2018-2019年贵州省遵义市新蒲新区八年级(上)期末数学试卷(解析版)
贵州省遵义市2018-2019学年人教版八年级上学期数学期末考试试卷(解析版)
贵州省遵义市2018-2019学年八年级上学期数学期末考试试卷一、选择题1.下列长度的线段中,可以组成三角形的是( )A.1,2,3B.2,5,8C.3,4,5D.3,6,9【答案】C【考点】三角形三边关系【解析】【解答】解:A.∵1+2=3,故不能组成三角形,A不符合题意;B.∵2+5<8,故不能组成三角形,B不符合题意;C.∵3+4>5,故能组成三角形,C符合题意;D.∵3+6=9,故不能组成三角形,D不符合题意;故答案为:C.【分析】根据三角形三边的关系:三角形两边之和大于第三边,由此逐一分析即可得出答案.2.下列图案中,不是轴对称图形的是( )A. B. C. D.【答案】B【考点】轴对称图形【解析】【解答】解:A.是轴对称图形;A不符合题意;B.不是轴对称图形;B符合题意;C.是轴对称图形;C不符合题意;D.是轴对称图形;D不符合题意;故答案为:B.【分析】轴对称图形定义:如果一个图形沿着一条直线对折后两部分完全重合,这条直线叫做对称轴;由此逐一分析即可得出答案.3.下列运算正确的是( )A.3a + 2b = 5aB.(a + b) = a + bC.(-a b ) = a bD.1 - 4m + 4m = (2m -1) 【答案】 D【考点】完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A.∵3a2与2b3不是同类项,不能合并,故错误;A不符合题意;B.∵(a+b)2=a2+2ab+b2,故错误;B不符合题意;C.∵(-a-2b3)3=-a-6b9,故错误;C不符合题意;D.∵1-4m+4m2=(2m-1)2,故正确;D符合题意;故答案为:D.【分析】A根据同类项定义先判断是不是同类项,从而判断错误;B根据完全平方和公式展开即可知道错误;C根据积的乘方公式计算即可判断错误;D根据完全平方和公式展开即可知道正确;4.分式有意义,则x 的取值范围是( )A.x≠-3B.x≠3C.x≠±3D.x≠9【答案】C【考点】分式有意义的条件【解析】【解答】解:依题可得:x2-9≠0,解得:x≠±3.故答案为:C.【分析】根据分式有意义的条件:分母不为0,列式计算即可得出答案.5.已知等腰三角形的一个外角是80°,则它的顶角是( )A.20°B.100°C.20°或100°D.20°或80°【答案】B【考点】等腰三角形的性质【解析】【解答】解:①当外角是等腰三角形顶角的外角;∵外角为80°,∴顶角为100°;②当外角是等腰三角形底角的外角;∵外角为80°,∴底角为100°,∴100°+100°=200°>180°,∴不符合题意;综上所述:等腰三角形的顶角为100°.故答案为:B.【分析】根据题意分情况讨论:①当外角是等腰三角形顶角的外角;②当外角是等腰三角形底角的外角;再由三角形外角性质求解即可得出答案.6.如图,已知AD∥BC,AB=CD,AC,BD 交于点O,另加一个条件不能使△ABD≌△CDB 的是( )A.AO=COB.AD=BCC.AC=BDD.OB=OD【答案】C【考点】全等三角形的判定与性质【解析】【解答】解:A.∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,又∵AO=CO,∴△ADO≌△CBO(AAS),∴AD=BC,又∵∠ADO=∠CBO,BD=DB,∴△ABD≌△CDB(SAS);A不符合题意;B.∵AD∥BC,∴∠ADO=∠CBO,又∵AD=BC,BD=DB,∴△ABD≌△CDB(SAS);B不符合题意;C.中AC=BD不能证明△ABD≌△CDB;C符合题意;D.∵AD∥BC,∴∠ADO=∠CBO,又∵BO=DO,∠AOD=∠COB,∴△ADO≌△CBO(ASA),∴AD=BC,又∵∠ADO=∠CBO,BD=DB,∴△ABD≌△CDB(SAS);D不符合题意;故答案为:C.【分析】A.根据平行线的性质得∠DAO=∠BCO,∠ADO=∠CBO,再由全等三角形判定AAS即可得△ADO≌△CBO,由全等三角形性质得AD=BC,再由全等三角形判定SAS即可得证;B.根据平行线的性质得∠ADO=∠CBO,由全等三角形判定SAS即可得证;C.中AC=BD不能证明△ABD≌△CDB;D.根据平行线的性质得∠ADO=∠CBO,再由全等三角形判定ASA即可得△ADO≌△CBO,由全等三角形性质得AD=BC,再由全等三角形判定SAS即可得证;由全等三角形判定SAS即可得证.7.下列正多边形不能镶嵌为平面图形的是( )A.正三角形B.正方形C.正五边形D.正六边形【答案】C【考点】平面镶嵌(密铺)【解析】【解答】解:A.正三角形每个内角为60°,能整除360°,故能镶嵌,A不符合题意;B.正方形每个内角为90°,能整除360°,故能镶嵌,B不符合题意;C.正五边形每个内角为108°,不能整除360°,故不能镶嵌,C符合题意;D.正六边形每个内角为120°,能整除360°,故能镶嵌,D不符合题意;故答案为:C.【分析】能镶嵌的正多边形,应该满足内角能被360°整除,逐一分析即可.8.小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【考点】多边形内角与外角【解析】【解答】解:∵1000°÷180°=5……100°,∴5+1+2=8.故答案为:C.【分析】根据多边形内角和公式可知内角和应该是180°的倍数,且每一个内角应该大于0°而小于180°,根据这些条件分析求解即可.9.如果mx2 + 4x + m2 + 3 = 0 是一个完全平方式,则m 的值是( )A.m=±1B.m=-1C.m=0D.m=1【答案】 D【考点】完全平方公式及运用【解析】【解答】解:依题可得:m=1,∴x2+4x+4=(x+2)2,故答案为:D.【分析】根据完全平方式求解即可得出答案.10.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55 公里.通车前需走水陆两路共约340 公里,通车后,约减少时间2.5 小时,平均速度是原来的6 倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( )A. B.C. D.【答案】A【考点】分式方程的实际应用【解析】【解答】解:由题可知通车后的平均时速为6x千米/小时,依题可得:.故答案为:A.【分析】根据等量关系式:通车前的时间-通车后的时间=2.5,列出方程即可.11.如图,从边长为a 厘米的正方形纸片中减去边长为b 厘米的小正方形,将剪下的图形从虚线处剪开,再拼成一个矩形(长方形).试求这个“新矩形”的面积,下列说法表述正确的是( )A.因式分解a - b = (a + b)(a - b)B.整式乘法a - b = (a + b)(a - b)C.因式分解(a + b)(a - b) = a - bD.