直线与圆知识点总结及例题[精选.]

合集下载

(完整版)直线与圆知识归纳

(完整版)直线与圆知识归纳

直线与圆◆知识点归纳 直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=3.直线方程的几种形式能力提升斜率应用例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则cc f b b f a a f )(,)(,)(的大小关系例2.已知实数y x ,满足)11(222≤≤-+-=x x x y ,试求23++x y 的最大值和最小值两直线位置关系 两条直线的位置关系设两直线的方程分别为:222111:b x k y l +=或0:22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222111C y B x A C y B x A直线间的夹角:①若θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A o直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;距离问题1.平面上两点间的距离公式),(),,(222111y x P y x P 则 )()(121221y y x x P P -+-=2.点到直线距离公式点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=3.两平行线间的距离公式已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=4.直线系方程:若两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,则过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或)(222C y B x A +++0)(111=++C y B x A λ (λ为常数)对称问题1.中点坐标公式:已知点),(),,(2211y x B y x A ,则B A ,中点),(y x H 的坐标公式为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问题。

直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题Prepared on 22 November 2020直线与圆的位置关系一、知识点梳理1、直线与圆的位置关系:图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个例1、下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③例2、过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.例3、以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.例4、下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线例5.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切2、切线的判定:(1)根据切线的定义判定:即与圆有一个公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定:即与圆心的距离等于半径的直线是圆的切线. (3)根据切线的判定定理来判定:即经过半径的外端并且垂直于这条半径的直线是圆的切线.判定切线时常用的辅助线作法:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并没有明确有公共点时,辅助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径.例6、判断下列命题是否正确(1)经过半径的外端的直线是圆的切线(2)垂直于半径的直线是圆的切线;(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.例7.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切例8、如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.例9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.例10、如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.例11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心对于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中任意两个作为条件,就可以推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.例12、如图1,PA、PB是⊙O的两条切线、A、B为切点。

直线与圆知识点总结及例题[精选.]

直线与圆知识点总结及例题[精选.]

直线和圆知识点总结1、直线的倾斜角 :(1)定义:在平面直角坐标系中,对于一条与 x 轴相交的直线 l ,如果把 x 轴绕着交点按 逆时针方向转 到和直线 l 重合时所转的 最小正角 记为 ,那么 就 叫做直线的倾斜角。

当直线 l 与 x 轴重合或平行时,规定倾斜角为 0;( 2)倾斜角的范围0, 。

如(1)直线 xcos 3y 2 0的倾斜角的范围是 ___ (答:[0, ]U[5, ));66 倾斜角的取值范围是 0°≤ < 180°.倾斜角不是 90°的直线, 它的倾斜角的正切叫做这 条直线的斜率,常用 k 表示. 倾斜角是 90°的直线没有斜率 .2(2)过点 P ( 3,1),Q (0,m ) 的直线的倾斜角的范围 [ ,2],那么 m 值的范围是33 (答: m 2或m4 )2、直线的斜率 :(1)定义 :倾斜角不是 90°的直线,它的倾斜角的正切值叫这条直 线的斜率 k ,即 k =tan ( ≠90°) ;倾斜角为 90°的直线没有斜率; (2)斜率公式 : 经过两点 P 1 (x 1, y 1 )、 P 2 ( x 2 , y 2 )的直线的斜率为 k y1 y2x 1 x 2 ;(3)直线的方向 x1 x2向量 a r (1,k ) ,直线的方向向量与直线的斜率有何关系?( 4)应用 :证明三点共线: k AB k BC 。

如(1) 两条直线钭率相等是这两条直线平行的 _ 条件(答:既不 充分也不必要) ;(2)实数 x,y 满足 3x 2y 5 0 (1 x 3),则 y的最大值、最小值 x2分别为 ___ (答: , 1 )33、直线的方程:(1)点斜式:已知直线过点 (x 0,y 0) 斜率为 k ,则直线方程为y y 0 k (x x 0) , 它不包括垂直于 x 轴的直线。

