;
“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
4.绝对值:
(1)绝对值的几何定义
数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|
(2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)
(3)若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数比大小:
(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
(3)大数-小数> 0,小数-大数< 0.
4.倒数:
(1)乘积为1的两个数互为倒数;注意:0没有倒数;
(2)若a,b互为倒数,则ab=1;
(3)求倒数
求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;
②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);
④倒数等于它本身的数是1或-1;
三、有理数的加减法
1、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
2.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b)+c=a+(b+c).
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
四、有理数的乘除法
1.有理数乘法法则:
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;
法则四:几个数相乘,如果其中有因数为0,则积等于0.
2.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
3.有理数除法法则:
(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0
4.有理数的加减乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。
五、有理数乘方
1.乘方的概念
(1)求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
乘方中,相同的因式叫做底数,相同因式的个数叫做指数。
记作:a n,在a n
中,a 叫做底数,n 叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
3.有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
4.科学记数法:
a 的形式(其中a大于或等于1且
把一个大于10的数记成10n
小于10,n是正整数),这种记数法叫科学记数法.
强调:a是整数数位只有一位的数.
5.近似数
(1)近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
(2)求近似数:按精确位的要求,用四舍五入法求近似数。
(3)有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.。