整式乘法a ± 2ab + b = (a ± b)【答案】A【考点】平方差公式的几何背景【解析】【解答】解:依题可得:“新矩形”的长为a+b,宽为a-b,∴S=(a+b)(a-b)=a2-b2,故答案为:A.【分析】根据题意可得新矩形的长为a+b,宽为a-b,再由矩形面积公式计算即可.12.如图,点B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用m 的代数式表示△ABE 的面积( )A. B.m C.m D.3m【答案】A【考点】三角形的外角性质,等边三角形的性质,直角三角形的性质【解析】【解答】解:作AG⊥BE交BE于点G,如图:∵△ABC是等边三角形,∴∠ACB=60°,又∵AC=CD,∴∠CAD=∠CDA,∵∠ACB=∠CAD+∠CDA=60°,∴∠CAD=∠CDA=30°,在Rt△AGD中,∵∠CDA=30°,AD=m,∴AG=,∴S△ABE=·AG·BE,=××(3+3+m),=.故答案为:A.【分析】作AG⊥BE交BE于点G,根据等边三角形的性质和三角形外角性质可得∠CDA=30°,在Rt△AGD 中,根据三角形性质得AG=,再由S△ABE=·AG·BE计算即可.二、填空题13.计算________【答案】4【考点】幂的乘方【解析】【解答】解:∵()-2=(2-1)-2=22=4.故答案为:4.【分析】根据幂的运算法则计算即可得出答案.14.分解因式:2m -32m5=________;【答案】【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】解:原式=2m(1-16m4),=2m(1-4m2)(1+4m2),=2m(1-2m2)(1+2m2)(1+4m2).故答案为:2m(1-2m2)(1+2m2)(1+4m2).【分析】根据因式分解的方法:先提公因式,在平方差公式分解即可.15.已知a+b=3,ab=2,则a2+b2=________;【答案】5【考点】代数式求值【解析】【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2-2ab,=9-4,=5.故答案为:5.【分析】先将a2+b2转化为(a+b)2-2ab,再将已知条件代入、计算即可.16.若分式有增根,则m=________;【答案】0【考点】分式方程的增根【解析】【解答】解:方程两边同时乘以3(x-2)得:9m+x-2=0,解得:x=2-9m,∵原分式方程有增根,∴2-9m=2,解得:m=0.故答案为:0.【分析】先将分式方程转化成整式方程,即9m+x-2=0,解之得x=2-9m,再由原分式方程有增根,即2-9m=2,解之即可.17.如图,在∠AOB 的边OA、OB 上取点M、N,连接MN,P 是△MON 外角平分线的交点,若MN=2,S△PMN=2,S△OMN=7.则△MON 的周长是________;【答案】11【考点】全等三角形的判定与性质,角平分线的性质【解析】【解答】解:如图:作PE⊥OB,PG⊥OA,PF⊥MN,连结OP,∵PM、PN分别平分∠AMN,∠BNM,∴PF=PG=PE,∵S△PMN=·MN·PF=2,MN=2,∴PF=PG=PE=2,△GMP≌△GFP,△FPN≌△EPN,△OPG≌△OEP,∴GM=GF,FN=NE,OG=OE,∴S△OPG=S△OPE=×(2+2+7)=,即S△OPG=·OG·PG=,∴OG=,∴C△MON=OM+ON+MN,=OM+ON+MF+FN,=OM+ON+MG+NE,=OG+OE,=2OG,=2×,=11.故答案为:11.【分析】作PE⊥OB,PG⊥OA,PF⊥MN,连结OP,根据角平分线的性质定理得PF=PG=PE,再由三角形面积公式得PF=PG=PE=2,据条件易得:△GMP≌△GFP,△FPN≌△EPN,△OPG≌△OEP,由全等三角形性质得GM=GF,FN=NE,OG=OE,S△OPG=·OG·PG=得OG=,由三角形周长和等量代换可得答案. 18.如图,以AB 为底分别作等边三角形QAB 和正方形ABCD.如果在正方形的对角线AC上存在一点P 使PD+PQ 存在最小值为2,则该正方形的面积是________ .【答案】4【考点】正方形的性质,轴对称的应用-最短距离问题【解析】【解答】解:设BQ与AC的交点为点P,连结PD,此时PD+PE的和最小,∵四边形ABCD为正方形,∴点D与点B关于AC对称,∴PD+PQ=PB+PQ=BQ=2,又∵△ABQ为等边三角形,∴AB=BQ=2,∴正方形ABCD边长为2,∴S正=22=4.故答案为:4.【分析】设BQ与AC的交点为点P,连结PD,此时PD+PE的和最小,由正方形的性质可知点D与点B关于AC对称,从而可得PD+PQ=PB+PQ=BQ=2,再由等边三角形性质可得正方形ABCD边长为2,再由正方形面积公式即可得出答案.三、解答题19.(1)计算:(2a6b)-1 ÷(a-2b)3(2)因式分解:2xy+1-x2- y2【答案】(1)解:原式=a-6b-1÷a-6b3,=a-6-(-6)b-1-3,=a0b-4,=.(2)解:原式=1-(x2+y2-2xy),=1-(x-y)2,=(1+x-y)(1-x+y).【考点】同底数幂的乘法,因式分解﹣运用公式法,分组分解法因式分解,积的乘方【解析】【分析】(1)先按照积的乘方计算,再由单项式除以单项式、同底数幂除法计算即可.(2)先分组分解,再平方差公式分解因式即可.20.解方程:【答案】解:方程两边同时乘以x-2得:2x-(x-2)=1,解得:x=-1.检验:将x=-1代入x-2≠0,∴x=-1是原分式方程的根.【考点】解分式方程【解析】【分析】先将原分式方程转化成整式方程,解之,再检验即可.21.化简,然后从-1,0,1,2 中选取一个你喜欢的数作为x 的值代入求值.【答案】解:原式=×,=×,=.将x=2代入得:=2.【考点】利用分式运算化简求值【解析】【分析】先按照分式减法计算括号里的,再由分式除法法则将除法转化成乘法,按照分式乘法法则化简,将x=2代入化简之后的代数式,计算即可.22.如图,点A(-1,2),B(-3,1),C(-1,1)在平面坐标系中.(1)在图中找出第四个点P,使以A、B、C、P 为顶点的四边形是轴对称图形,画出该四边形,并写出P点的坐标________;(找出一个即可)(2)求出(1)中你画出的四边形的面积.【答案】(1)(2)解:由(1)知BC=2,AC=1,S四PACB=2×1=2.【考点】作图﹣轴对称【解析】【解答】解:(1)如图所示:∴P(-3,2).【分析】(1)根据轴对称图形定义画出图形即可.(2)根据(1)中的图形可知矩形长为2,宽为1,由矩形面积公式计算即可.23.如图,△ABC 和△BDE 均为等边三角形,求证:DE+EC=AE.【答案】证明:∵△ABC和△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,即∠ABD+∠DBC=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=DE+CE.