直线的斜率 k 0 时,直线方程为y y 1;当直线的斜率 k 不存在时, 不能用点斜式求它的方程, 这时的直线方程为 x x 1.括垂直于 x 轴的直线。

学生版 高中数学必修2直线与圆的位置关系知识点总结经典例题与习题

学生版 高中数学必修2直线与圆的位置关系知识点总结经典例题与习题

高中数学必修2 直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 上 ; 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。

【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。

(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C :(x-a)2+(y-b)2=r 2(r>0),直线L :Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。

判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。

直线与圆知识点以及经典例题总结归纳

直线与圆知识点以及经典例题总结归纳

直线与圆知识点以及经典例题总结
归纳
直线与圆的知识点以及经典例题总结归纳
一、直线与圆的概念
1.直线:是一条无限长的抽象线段,它有一定的方向,并由两个端点构成。

2.圆:一种特殊的曲线,它的轨迹是一个闭合的曲线,它的圆心和半径是固定的,每一点到圆心的距离都是半径的长度。

二、直线与圆的性质
1.直线的性质:
(1)直线穿过的任意两点之间的距离相等。

(2)任意一点到直线的距离是不变的,且与直线上任意一点到此直线的距离相等。

2.圆的性质:
(1)圆的任意两点之间的距离都相等。

(2)任意一点到圆的距离都是固定的,且与圆心的距离相等,即为半径。

三、直线与圆的经典例题
1.已知圆O的半径为5,直线l与圆O相交于A、B两点,若∠BAO=60°,求直线l的斜率。

解:以O为原点,将坐标系原点平移至O,则AB 两点的坐标分别为(5,0),(-3.464,4.264),∴直线l的斜率为:k=4.264/3.464=1.237
2.已知圆O的半径为1,点P在圆O外,且P到圆O的距离为2,求直线OP的斜率。

解:以O为原点,将坐标系原点平移至O,则点P 的坐标为(2,0),∴直线OP的斜率为:k=0/2=0。

直线与圆位置关系知识点经典例题

直线与圆位置关系知识点经典例题
(1)证明:不论m取什么实数,直线l与圆恒相交于两点;
(2)求⊙C与直线l相交弦长的最小值.
4.计算直线被圆所截得的弦长的方法
1.几何法:运用弦心距、半径、半弦长构成的 计算,即
2.代数法于所有的平面弦长问题)
(注:当直线 斜率不存在时,请自行探索与总结;
直线与圆位置关系
1.课标要求
1.能根据给定直线、圆的方程,判断直线与圆的位置关系;
2.能用直线和圆的方程解决一些简单的问题;
3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
2.知识框架
3. 相离几何法
弦长
直线与圆的位置关系相交代数法
切割线定理
相切
直线与圆代数法
求切线的方法
几何法
变形题2:若点 是曲线 动点,则 的取值范围是
(对称问题)11.圆 关于直线 对称的圆 的方程为:( )
A. B.
C. D.
变试题:圆 关于直线 对称的圆 的方程为
(圆中的弦长问题)1. 直线 与圆 相交于 两点,若 ,
则 的取值范围是( )
A. B. C. D.
2.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).
(1)有两个公共解(交点),即 直线与圆相交
(2)有且仅有一个解(交点),也称之为有两个相同实根,即 直线与圆相切
(3)无解(交点),即 直线与圆相离
3.等价关系
相交
相切
相离
练习
(位置关系)1.已知动直线 和圆 ,试问 为何值时,直线与圆相切、相离、相交?
(位置关系)2.已知点 在圆 外,则直线 与圆 的位置关系是()
=
练习

直线与圆知识点总结及例题

直线与圆知识点总结及例题

直线与圆知识点总结及例题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。

如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ); 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系(4)应用:证明三点共线: AB BC k k =。

如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则xy 的最大值、最小值分别为______(答:2,13-) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

