物化实验报告-合金相图

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二组分合金相图

实验者:黄浩2011011743 分1

同组实验者:李奕

实验日期:2013-9-28 提交报告日期:2013-10-1

实验老师:吉岩

1. 引言

1.1 实验目的

a.用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

b.掌握热电偶测量温度的基本原理和校正方法。

c.学会使用自动平衡记录仪。

1.2 实验原理

人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。二组分相图已得到广泛的研究和应用。固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。本实验研究的Bi-Sn系统就是这一种。在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。

由此可知,对组成一定的二组分低共熔混合物系统,可根据它的步冷曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。不同组成熔液的步冷曲线对应的相图如图2-6-2所示。严格地讲,Bi-Sn合金是固态部分互溶凝聚系统,只是由于普通的热分析方法灵敏度较低,无法测得固熔体相界数据,所以,我们通过本实验得到的是Bi-Sn二元合金的简化相图。

一般说来,根据步冷曲线即可定出相界,但对于复杂相图还必须有其它方法配合。才能画出相图。用热分析法(步冷曲线法)绘制相图时,被测体系必须时时处于或接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

2. 实验操作

2.1 实验药品、仪器型号及测试装置示意图

药品:纯Sn,纯Bi,质量分数为30%、57%和80%的Bi-Sn混合物,松香、液体石蜡。

仪器:热电偶1个、立式电炉2个、调压器2个、陶瓷套管5个、硬质玻璃试管5个、套管架1个、热电偶套管5支、沸点仪一套、自动平衡记录仪1台、计算机1台测试装置示意图:

2.2 实验条件

温度:20.7℃绝对气压:100.36kpa

2.3 实验操作步骤及方法要点

2.3.1 配制样品:

在实验前,样品已经由老师配好,套管等也已经安装到位。

2.3.2 仪器安装与调整:

实验前,实验老师已经调整完毕。

2.3.3 测量样品的步冷曲线:

本实验所用的两个电炉,都可作为熔融样品的电炉,但需注意,不能将冷样品放入热电炉中,也不要将样品在电炉中加热时间太长,否则温度太高会使得降温困难。

将样品放入小电炉内,旋动旋钮、缓慢升温,待听到电炉的“嚓嚓”声后,停止旋动,使起始升温速率缓和、防止受热不均而使套管开裂。待升温5min后,即可加快升温速率,电压可调至40V。大约20min后,样品熔化完全,用热电偶套管将金属样品搅拌均匀,迅速放入套管架中冷却。

调整好热电偶套管位置(位于金属样品中下部、且不与样品套管壁接触),之后就不要再摇动或打开塞子,以使降温缓慢、均匀地进行,打开记录仪开始记录冷却曲线,注意观察相变平台,待平台全部出现后,即可取出热电偶。

在绘制步冷曲线的同时,冷电炉应放入样品开始加热,热电炉应迅速用吹风机降温,冷却后也可以放入另外的样品进行预热,但预热速度应保持一定的梯度,防止加热时间过长,冷却困难,反而会浪费时间。在本实验中,我们按照纯Sn、80%Bi、57%Bi、30%Bi和纯Bi 的顺序,进行的步冷曲线的绘制。

在步冷曲线绘制完成后,可使用数据处理程序,寻找相变点。

2.3.4 测量水的沸点

沸点仪加热电压控制在30V左右,将热电偶热端插入沸点仪的套管中,待4min后,内部的水开始沸腾,待温度基本恒定后,测水的沸点,作为标定热电偶温度值的一个定点。3. 结果与讨论

3.1 原始实验数据

3.1.1 水的沸点

表1 水的沸点测量数据

标准值/℃测量值/℃校正误差/℃

100 98.76 +1.24

3.1.2 各样品的相变点

表2 不同样品的相变点测量数据

样品名称相变点T1/℃T1修正温度/℃相变点T2/℃T2修正温度/℃

纯Sn 223.2 224.44 --- ---

30%Bi 162.82 164.06 125.97 127.21

样品名称相变点T1/℃T1修正温度/℃相变点T2/℃T2修正温度/℃57%Bi 127.6 128.84 --- ---

80%Bi 179.28 180.52 132.70 133.94

纯Bi 243.07 244.31 --- ---

注1:修正温度=相变点温度+校正误差

注2:30%Bi和80%Bi两样品有两个相变点,这分别为两种固溶体的相变温度。

3.1.3 课本中的已知数据

表3 课本中的相图数据

温度t/℃210 162 128.84 100 60 20

ω(Bi)/% 5 15 21 11.6 5.3 1

温度t/℃200 175 128.84 100 50

ω(Bi)/%98.3 98 98.4 99 100

3.2 计算的数据、结果

由表2和表3,可绘制Bi-Sn 二元相图,如下所示:

图1 Bi-Sn 二元相图

3.3 讨论分析

3.3.1. 相图分析

因气压恒定,温度可变,因而使用公式f =K−Φ+1

a. 相区分析

FPE之上:液相区,Φ=1,f=2

FBP内:液相+固溶体α,Φ=2,f=1

相关文档
最新文档