【考点】全等三角形的判定与性质,等边三角形的性质【解析】【分析】根据等边三角形的性质可知,AB=BC,BD=BE,∠ABC=∠DBE=60°,由等量代换得∠ABD=∠CBE,再由全等三角形的判定SAS得△ABD≌△CBE,由全等三角形性质得AD=CE,从而可得证.24.已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.【答案】解:该三角形为等边三角形,理由如下:∵a2+b2+c2=ab+bc+ac,∴2a2+2b2+2c2=2ab+2bc+2ac,∴(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)=0,即(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,∴该三角形为等边三角形.【考点】因式分解的应用【解析】【分析】等式两边同时乘以2,移项,完全平方差公式,根据平方的非负性,计算即可得出答案.25.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为300 元,而续航里程之比则为1∶4.经计算新能源汽车相比燃油车节约0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受0.48 元/度的优惠专用电费.以新能源EV500 为例,充电55 度可续航400 公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)解:燃油车0.8;新能源汽车0.2(2)解:8.25%【考点】分式方程的实际应用【解析】【解答】解:(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得::=4:1,解得:x=0.2,∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【分析】(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.26.已知,有一组不为零的数a,b,c,d,e,f,m,满足,求解:∵a=bm,c=md,e=fm∴= = m利用数学的恒等变形及转化思想,试完成:(1)244,333,422 的大小关系是________;(2)已知a,b,c 不相等且不为零,若,求的值.【答案】(1)(2)解:∵,,,∴a+b=3ab,b+c=4bc,a+c=5ac,∴(a+b)c=3abc,(b+c)a=4abc,(a+c)b=5abc,即ac+bc=3abc,ab+ac=4abc,ab+bc=5abc,∴2(ab+bc+ac)=12abc,即ab+bc+ac=6abc,∴.【考点】代数式求值【解析】【解答】解(1)∵244=(24)11=1611,333=(33)11=2711,422=(42)11=1611,∴2711>1611=1611,即333>244=422.故答案为:333>244=422.【分析】(1)先将各式转化成幂相同的指数式,再来比较大小.(2)根据题意可得a+b=3ab,b+c=4bc,a+c=5ac,即(a+b)c=3abc,(b+c)a=4abc,(a+c)b=5abc,再把三个式子相加、计算即ab+bc+ac=6abc,从而即可得证.27.数学思维是数学地思考问题和解决问题,运用数学概念,思维和方法,辨明数学关系,形成良好的思维品质,试用你的数学能力解决下列问题:图1 图2(1)如图1 是角平分线的一种作法,其运用的数学知识是全等三角形判定方法中的________(判定方法);(2)如图2,在△ABC 中,∠B=60°,∠BAC 的平分线AD 与∠BCA 的平分线CE 交于点F,则:①∠AFC=________度.②写出EF与FD的数量关系,并说明理由;________【答案】(1)SSS(2)120;解:如图,在AC上截取AG=AE,连结FG,∵∠B=60°,∴∠BAC+∠BCA=120°,又∵AD平分∠BAC,CE平分∠BCA,∴∠1=∠2=∠BAC,∠3=∠4=∠BCA,∴∠2+∠3=∠BCA+∠BAC,=(∠BCA+∠BAC),=×120°,=60°,∴∠AFE=∠2+∠3=60°,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴FE=FG,∠AFE=∠AFG=60°,由①知∠AFC=120°,∴∠CFG=60°,又∵∠DFC=∠AFE=60°,在△CFD和△CFG中,,∴△CFD≌△CFG(ASA),∴FD=FG,∴FE=FD.【考点】角的平分线,三角形的外角性质,全等三角形的判定与性质【解析】【解答】解(1)在△OAP和△OBP中,∵,∴△OAP≌△OBP(SSS),∴∠AOP=∠BOP,∴OP平分∠AOB.故答案为:SSS.(2)①∵∠B=60°,∴∠BAC+∠BCA=120°,又∵AD平分∠BAC,CE平分∠BCA,∴∠EAF=∠CAF=∠BAC,∠DCF=∠ACF=∠BCA,∴∠CAF+∠ACF=∠BCA+∠BAC,=(∠BCA+∠BAC),=×120°,=60°,∴∠AFC=180°-(∠BCA+∠BAC),=180°-60°,=120°.故答案为120°.【分析】(1)根据全等三角形的判定SSS即可得出答案.(2)①由三角形内角和定理结合已知条件得∠BAC+∠BCA=120°,根据角平分线定义得∠CAF+∠ACF=60°,再由三角形内角和定理即可得出答案.②在AC上截取AG=AE,连结FG,由①知∠2+∠3=60°,∠AFC=120°,由三角形外角性质得∠AFE=∠2+∠3=60°,根据全等三角形判定SAS得△AFE≌△AFG,由全等三角形性质得FE=FG,∠AFE=∠AFG=60°,根据全等三角形判定ASA得△CFD≌△CFG,由全等三角形性质得FD=FG,等量代换即可得证.。
贵州省遵义市八年级上学期数学期末考试试卷