高三总复习直线与圆的方程知识点总结及典型例题

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。

2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。

当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。

几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。

②任何一个关于x 、y 的二元一次方程都表示一条直线。

5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。

二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。

高中数学直线和圆知识点总结+习题

高中数学直线和圆知识点总结+习题

直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。

直线与圆知识点总结与例题

直线与圆知识点总结与例题

直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为,那么就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围50, 。

如(1)直线x cos 3y 2 0 的倾斜角的范围是____(答:,,);[0 ] [ ) 6 6 倾斜角的取值范围是0°≤<180°. 倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示. 倾斜角是90°的直线没有斜率.2(2)过点P( 3,1), Q(0,m) 的直线的倾斜角的范围], 那么m[ , 值的范围是3 3______(答:m 2或m 4)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan ( ≠90°) ;倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点y y1 2 x xP1 (x1, y1 )、P2 (x2, y2 ) 的直线的斜率为k 1 2 ;(3)直线的方向x x1 2向量 a (1,k ),直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:k k 。

如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不AB BC充分也不必要);(2)实数x, y满足3x 2y 5 0 (1 x 3),则yx的最大值、最小值分别为______(答:23 , 1)3 、直线的方程:(1 )点斜式:已知直线过点(x0 , y0 ) 斜率为k,则直线方程为y y0 k(x x0) , 它不包括垂直于x 轴的直线。

直线的斜率k 0 时,直线方程为y y ;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为x x1 .1(2)斜截式:已知直线在y 轴上的截距为b和斜率k ,则直线方程为y kx b , 它不包括垂直于x 轴的直线。

(完整版)直线与圆知识点及经典例题(含答案)

(完整版)直线与圆知识点及经典例题(含答案)

(完整版)直线与圆知识点及经典例题(含答案)圆的方程、直线和圆的位置关系【知识要点】一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆(一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。

王新敞说明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。

就是说要确定圆的方程,必须具备三个独立的条件王新敞确定,,a b r ,可以根据条件,利用待定系数法来解决。

(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。

可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆?将方程022=++++F Ey Dx y x 左边配方得:22224()()22D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 224D E F+-,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。

圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零;(2)没有xy 这样的二次项。

(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。

直线与圆知识点及经典例题(含答案)

直线与圆知识点及经典例题(含答案)

圆的方程、直线和圆的位置关系【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一) 圆的标准方程(x a)2 (y b)2『这个方程叫做圆的标准方程。

-____ 2 2 2说明:1、若圆心在坐标原点上,这时 a b 0,则圆的方程就是 x y r 。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要a ,b ,r 三个量确定了且r > 0,圆的方程就给定了。

就是说要确定圆的方程,必须具备三个独立的条件-确定a ,b ,r ,可以根据条件,利用待定系数法来解决。

(二) 圆的一般方程2 2 2 2 2 2 2 2将圆的标准方程(x a) (y b) r ,展开可得x y 2ax 2by a b r。

可见,任何一个2圆的方程都可以写成 :X2y Dx Ey F 02 2问题:形如xy DxEy F 0的方程的曲线是不是圆?2 2FD 2E 2 J D ‘ E 4F将方程X y Dx Ey左边配方得:2)2) 2D E0表示以 22为圆2 2(1)当 D E 4F >° 时,方程(1 )与标准方程比较,方程xyDx Ey FD 2E 2 4F心,以2为半径的圆。

DE DE⑵当DmE —4F=Q 时,方fc a +y a +Dx+Ey+F = OR 有实数解汁亍 厂亍 所以表示一个点(亍-計2 2(3)当D 2E 24F v 0时,方程x y Dx Ey F °没有实数解,因而它不表示任何图形。

圆的一般方程的定义:2 2当D 2 E 2 4F >°时,方程x y Dx Ey F °称为圆的一般方程. 圆的一般方程的特点:22(1) X 和y 的系数相同,不等于零;(2) 没有xy 这样的二次项。