贵州省遵义市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)在一些汉字的美术字中,有的是轴对称图形.下面五个词中“自由平等民主敬业友善”可以看作轴对称图形的汉字有()个.A . 2个B . 3个C . 4个D . 5个2. (2分) (2017七下·江阴期中) 以下列各组线段为边,能组成三角形的是()A . 2cm、2cm、4cmB . 8cm、6cm、3cmC . 2cm、6cm、3cmD . 11cm、4cm、6cm3. (2分)下列运算中,正确的是()A . 2+3=5B . ﹣a8÷a4=﹣a2C . (3a2)3=27a6D . (a2﹣b)2=a4﹣b24. (2分)(2019·鞍山) 如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A . 24mB . 32mC . 40mD . 48m5. (2分) (2018八上·天河期末) 若分式有意义,则()A . x≠1B . x≠0C . x≠-1D . x≠±16. (2分) (2017八上·点军期中) 如图,∠CBD,∠ADE为△ABD的两个外角,∠CBD=70°,∠A=31°,则∠ADE 的度数()A . 131°B . 139°C . 141°D . 149°7. (2分)如图所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是()A .B . 4C . 2D .8. (2分)把分式中的a、b都扩大4倍,则分式的值()A . 扩大8倍B . 不变C . 缩小4倍D . 扩大4倍9. (2分)(2018·通辽) 学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A . ﹣ =100B . ﹣ =100C . ﹣ =100D . ﹣ =10010. (2分)如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A . 102B . 91C . 55D . 3111. (2分)如图,以等边三角形ABC的边AC为边,向外做正方形ACDE,则(1)∠BCE=105°;(2)∠BAE=150°;(3)BE=BD;(4)∠DBE=30°;其中结论正确的有()个A . 4B . 3C . 2D . 112. (2分)不等式组的整数解有()个.A . 7B . 8C . 9D . 10二、填空题 (共6题;共6分)13. (1分)(2017·阿坝) 某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为________.14. (1分)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1=________15. (1分)(2018·柳州模拟) 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是________.16. (1分) (2018七下·东台期中) 若是一个完全平方公式,则m的值为________17. (1分) (2017八上·夏津期中) 如图,四边形ABCD中,∠ACB=∠BAD=90°,AB=AD,BC=2,AC=6,四边形ABCD的面积为________.18. (1分)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程________.三、解答题 (共8题;共85分)19. (15分) (2019八上·昆山期末) 在△ABC中,AB=AC,D,E分别是AC,AB上的点,BE=CD,BD交CE于O.求证:△OBC为等腰三角形.20. (10分) (2016八上·泸县期末) 因式分解:(x﹣y)3﹣4(x﹣y).21. (10分)(2011·无锡) 计算:(1);(2) a(a﹣3)+(2﹣a)(2+a).22. (10分) (2018八上·天河期末) 如图,四边形ABCD中,AB∥CD,过点D作DF⊥BC,垂足为F,DF与AC交于点M,已知∠1=∠2.(1)求证:CM=DM;(2)若FB=FC,求证:AM-MD=2FM.23. (10分)(2016·德州) 某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?24. (10分) (2019八上·榆树期末) 在数学实践课上,老师在黑板上画出如下的图形(其中点B、F、C、E 在同一条直线上),并写出四个条件:①AB=DE ,②∠1=∠2.③BF=EC ,④∠B=∠E ,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)写出所有的真命题.(用序号表示题设、结论)(2)请选择一个给予证明.25. (5分) (2015九上·重庆期末) 定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如:max{1,﹣2}=1,max{﹣3,﹣7}=﹣3(1)求max{﹣x2+1,2};(2)已知max{﹣x2﹣2x+k,﹣3}=﹣3,求实数k的取值范围;(3)当﹣1≤x≤2时,max{x2﹣x﹣6,m(x﹣1)}=m(x﹣1).直接写出实数m的取值范围.26. (15分) (2016八上·平谷期末) 如图1,有两个全等的直角三角形△ABC和△EDF,∠ACB=∠F=90°,∠A=∠E=30°,点D在边AB上,且AD=BD=CD.△EDF绕着点D旋转,边DE,DF分别交边AC于点M,K.(1)如图2、图3,当∠CDF=0°或60°时,AM+CK________MK(填“>”,“<”或“=”),你的依据是________;(2)如图4,当∠CDF=30°时,AM+CK________MK(填“>”或“<”);(3)猜想:如图1,当0°<∠CDF<60°时,AM+CK________MK,试证明你的猜想.________.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共85分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、第11 页共11 页。
贵州省遵义市八年级(上)期末数学试卷
18. 已知点 P(2a+b,b)与 P1(8,-2)关于 y 轴对称,则 a+b=______. 三、计算题(本大题共 2 小题,共 20.0 分) 19. 先化简再求值 x+1x÷(1-1x),其中 x=2.
20. 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该 工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需 天数是规定天数的 1.5 倍.如果由甲、乙队先合做 15 天,那么余下的工程由甲队 单独完成还需 5 天. (1)这项工程的规定时间是多少天? (2)已知甲队每天的施工费用为 6500 元,乙队每天的施工费用为 3500 元.为了 缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来 完成.则该工程施工费用是多少?
15. 如图所示,已知点 A、D、B、F 在一条直线上,AC=EF, AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件
可以是______.(只需填一个即可)
16. 如图,在△ABC 中,AC=BC,△ABC 的外角∠ACE=100°,则 ∠A=______度.
17. 如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形之后,剩余部分可剪 拼成一个矩形,若拼成的矩形一边长为 4,则另一边长为______.