(三) 直线与圆的位置关系 1、 直线与圆位置关系的种类 (1)相离---求距离; ⑵相切---求切线; (3)相交---求焦点弦长。

直线与圆知识点、例题

直线与圆知识点、例题

直线和圆的方程知识总结一、直线的方程 1、倾斜角:注:范围0≤α<π,若x l //轴或与x 轴重合时,α=00。

2、斜率:(1) k=tan α(2)已知L 上两点P 1(x 1,y 1) P 2(x 2,y 2) ⇒k=1212x x y y --当1x =2x 时,α=900,κ不存在。

几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx②任何一个关于x 、y 的二元一次方程都表示一条直线。

5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) (2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。

二、两直线的位置关系2、L 1到L 2的角为0,则12121tan k k k k ∙+-=θ(121-≠k k )3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b) 一般方法:如图:设P 点关于L 的对称点为P 0(x 0,y 0) 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程 解出P 0(x 0,y 0)P三、简单的线性规划不等式表示的区域AX+BY+C=0约束条件、线性约束条件、目标函数、线性目标函数、线性规划,可行解,最优解。

圆与直线的位置关系知识点总结及练习

圆与直线的位置关系知识点总结及练习

圆与直线的位置关系知识点总结及练习例1:设圆C :225x y +=,试判断圆C 和下列直线的相交情形。

(1)1:10L x y -+= (2)2:250L x y --= (3)3:34150L x y +-=。

【练习题】设圆C 和直线L 1、 L 2、 L 3的方程式如下: 试判断它们的相交情形。

C :22(1)8x y ++=,1:3L x y +=-, 2:0L x y +=,3:3L x y +=例2:已知圆C 和直线L 的方程式如下: 22:5C x y +=、:10L x y -+=试问圆C 和直线L 是否相交?若相交, 求出它们的交点。

【练习题】设圆C :22(1)8x y ++=,直线:3L x y +=,试问圆C 和直线L 是否相交?若相交, 求出它们的交点例3:试就实数k 的范围,讨论直线L :y x k =+ 和圆22:2C x y += 的相交情形。

【练习题】就实数m 的范围讨论直线L :2y mx =+和圆22:1C x y +=的相交情形。

例4:求通过圆x 2+y 2=5上一点P (1, 2)的切线方程式。

例5:求通过圆(x -1)2+(y+2)2=25上一点P (4, 2)且与圆相切的直线方程式。

【练习题】(1)求通过P (1, -2)且与圆x 2+y 2=5相切的直线方程式。

(2)求通过P (1, 4)且与圆x 2+y 2-2x +2y -23=0相切的直线方程式。

例6:设圆C :(x -3)2+(y -2)2=8,求通过圆外一点P (-1, 2)且与圆C 相切的直线方程式。

例7:求过点P (5, 15)且与圆C : x 2+y 2=25相切的直线方程式。

【练习题】(1)求过(2,4)-P 且与圆2210x y +=相切的直线方程式。

(2)求过(4,3)P 且与圆22(2)4x y -+=相切的直线方程式.例8:有一半径60公尺的圆形碉堡,甲站在碉堡的正北方与碉堡中心距离100公尺的A处,乙从碉堡中心向东走,要走多少公尺才会看到甲?【练习题】有一圆形碉堡,甲站在碉堡的正北方与碉堡中心距离40公尺的A处,乙从碉堡中心向西走,要走30公尺才刚好看到甲,碉堡的半径为多少公尺?。

直线与圆知识点以及经典例题总结归纳

直线与圆知识点以及经典例题总结归纳

一. 知识框图:圆圆的有关性质直线和圆的位置关系圆和圆的位置关系正多边形和圆⎧⎨⎪⎪⎩⎪⎪圆的有关性质圆的定义点和圆的位置关系(这是重点)不在同一直线上的三点确定一个圆圆的有关性质轴对称性—垂径定理(这是重点)旋转不变性圆心角、弧、弦、弦心距间的关系圆心角定理圆周角定理(这是重点)圆内接四边形(这是重点)⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪直线和圆的位置关系相离相交相切切线的性质(这是重点)切线的判定(这是重点)弦切角(这是重点)和圆有关的比例线段(这是重点难点)⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪圆和圆的位置关系外离内含相交相切内切(这是重点)外切(这是重点)两圆的公切线⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪正多边形和圆正多边形和圆正多边形定义正多边形和圆正多边形的判定及性质正多边形的有关计算(这是重点)圆的有关计算圆周长、弧长(这是重点)圆、扇形、弓形面积(这是重点)圆柱、圆锥侧面展开图(这是重点)⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪直线与圆的位置关系教学目标:1.了解直线与圆的三种位置关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法。

2.了解切线与割线的概念。

3.了解圆与圆的三种位置关系,掌握运用圆心到圆心的距离的数量关系来确定圆与圆的三种位置关系的方法。

重点:理解直线与圆、圆与圆的相交、相切、相离三种位置关系。

难点:直线与圆、圆与圆的三种位置关系判断方法的运用;【知识精要】知识点1 直线与圆的位置关系的定义及有关概念(1)圆的割线:直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线。

(2)圆的切线:直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。

(3)直线和圆相离:直线和圆没有公共点时,叫做直线和圆相离。

例题1下列说法正确的有()①圆的切线只有一条;②若直线与圆不相切,则直线与圆相交;③若直线与圆有公共点,则直线与圆相交;④过圆的内接三角形的顶点的直线是圆的切线。