10. 如图,给出了正方形 ABCD 的面积的四个表达式,其中错 误的是( )
A. (x+a)(x+a) B. x2+a2+2ax C. (x−a)(x−a) D. (x+a)a+(x+a)x
11. 使(x2+px+8)(x2-3x+q)乘积中不含 x2 与 x3 项的 p、q 的值是( )
贵州省遵义市八年级上学期期末数学试卷
贵州省遵义市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·夏邑期中) 在下列实数中:0,,,,,0.343343334…无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)若分式的值为0,则x的值是()A . 1或-1B . 1C . -1D . 03. (2分) (2016八上·潮南期中) 如图,AC⊥BD于P,AP=CP,增加下列一个条件:(1)BP=DP;(2)AB=CD;(3)∠A=∠C,其中能判定△ABP≌△CDP的条件有()A . 0个B . 1个C . 2个D . 3个4. (2分)设a>0,b>0,则下列运算错误的是()A .B .C .D .5. (2分)把分式中的x、y都扩大到原来的3倍,则分式的值()A . 扩大到原来的9倍B . 扩大到原来的3倍C . 缩小到原来的D . 不变6. (2分)已知,则有()A .B .C .D .7. (2分) (2017七下·河北期末) 不等式2x﹣3≤1的解集在数轴上表示正确的是()A .B .C .D .8. (2分)已知线段AB,下列尺规作图中,PQ与AB的交点O不一定是AB的中点的是()A .B .C .D .9. (2分) (2019八上·确山期中) 如图,在中,分别是的中点,若,则()A .B .C .D .10. (2分) (2018八上·宁波月考) 对于命题“若 a2>b2 ,则a>b”,下面四组关于 a,b 的值中,能说明这个命题是假命题的是()A . a=3,b=2B . a=﹣1,b=3C . a=﹣3,b=2D . a=3,b=﹣111. (2分)已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A . a>1B . a≤2C . 1<a≤2D . 1≤a≤212. (2分)如图所示,△ABC与△A’B’C’关于点O成中心对称,则下列结论不成立的是()A . 点A与点A’是对称点B . BO=B’O’C . ∠ACB=∠C’A’B’D . △ABC≌△A’B’C’二、填空题 (共6题;共6分)13. (1分)若与|y﹣3|互为相反数,则x+y的值= ________14. (1分)(2019·哈尔滨模拟) 计算=________.15. (1分)若关于x的不等式组的解集是x>2,则m的取值范围是________16. (1分) (2016八上·仙游期末) 若关于x的分式方程无解,则m的值为________.17. (1分) (2016八上·龙湾期中) 如图,已知AB=AC,∠1=∠2,BD=5cm,则BC=________cm.18. (1分)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于________.三、解答题 (共6题;共45分)19. (10分) (2018九上·黑龙江月考) 计算:(1)(2)20. (10分) (2017八下·常州期末) 解方程:(1)(2) =8.21. (5分)(2017·枝江模拟) 化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.22. (5分)(2016·无锡) 已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.23. (5分)解不等式组:,并求它的整数解的和.24. (10分) (2019八上·孝感月考) 我们知道,多项式的因式分解就是将一个多项式化成几个整式的积的形式.通过因式分解,我们常常将一个次数比较高的多项式转化成几个次数较低的整式的积,来达到降次化简的目的.这个思想可以引领我们解决很多相对复杂的代数问题.例如:方程就可以这样来解:解:原方程可化为:所以或者解方程得:所以原方程的解:,根据你的理解,结合所学知识,解决以下问题:(1)解方程:;(2)已知的三边为4、x、y,请你判断代数式的值的符号.四、综合与探究 (共2题;共20分)25. (5分)(2012·扬州) 为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?26. (15分) (2017八下·双柏期末) 如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共45分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、24-2、四、综合与探究 (共2题;共20分)25-1、26-1、26-2、26-3、第11 页共11 页。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
贵州省遵义市八年级(上)期末数学试卷
八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列图形是轴对称图形的是()A. B.C. D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A. 28×10−9B. 2.8×10−8C. 0.28×10−7D. 2.8×10−63.若分式2x+1x+3有意义,则x的取值范围是()A. x≠0B. x≠3C. x≠−3D. x≠−124.下列式子正确的是()A. (2a2)3=6a6B. 2a2×a4=2a8C. (a+2)2=a2+4D. a−2=1a25.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A. ∠B=∠EB. BC//EFC. ∠BCA=∠FD. ∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A. 25∘B. 40∘C. 50∘D. 80∘7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A. 18或21B. 21C. 24或18D. 188.在平面直角坐标系内,点A(x-6,2y+1)与点B(2x,y-1)关于y轴对称,则x+y的值为()A. 0B. −1C. 2D. −39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A. 38∘B. 34∘C. 32∘D. 28∘10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A. 40×1.6x−30x=400B. 400x−4002.6x=30C. 400x−4001.6x=30D. 4001.6x−400x=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A. 4B. 6C. 8D. 1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A. 140∘B. 120∘C. 100∘D. 70∘二、填空题(本大题共6小题,共24.0分)13.因式分解:x2-9=______.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成______个三角形.15.若式子a2-2a+1+|b-2|=0,则ab=______.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB的距离为6,则BC等于______.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为______.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动______秒时,△BCA与点P、N、B为顶点的三角形全等.三、计算题(本大题共2小题,共22.0分)19.先化简,后求值:(1-1a+1)÷(a2−aa2+2a+1),其中a=3.20.某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?四、解答题(本大题共6小题,共68.0分)21.解分式方程:4x2−4=3x+2+1x−222.已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.23.定义:任意两个数a,b,按规则c=b2+ab-a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=-1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m-2,试说明“如意数”c为非负数.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.25.等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是______;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=33,AB=6,AP=3,则PE+EF的最小值为______;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:0.000000028用科学记数法表示2.8×10-8,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:∵分式有意义,∴x+3≠0.解得:x≠-3.故选:C.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【答案】D【解析】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【答案】A【解析】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【答案】C【解析】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【答案】A【解析】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【答案】A【解析】解:∵点A(x-6,2y+1)与点B(2x,y-1)关于y轴对称,∴2y+1=y-1,x-6=-2x解得:y=-2,x=2,故x+y=0.故选:A.直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【答案】D【解析】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°-104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°-152°=28°,故选:D.利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】C【解析】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是-=30,故选:C.先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【答案】B【解析】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【答案】C【解析】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°-40°=100°,故选:C.作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.13.【答案】(x+3)(x-3)【解析】解:原式=(x+3)(x-3),故答案为:(x+3)(x-3).原式利用平方差公式分解即可.此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.14.【答案】3【解析】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5-3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7-3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7-4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【答案】2【解析】解:∵a2-2a+1+|b-2|=0,∴(a-1)2+|b-2|=0,∴a-1=0,b-2=0,解得:a=1,b=2,则ab=2.故答案为:2.直接利用绝对值的性质以及偶次方的性质分析得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【答案】14【解析】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【答案】40°【解析】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【答案】0或4或8或12【解析】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6-2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP或AC=BN进行计算即可.本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.【答案】解:原式=(a+1a+1-1a+1)÷a(a−1)(a+1)2=aa+1•(a+1)2a(a−1)=a+1a−1,当a=3时,原式=3+13−1=2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x-0.2)万元,根据题意,得:36x−0.2=4×18x,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40-m)台,根据题意,得:0.4m+0.2(40-m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【解析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x-0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40-m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.21.【答案】解:去分母:4=3x-6+x+2解得:x=2,经检验当x=2时,x-2=0,所以x=2是原方程的增根,此题无解【解析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.【答案】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,AC=DF∠ACB=∠DFEBC=EF,∴△ABC≌△DEF(SAS).【解析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】解:(1)∵a=2,b=-1∴c=b2+ab-a+7=1+(-2)-2+7=4(2)∵a=3+m,b=m-2∴c=b2+ab-a+7=(m-2)2+(3+m)(m-2)-(3+m)+7=2m2-4m+2=2(m-1)2∵(m-1)2≥0∴“如意数”c为非负数【解析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可本题考查了因式分解,完全平方式(m-1)2的非负性,难度不大.24.【答案】证明:(1)在△AED与△AEC中AE=AE∠AEC=∠AEDDE=CE,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【解析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.25.【答案】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB-BE∴2AF=OB-OA∴AF=32∴OF=52∴点C(52,52)【解析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【答案】3 332【解析】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF(SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD 的最小值即可解决问题.本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
贵州省遵义市名校2019年数学八上期末试卷
贵州省遵义市名校2019年数学八上期末试卷一、选择题1.已知a =2﹣2,b =﹣1)0,c =(﹣1)9,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a 2.方程211x x x x ---=1的解的情况为( ) A.x =﹣12 B.x =﹣3 C.x =1 D.原分式方程无解3.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+-; B . 4848944x x +=+-; C .48x+4=9; D .9696944x x +=+-; 4.下列算式能用平方差公式计算的是( ) A .(-a-b)(-a+b) B .(2x+y)(-2x-y) C .(3x-y)(-3x+y)D .(2a+b)(2b-a) 5.一个三角形的面积是a 2-ab -2b 2,它的底是a +b ,则该底上的高是( )A .2a -b B .a -2b C .2a +4b D .2a -4b 6.若()222a b X a ab b -+=++,则整式X 的值为( )A.abB.0C.2abD.3ab7.如图,在△ABC 中,已知AB =AC ,DE 垂直平分AC ,∠A =50°,则∠DCB 的度数是( )A .15°B .20°C .25°D .30°8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是( )A .喜B .迎C .冬D .奥9.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,,5)D .(-5,2)10.如图,已知∠1=∠2,则下列条件中不一定能使△ABC ≌△ABD 的是( )A .AC=ADB .BC=BDC .∠C=∠D D .∠3=∠411.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC ≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF12.在等腰ABC 中,5AB =,底边8BC =,则下列说法中正确的有( )()1AC AB =;()26ABC S =;()3ABC 底边上的中线为4;()4若底边中线为AD ,则ABD ACD ≅.A.1个B.2个C.3个D.4个 13.将一副三角尺按如图的方式摆放,则的度数是( )A. B. C. D.14.下列长度的三条线段能组成三角形的是( )A .3,4,8B .4,5,9C .4,5,8D .3a ,3a ,6a (a >0)15.一个多边形的内角和是外角和的2倍,则这个多边形是( )A.六边形B.五边形C.八边形D.四边形二、填空题16.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.17.若(x+2019)(x+2018)=1009,则(x+2019)2+(x+2018)2=________.【答案】201918.如图,在周长为26cm 的▱ABCD 中,AB≠AD,AC ,BD 相交于点O ,OE ⊥AC 交AD 于E .则△CDE 的周长为_____cm .19.如图,在五边形ABCDE 中,,DP 、CP 分别平分EDC 、BCD ,则的大小为____度.20.已知等腰三角形的周长为18cm,其中一边长为5cm,那么这个等腰三角形的底边长为____.三、解答题21.甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?22.阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.23.如图,现有一个可以自由转动的转盘,盘面被平均分成6等份,分别标有2,3,4,5,6,7这六个数字.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).(1)转出数字10是________(填“随机事件”“必然事件”“不可能事件”中的一个);(2)转出的数字大于3的概率是_________;(3)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,该数字与两张卡片上的数字分别作为三条线段的长度.①这三条线段以有构成三角形的概率是___________;②这三条线段能构成等腰三角形的概率是_____________.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.25.如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠ADE =70°,∠ACB =40°,求∠EDC 和∠BDC 的度数.【参考答案】***一、选择题16.2×10﹣4.17.无18.19.6020.或三、解答题21.(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.22.(1)2(a 2) ;(2)2;(3)ABC 为等边三角形,理由见解析 23.(1)不可能事件;(2)23;(3)①56,②13【解析】【分析】 (1)根据确定性事件和不确定性事件的概念判断可得;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;(3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,由概率公式可得.【详解】解:(1)转到数字10是不可能事件,故答案为:不可能事件;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种, ∴转出的数字大于3的概率是42=63故答案为:23; (3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种, ∴这三条线段能构成三角形的概率是56; ②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种, ∴这三条线段能构成等腰三角形的概率是21=63. 【点睛】本题主要考查概率公式的运用及三角形三边间的关系、等腰三角形的判定,熟练掌握三角形三边间的关系和等腰三角形的判定是解题的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;【详解】证明:(1)∵AF ∥BC∴∠AFE =∠DBE∵E 是AD 中点,∴AE =DE在△AEF 和DEB 中AFE DBE AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS )(2)在Rt △ABC 中,D 是BC 的中点,所以,AD =BD =CD又AF ∥DB ,且AF =DB ,所以,AF ∥DC ,且AF =DC ,所以,四边形ADCF 是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键.25.∠EDC =20°,∠BDC =90°.。
2018-2019年八年级数学上册期末试卷含答案解析
八年级数学上册期末模拟练习卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.若分式x+1x+2的值为0,则x的值为( )A.0 B.-1 C.1 D.22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( ) A.25 B.25或20 C.20 D.153.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.下列因式分解正确的是( )A.m2+n2=(m+n)(m-n) B.x2+2x-1=(x-1)2C.a2-a=a(a-1) D.a2+2a+1=a(a+2)+15.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线分别交AB、BC于点D、E,则∠BAE的大小为( )A.80°B.60° C.50° D.40°6.已知2m+3n=5,则4m·8n的值为( )A.16 B.25 C.32 D.647.已知14m2+14n2=n-m-2,则1m-1n的值为( )A.1 B.0 C.-1 D.-1 48.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D 的位置,则∠1-∠2的度数是( )A.40° B.80° C.90° D.140°9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D 旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( )A.①②④ B.②③④C.①②③ D.①②③④二、填空题(每小题3分,共24分)11.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=________°. 12.计算:(-8)2018×0.1252017=________.13.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3的度数为________.15.如图,在△ABC中,D为AB上一点,AB=AC,CD=CB.若∠ACD=42°,则∠BAC=________°.16.若x2+bx+c=(x+5)(x-3),其中b,c为常数,则点P(b,c)关于y轴对称的点的坐标是________.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为______________.18.如图,五边形ABCDE中,∠B=∠E=90°,AB=CD=AE=BC+DE=2,则这个五边形ABCDE 的面积是________.三、解答题(共66分) 19.(8分)计算:(1)x (x -2y )-(x +y )2; (2)⎝ ⎛⎭⎪⎪⎫3a +2+a -2÷a 2-2a +1a +2.20.(6分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.21.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎪⎫14-1.22.(10分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD .(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.(10分)如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B9.C 解析:在方程两边同乘x +1,得x -a =a (x +1),整理得(1-a )x =2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入(1-a )x =2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt△ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C. 11.50 12.8 13.