直线与圆知识点总结及例题

直线与圆知识点总结及例题

直线和圆知识点总结1、直线的倾斜角:1定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线l 与x 轴重合或平行时,规定倾斜角为0;2倾斜角的范围[)π,0.如1直线023cos =-+y x θ的倾斜角的范围是____答:5[0][)66,,πππ; 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______答:42≥-≤m m 或2、直线的斜率:1定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan αα≠90°;倾斜角为90°的直线没有斜率;2斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;3直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系4应用:证明三点共线: AB BC k k =.如1 两条直线钭率相等是这两条直线平行的____________条件答:既不充分也不必要;2实数,x y满足3250x y --= 31≤≤x ,则x y 的最大值、最小值分别为______答:2,13-3、直线的方程:1点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.2斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线.3两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线.若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.4截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x,它不包括垂直于坐标轴的直线和过原点的直线.5一般式:任何直线均可写成0Ax By C ++=A,B 不同时为0的形式.如1经过点2,1且方向向量为v=-1,3的直线的点斜式方程是___________答:12)y x -=-;2直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______答:(1,2)--;3若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______答:1a > 提醒:1直线方程的各种形式都有局限性.如点斜式不适用于斜率不存在的直线,还有截距式呢;2直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条答:34.设直线方程的一些常用技巧:1知直线纵截距b ,常设其方程为y kx b =+;2知直线横截距0x ,常设其方程为0x my x =+它不适用于斜率为0的直线;3知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;5与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解.5、点到直线的距离及两平行直线间的距离:1点00(,)P x y 到直线0Ax By C ++=的距离d =;2两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:1平行⇔12210A B A B -=斜率且12210B C B C -≠在y 轴上截距;2相交⇔12210A B A B -≠;3重合⇔12210A B A B -=且12210B C B C -=.提醒:1 111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件 为什么2在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;3直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=.如1设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合答:-1;12;31且m m ≠≠-;3;2已知直线l 的方程为34120x y +-=,则与l 平行,且过点—1,3的直线方程是______答:3490x y +-=;3两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____答:12a -<<;4设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____答:垂直;5已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____答:平行;6直线l 过点1,0,且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________答:43401x y x +-==和7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:1当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;2当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称中心对称和轴对称问题——代入法:如1已知点(,)M a b 与点N x轴对称,点P 与点N y 轴对称,点Q 与点P 直线0x y +=对称,则点Q 的坐标为_______答:(,)b a ;3点A4,5直线l 的对称点为B-2,7,则l 的方程是_________答:3y=3x +;4已知一束光线通过点A-3,5,经直线l :3x -4y+4=0反射.如果反射光线通过点B2,15,则反射光线所在直线的方程是_________答:18x 510y -=+;5已知ΔABC 顶点A3,-1,AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程答:29650x y +-=;6直线2x ―y ―4=0上有一点P,它与两定点A4,-1、B3,4的距离之差最大,则P的坐标是______答:5,6;7已知A x ∈轴,:B l y x ∈=,C2,1,ABC 周长的最小值为______答:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解.9.1直线过定点.如直线3m+4x+5-2my+7m-6=0,不论m 取 何值恒过定点-1,22直线系方程1与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 m ≠C2 与已知直线Ax+By+C=0垂直的直线的设法:Bx-Ay+m=03经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法:1A x+1B y+1C +λ2A x+2B y+2C =0λ为参数,不包括2l3对称 1点点对称中点坐标公式2线点对称转化为点点对称,或代入法,两条直线平行3点线对称点和对称点的连线被线垂直平分,中点在对称轴上、kk’=-1二个方程4线线对称求交点,转化为点线对称10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=.⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么 0,A C =≠且0B =且2240D E AF +->;⑶圆的参数方程:{cos sin x a r y b r θθ=+=+θ为参数,其中圆心为(,)a b ,半径为r .圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤.⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如1圆C 与圆22(1)1x y -+=直线y x =-对称,则圆C 的方程为____________答:22(1)1x y ++=;2圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________答:9)3()3(22=-+-y x 或1)1()1(22=++-y x ;3已知(P -是圆{cos sin x r y r θθ==θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________答:224x y +=;23π;40x -+=;4如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____答:0,2;5方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____答:21<k ;6若{3cos {(,)|3sin x M x y y θθ===θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________答:(-11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,1点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;2点M 在圆C 内⇔ ()()22200CM r x a y b r <⇔-+-<;3点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=.