(1)a (x-1)2(2)1x +114.55° 15.32 16.(-2,-15) 17.1480x=1480x +70+318.4 解析:如图,延长DE 至F ,使EF =BC ,连接AC ,AD ,AF .∵AB =CD =AE =BC +DE =2,∠B =∠AED =90°,∴CD =EF +DE =DF .在△ABC 与△AEF 中, ⎩⎨⎧AB =AE ,∠ABC =∠AEF ,BC =EF ,∴△ABC ≌△AEF (SAS),∴AC =AF .在△ACD 与△AFD 中,⎩⎨⎧AC =AF ,CD =FD ,AD =AD ,∴△ACD ≌△AFD (SSS),∴五边形ABCDE 的面积S =2S △ADF =2×12·DF ·AE =2×12×2×2=4.故答案为4.19.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(4分)(2)原式=⎣⎢⎢⎡⎦⎥⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.(8分) 20.解:如图,作AB 的垂直平分线EF ,(2分)作∠BAC 的平分线AM ,两线交于P ,(5分)则P 为这个中心医院的位置.(6分)21.解:(1)∵a +b =7,ab =10,∴a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(5分)(2)原式=(a -2)(a +2)-5a +2·2(a +2)a -3=(a +3)(a -3)a +2·2(a +2)a -3=2a +6.∵a =(3-π)0+⎝ ⎛⎭⎪⎪⎫14-1=1+4=5,∴原式=2×5+6=16.(10分)22.(1)证明:∵AC =AD ,∴∠ACD =∠ADC .又∵∠BCD =∠EDC =90°,∴∠ACB =∠ADE .(3分)在△ABC 和△AED 中, ⎩⎨⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED (SAS).(6分)(2)解:由(1)知△ABC ≌△AED ,∴∠E =∠B =140°.又∵∠BCD =∠EDC =90°,∴五边形ABCDE中,∠BAE =540°-140°×2-90°×2=80°.(10分) 23.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:由(1)知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴DE 垂直平分GF ,∴EG =EF .(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分) 24.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x=15x -0.5,(3分)解得x =1.5.经检验,x =1.5是原分式方程的解,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(5分)(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,(8分)解得a ≥8. 答:甲工程队至少修路8天.(10分) 25.(1)证明:∵∠ACB =∠DCE =α, ∴∠ACD =∠BCE .(1分)在△ACD 和△BCE 中,⎩⎨⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α, ∴∠BAM +∠ABM =180°-α, ∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分) 证明如下:由(1)可知BE =AD . ∵AD ,BE 的中点分别为点P ,Q , ∴AP =BQ .由(1)知△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎨⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP≌△BCQ(SAS),∴CP=CQ且∠ACP=∠BCQ.(10分)又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.(12)。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
贵州省遵义市八年级上学期数学期末考试试卷
贵州省遵义市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·德州) 下列图形中,既是轴对称又是中心对称图形的是()A .B .C .D .2. (2分) (2020九上·松北期末) 下列运算正确的是A .B .C .D .3. (2分)如图,小手盖住的点的坐标可能为().A .B .C .D .4. (2分)计算a2·a4的结果是()A . a6B . a7C . a8D . a125. (2分) (2017七下·罗平期末) 一个多边形的每一个外角都是45°,那么这个多边形是()A . 八边形B . 九边形C . 十边形D . 十二边形6. (2分)(2019·温州模拟) 如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A . 22°B . 26°C . 32°D . 34°7. (2分) (2019八上·通州期末) 下列计算中,正确的是()A .B .C .D .8. (2分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1 ,第二个三角数记为a2 ,…,第n个三角数记为an ,则an﹣1+an=()A .B .C .D .9. (2分)如图,下列条件不能证明△ABD≌△ACD的是()A . BD=DC,AB=ACB . ∠ADB=∠ADC,BD=DCC . ∠B=∠C,∠BAD=∠CADD . ∠B=∠C,BD=DC10. (2分)在△ABC中,AD是BC边上中线,G是重心,若GD=6,那么AG的长为()A . 9B . 12C . 3D . 2二、填空题 (共8题;共9分)11. (1分) (2019七上·潼南月考) 计算: =________12. (1分) (2017七下·寿光期中) PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1毫米的千分之一,那么数据2.5微米用科学记数法表示为________米.13. (1分) (2019八下·北京期中) 在实数范围内因式分解:=________;=________.14. (1分)若分式的值是0,则x的值为________15. (1分) (2018九上·运城月考) 如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为__.16. (1分)如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD于E,AD:DC=3:5,则DE:BE的值是________.17. (2分) (2020八上·苍南期末) 如图,在△ABC中,AB=AC,∠BAC=50°,D是边BC的中点,DE垂直AC 于点E,则∠EDC=________度。
2019年遵义市八年级数学上期末试卷附答案
2019年遵义市八年级数学上期末试卷附答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为( )A .5B .2 dmC .25D .423.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣64.下列运算正确的是( )A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 5.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .106.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .6 7.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠48.已知x+1x=6,则x2+21x=()A.38B.36C.34D.329.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=110.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.A B.B C.C D.D11.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.1012.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围二、填空题13.若一个多边形的边数为 8,则这个多边形的外角和为__________.14.若分式221x x -+的值为零,则x 的值等于_____. 15.分解因式:2x 2-8x+8=__________.16.已知等腰三角形的两边长分别为4和6,则它的周长等于_______17.三角形三边长分别为 3,1﹣2a ,8,则 a 的取值范围是 _______. 18.若a m =5,a n =6,则a m+n =________.19.如图,在△ABC 中,BF ⊥AC 于点F ,AD ⊥BC 于点D ,BF 与AD 相交于点E .若AD=BD ,BC=8cm ,DC=3cm .则 AE= _______________cm .20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.先化简再求值:(a +2﹣52a -)•243a a --,其中a =12-. 23.已知:如图,点B ,E ,C ,F 在同一直线上,AB ∥DE ,且AB =DE ,BE =CF . 求证:ABC DEF △≌△.24.先化简,再求值:224144124x x x x x-++÷-,其中14x =-. 25.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.D解析:D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=B C′=2dm,∴AC2=22+22=4+4=8,∴dm,∴这圈金属丝的周长最小为.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.3.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A、-3a2•2a3=-6a5,故A错误;B、4a6÷(-2a3)=-2a3,故B错误;C、(-a3)2=a6,故C正确;D、(ab3)2=a2b6,故B错误;故选:C.【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.5.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,故选:C .【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.6.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m 、n 的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m 、n 恰好是等腰△ABC 的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.7.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.8.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x =34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.9.B解析:B试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.10.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.360°【解析】【分析】根据任意多边形的外角和为360°回答即可【详解】解:由任意多边形的外角和为360°可知这个多边形的外角和为360°故答案为:360°【点睛】本题主要考查的是多边形的外角和掌握解析:360°.【解析】【分析】根据任意多边形的外角和为360°回答即可.【详解】解:由任意多边形的外角和为360°可知,这个多边形的外角和为360°.故答案为:360°.【点睛】本题主要考查的是多边形的外角和,掌握多边形的外角和定理是解题的关键.14.2【解析】根据题意得:x ﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x +1=5,符合题意,故答案为2.15.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.16.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14 解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.17.﹣5<a<﹣2【解析】【分析】根据在三角形中任意两边之和大于第三边任意两边之差小于第三边;即可求a的取值范围再将a的取值范围在数轴上表示出来即可【详解】由三角形三边关系定理得8-3<1-2a<8+3解析:﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.18.【解析】【分析】根据同底数幂乘法性质am·an=am+n即可解题【详解】解:am+n=am·an=5×6=30【点睛】本题考查了同底数幂乘法计算属于简单题熟悉法则是解题关键解析:【解析】【分析】根据同底数幂乘法性质a m·a n=a m+n,即可解题.【详解】解:a m+n= a m·a n=5×6=30.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.19.【解析】【分析】易证∠CAD=∠CBF即可求证△ACD≌△BED可得DE=CD即可求得AE的长即可解题【详解】解:∵BF⊥AC于FAD⊥BC于D∴∠CAD+∠C=90°∠CBF+∠C=90°∴∠CA解析:【解析】【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=2;故答案为2.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.20.2【解析】【分析】本题应先假定选择哪块再对应三角形全等判定的条件进行验证【详解】解:134块玻璃不同时具备包括一完整边在内的三个证明全等的要素所以不能带它们去只有第2块有完整的两角及夹边符合ASA 满 解析:2【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的. 故答案为:2.【点睛】本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵, 依题意得:4004000803(120%)x x+-=+ 解得x=200,经检验得出:x=200是原方程的解.所以4000200=20. 答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.﹣2a ﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a +2﹣52a -)•243a a -- =(2)(2)52(2)×223-a a a a a a +--⎡⎤-⎢⎥--⎣⎦ =(3)(3)2(2)×23-a a a a a +--⎡⎤⎢⎥-⎣⎦=﹣2a ﹣6,当a =12-时,原式=﹣2a ﹣6=﹣5. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.23.证明见解析.【解析】试题分析:首先根据AB ∥DE 可得∠B=∠DEF .再由BE=CF 可得BC=EF ,然后再利用SAS 证明△ABC ≌△DEF .试题解析:∵AB ∥DE ,∴∠B=∠DEF .∵BE=CF ,∴BE+EC=FC+EC ,即BC=EF .在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ).24.42x x -+,14. 【解析】【分析】根据分式的除法法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=()()22121212422()1()x x xxx x x +-⋅=--++,当x=−14时,原式=14. 【点睛】 此题考查分式的化简求值,解题关键在于掌握运算法则.25.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】 解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4) =3.【点睛】本题考查因式分解的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年贵州省遵义市新蒲新区八年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形是轴对称图形的是()A.B.C.D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A.28×10﹣9B.2.8×10﹣8C.0.28×10﹣7D.2.8×10﹣63.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣4.下列式子正确的是()A.(2a2)3=6a6B.2a2×a4=2a8C.(a+2)2=a2+4D.a﹣2=5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A.25°B.40°C.50°D.80°7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A.18或21B.21C.24或18D.188.在平面直角坐标系内,点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,则x+y的值为()A.0B.﹣1C.2D.﹣39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A.38°B.34°C.32°D.28°10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A.40×1.6x﹣30x=400B.﹣=30C.﹣=30D.﹣=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A.4B.6C.8D.1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB 边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°二、填空题(本题共6小题,每小题4分,共24分)13.因式分解:x2﹣9=.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成个三角形.15.若式子a2﹣2a+1+|b﹣2|=0,则ab=.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB 的距离为6,则BC等于.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题(本题共8小题,共90分)19.(8分)解分式方程:=+20.(10分)先化简,后求值:(1﹣)÷(),其中a=3.21.(10分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.22.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=﹣1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.23.(12分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.24.(12分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?25.(12分)等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.(14分)数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF 的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF 的最小值为;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.2018-2019学年贵州省遵义市新蒲新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000000028用科学记数法表示2.8×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【分析】根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.【解答】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.【点评】此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【分析】等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.【解答】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【分析】直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.【解答】解:∵点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,∴2y+1=y﹣1,x﹣6=﹣2x解得:y=﹣2,x=2,故x+y=0.故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【分析】利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.【解答】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°﹣104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°﹣152°=28°,故选:D.【点评】本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.【解答】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是﹣=30,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【分析】依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.【解答】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB 于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.二、填空题(本题共6小题,每小题4分,共24分)13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.【解答】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7﹣3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7﹣4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.【点评】本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【解答】解:∵a2﹣2a+1+|b﹣2|=0,∴(a﹣1)2+|b﹣2|=0,∴a﹣1=0,b﹣2=0,解得:a=1,b=2,则ab=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【分析】先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【分析】根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.【解答】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.【点评】本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC =BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本题共8小题,共90分)19.【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.【解答】解:去分母:4=3x﹣6+x+2解得:x=2,经检验当x=2时,x﹣2=0,所以x=2是原方程的增根,此题无解【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=3时,原式==2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可【解答】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点评】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.【分析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.24.【分析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【解答】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:=4×,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.25.【分析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.【解答】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB﹣BE∴2AF=OB﹣OA∴AF=∴OF=∴点C(,)【点评】本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【分析】(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF (SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF 的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【解答】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。