如点P5a+1,12a 在圆x -12+y 2=1的内部,则a 的取值范围是______答:131||<a12、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-= ()0r >有相交、相离、相切.可从代数和几何两个方面来判断:1代数方法判断直线与圆方程联立所得方程组的解的情况:0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;2几何方法比较圆心到直线的距离与半径的大小:设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切.提醒:判断直线与圆的位置关系一般用几何方法较简捷.如1圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为____答:相离;2若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____答:2;3直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于 答:4一束光线从点A -1,1出发经x 轴反射到圆C:x-22+y-32=1上的最短路程是 答:4;5已知(,)(0)M a b ab ≠是圆222:O x y r +=内一点,现有以M 为中点的弦所在直线m 和直线2:l ax by r +=,则A .//m l ,且l 与圆相交 B .l m ⊥,且l 与圆相交C .//m l ,且l 与圆相离D .l m ⊥,且l 与圆相离答:C ;6已知圆C :22(1)5x y +-=,直线L :10mx y m -+-=.①求证:对m R ∈,直线L 与圆C总有两个不同的交点;②设L 与圆C 交于A 、B 两点,若AB =求L 的倾斜角;③求直线L 中,截圆所得的弦最长及最短时的直线方程. 答:②60或120 ③最长:1y =,最短:1x =13、圆与圆的位置关系用两圆的圆心距与半径之间的关系判断:已知两圆的圆心分别为12O O ,,半径分别为12,r r ,则1当1212|O O r r |>+时,两圆外离;2当1212|O O r r |=+时,两圆外切;3当121212<|O O r r r r -|<+时,两圆相交;4当1212|O O |r r |=|-时,两圆内切;5当12120|O O |r r ≤|<|-时,两圆内含.如双曲线22221x y a b-=的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为 答:内切14、圆的切线与弦长:1切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆222()()x a y b R -+-=上一点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=,一般地,如何求圆的切线方程抓住圆心到直线的距离等于半径;②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法抓住圆心到直线的距离等于半径来求;③过两切点的直线即“切点弦”方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:过圆220x y Dx Ey F ++++=222()()x a y b R -+-=外一点00(,)P x y 所引圆的切线的长为如设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为__________答:22(1)2x y -+=;2弦长问题:①圆的弦长的计算:垂径定理常用弦心距d ,半弦长12a及圆的半径r 所构成的直角三角形来解:2221()2r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆公共弦系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程..15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等16. 圆的切线和圆系方程1.过圆上一点的切线方程:圆222r y x =+,圆上一点为00,y x ,则过此点的切线方程为0x x+ 0y y= 2r 课本命题.圆222r y x =+,圆外一点为00,y x ,则过此点的两条切线与圆相切,切点弦方程为200r y y x x =+.2.圆系方程:①设圆C1∶011122=++++F y E x D y x 和圆C2∶022222=++++F y E x D y x .若两圆相交,则过交点的圆系方程为11122F y E x D y x +++++λ22222F y E x D y x ++++=0λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程.②设圆C ∶022=++++F Ey Dx y x 与直线l :Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为F Ey Dx y x ++++22+λAx+By+C=0λ为参数.例题 1经过点P 2,m 和Q 2m ,5的直线的斜率等于12,则m 的值是 BA .4B .3C .1或3D .1或4变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ--2. 已知直线l 过P -1,2,且与以A -2,-3、B3,0为端点的线段相交,求直线l 的斜率的取值范围.点评:要用运动的观点,研究斜率与倾斜角之间的关系 答案: ⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动CD 斜率k 的变化范围.答案:⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 1.求a 为何值时,直线l 1:a +2x +1-ay -1=0与直线l 2:a -1x +2a +3y +2=0互相垂直答案:a=-12.求过点P 1,-1,且与直线l 2:2x +3y +1=0垂直的直线方程.答案:3x -2y -5=0.例2.求过定点P 2,3且在两坐标轴上的截距相等的直线方程.例3.已知△ABC 的顶点A 1,-1,线段BC 的中点为D 3,23.1求BC 边上的中线所在直线的方程;2若边BC 所在直线在两坐标轴上的截距和是9,求BC 所在直线的方程. 例4.方程m 2-2m -3x +2m 2+m -1y =2m -6满足下列条件,请根据条件分别确定实数m 的值.1方程能够表示一条直线;答案:m 1-≠2方程表示一条斜率为-1的直线.答案:m 2-=例5.直线l 的方程为a -2y =3a -1x -1a ∈R .1求证:直线l 必过定点;答案:15,352若直线l 在两坐标轴上的截距相等,求l 的方程;答案:5x +5y -4=0 3若直线l 不过第二象限,求实数a 的取值范围.答案:分斜率存在与不存在例1:求点A-2,3到直线 l :3x+4y+3=0的距离 d= . 例2:已知点a,2到直线l: x-y+1=0的距离为2,则a= . a <0例3:求直线 y=2x+3直线l : y=x+1对称的直线方程.类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.变式1:求过两点)4,1(A 、)2,3(B 且被直线0=y 平分的圆的标准方程. 变式2:求过两点)4,1(A 、)2,3(B 且圆上所有的点均直线0=y 对称的圆的标准方程.类型二:切线方程、切点弦方程、公共弦方程例4 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-k k .解得43=k ,所以()4243+-=x y ,即01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .类型三:弦长、弧问题例7、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长. 例8、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB . 例9、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例10、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.类型五:圆与圆的位置关系 例13、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例14:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条. 类型六:圆中的最值问题例15:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例16 1已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.2已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例17:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 . 解:设),(y x P ,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为)4,3(C ,则325min =-=-=r OC OP ,∴22PB PA +的最小值为268322=+⨯.。

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.设MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m -≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P作圆224x y+=的两条切线,切点分别为A、B,则直线AB的方程为_______.题型五:圆中最值问题【例1】已知l:4y x=+,分别交x,y轴于A,B两点,P在圆C:224x y+=上运动,则PAB△面积的最大值为()A.8-B.16-C.8+D.16+【答案】C【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离d =O 的半径2r =,()4,0A -,()0,4B ,则AB =PAB △面积的最大值为()1282⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为的交点以及点【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大PM 3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。

如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ); 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:AB BC k k =。

如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则xy 的最大值、最小值分别为______(答:2,13-) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.(2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。

(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。

若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x ,它不包括垂直于坐标轴的直线和过原点的直线。

(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。

如(1)经过点(2,1)且方向向量为v =(-1,3)的直线的点斜式方程是___________(答:12)y x -=-);(2)直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);(3)若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______(答:1a >)提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点。

如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3)4.设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

5、点到直线的距离及两平行直线间的距离:(1)点00(,)P x y 到直线0Ax By C ++=的距离d =;(2)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =。

6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:(1)平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距);(2)相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=。

提醒:(1) 111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件!为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=。

如(1)设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合(答:-1;12;31且m m ≠≠-;3);(2)已知直线l 的方程为34120x y +-=,则与l 平行,且过点(—1,3)的直线方程是______(答:3490x y +-=);(3)两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____(答:12a -<<);(4)设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____(答:垂直);(5)已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____(答:平行);(6)直线l 过点(1,0),且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________(答:43401x y x +-==和)7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称(中心对称和轴对称)问题——代入法:如(1)已知点(,)M a b 与点N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线0x y +=对称,则点Q 的坐标为_______(答:(,)b a );(3)点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是_________(答:3y=3x +);(4)已知一束光线通过点A(-3,5),经直线l :3x -4y+4=0反射。

如果反射光线通过点B(2,15),则反射光线所在直线的方程是_________(答:18x 510y -=+);(5)已知ΔABC 顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程(答:29650x y +-=);(6)直线2x ―y ―4=0上有一点P,它与两定点A(4,-1)、B(3,4)的距离之差最大,则P的坐标是______(答:(5,6));(7)已知A x ∈轴,:B l y x ∈=,C (2,1),ABC 周长的最小值为______(答:。

提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。

9.(1)直线过定点。

如直线(3m+4)x+(5-2m)y+7m-6=0,不论m 取 何值恒过定点(-1,2)(2)直线系方程(1)与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 (m ≠C)( 2 ) 与已知直线Ax+By+C=0垂直的直线的设法: Bx-Ay+m=0(3)经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法:1A x+1B y+1C +λ(2A x+2B y+2C )=0(λ为参数,不包括2l )(3)关于对称 (1)点关于点对称(中点坐标公式)(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行)(3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、kk’= -1二个方程)(4)线关于线对称(求交点,转化为点关于线对称)10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=。

⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么? (0,A C =≠且0B =且2240D E AF +->));⑶圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。

圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤。

⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如(1)圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________(答:22(1)1x y ++=);(2)圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________(答:9)3()3(22=-+-y x 或1)1()1(22=++-y x );(3)已知(P -是圆{cos sin x r y r θθ==(θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________(答:224x y +=;23π;40x -+=);(4)如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____(答:[0,2]);(5)方程x 2+y 2-x+y+k=0表示一个圆,则实数k的取值范围为____(答:21<k );(6)若{3cos {(,)|3sin x M x y y θθ===(θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________(答:(-) 11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b rr +-=>,(1)点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;(2)点M 在圆C 内⇔ ()()22200CM r x a y b r <⇔-+-<;(3)点M 在圆C 上()20CM r x a ⇔=⇔- ()220y b r +-=。

相关文档
最新文档