相交线与平行线全章教案

合集下载

人教版七年级数学下册第5章相交线与平行线(教案)

人教版七年级数学下册第5章相交线与平行线(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 能够识别和判断直线之间的相交与平行关系。

3. 掌握平行线的性质及推论。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及推论。

教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。

2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。

3. 引导学生通过观察和思考,总结出平行线的性质及推论。

作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。

2. 请学生总结平行线的性质及推论,并加以证明。

第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。

2. 能够运用相交线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 相交线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。

2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。

作业布置:1. 请学生运用相交线的性质,解决一些实际问题。

2. 请学生总结相交线的判定方法,并加以证明。

第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的性质。

2. 平行线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。

2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。

作业布置:1. 请学生运用平行线的性质,解决一些实际问题。

2. 请学生总结平行线的判定方法,并加以证明。

第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的应用方法。

2. 实际问题解决。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。

2. 提供一些实际问题,让学生运用平行线的性质解决。

(完整版)相交线与平行线全章教案

(完整版)相交线与平行线全章教案

第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

北师大版七年级下第二章相交线与平行线全章教案

北师大版七年级下第二章相交线与平行线全章教案

课 题第二章 相交线与平行线1、两条直线的位置关系(第1课时)教 学 目 标1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。

教学重、难点1. 2.教 学 过 程 教 学 内 容可根据学生实际增减内容 第一环节 走进生活 引入课题 活动内容一:两条直线的位置关系1. 巩固练习:教师展示下列图片,学生快速回答:2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。

问题1:在2.1—1中,直线m 和n 的关系是 ;a 和b 是 ;a 和n 是 。

问题2:在2,1—2你能提出哪些问题?第二环节 动手实践 探究新知动手实践一m nab请先画一画:两条直线直线和,交于点O,再回答下列问题..问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。

问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论? 问题3:下列各图中,∠1和∠2是对顶角的是( )问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角( ) 余角定义:如果两个角的和是900,那么称这两个角互为余角( ) 动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,与交于点O ,∠∠900,∠1=∠2小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角?1 2 1 2 1 212A B CD 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(优秀教案)一、教学目标:知识与技能:1. 理解相交线与平行线的概念,掌握它们的性质和特征。

2. 学会使用画图工具和几何语言描述相交线与平行线。

过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。

2. 学会用画图软件(如几何画板)绘制相交线与平行线,提高运用信息技术的能力。

情感态度价值观:2. 感受数学与实际生活的联系,学会运用数学知识解决生活中的问题。

二、教学重点与难点:重点:1. 掌握相交线与平行线的概念及性质。

2. 学会用画图工具和几何语言描述相交线与平行线。

难点:1. 理解平行线的判定与性质。

2. 运用相交线与平行线的知识解决实际问题。

三、教学方法与手段:采用问题驱动法、案例分析法、合作学习法等多种教学方法,结合多媒体课件、几何画板等教学手段,引导学生观察、操作、思考、交流,从而达到教学目标。

四、教学过程:1. 导入新课:通过展示实际生活中的相交线与平行线图片,引导学生关注数学与生活的联系,激发学习兴趣。

2. 自主探究:让学生利用几何画板或其他画图工具,绘制相交线与平行线,观察它们的特征,总结性质。

3. 课堂讲解:讲解相交线与平行线的概念、性质和判定方法,引导学生理解并掌握知识。

4. 巩固练习:设计相关练习题,让学生运用所学知识解决问题,巩固所学内容。

5. 课堂小结:总结本节课的主要内容和收获,引导学生思考数学的实际应用。

五、课后作业:1. 完成练习册的相关题目。

2. 收集生活中的相交线与平行线图片,下节课分享。

教学反思:本节课通过问题驱动、案例分析等教学方法,引导学生观察、操作、思考、交流,有效地完成了教学目标。

在教学过程中,注意关注学生的学习情况,针对性地进行讲解和辅导,提高了学生的学习兴趣和数学素养。

结合几何画板等教学手段,使学生更好地理解和掌握相交线与平行线的知识。

但在课堂时间的安排上,可以更加合理,以确保学生有足够的时间进行自主探究和巩固练习。

相交线与平行线教案

相交线与平行线教案

相交线与平行线教案一、教学目标知识与技能:1. 理解相交线与平行线的定义及特点;2. 学会运用图形软件或手工绘制相交线与平行线;3. 能够解决与相交线与平行线相关的实际问题。

过程与方法:1. 通过观察、分析、归纳相交线与平行线的特点;2. 培养学生的空间想象能力、逻辑思维能力和创新能力;3. 学会运用数形结合的方法解决几何问题。

情感态度价值观:1. 培养学生的团队合作精神、自主学习能力;2. 激发学生对数学的兴趣,培养学生的审美情趣;3. 渗透“在生活中发现数学,在数学中品味生活”的理念。

二、教学内容第一节:相交线1. 相交线的定义及特点;2. 相交线在实际中的应用。

第二节:平行线1. 平行线的定义及特点;2. 平行线的判定与性质;3. 平行线在实际中的应用。

三、教学重点与难点重点:1. 相交线与平行线的定义及特点;2. 相交线与平行线在实际中的应用。

难点:1. 相交线与平行线的判定与性质;2. 运用数形结合的方法解决相关问题。

四、教学方法与手段1. 采用问题驱动法,引导学生观察、分析、归纳相交线与平行线的特点;2. 利用多媒体课件、实物模型等辅助教学,提高学生的空间想象能力;3. 结合例题讲解,让学生学会运用相交线与平行线的性质解决实际问题。

五、教学过程第一节:相交线1. 导入新课:通过展示生活中的相交线现象,引导学生关注相交线;2. 讲解相交线的定义及特点,引导学生观察、分析、归纳;3. 利用多媒体课件演示相交线的形成过程,增强学生的空间想象能力;4. 结合例题,讲解相交线在实际中的应用;5. 课堂练习:学生自主完成相交线的相关练习题。

第二节:平行线1. 导入新课:通过展示生活中的平行线现象,引导学生关注平行线;2. 讲解平行线的定义及特点,引导学生观察、分析、归纳;3. 利用多媒体课件演示平行线的形成过程,增强学生的空间想象能力;4. 讲解平行线的判定与性质,结合例题进行讲解;5. 课堂练习:学生自主完成平行线的相关练习题。

北师大版七年级下第二章《相交线与平行线》全章教案.pdf

北师大版七年级下第二章《相交线与平行线》全章教案.pdf

交和平行”,再进一步针对相交和平行分别提出问题
2、 3。
问题 2:如图,两条直线相交所构成的四个角中分别有何关系?
借助两条直线相交的基本图形复习“两线四角”的关系,为探索“三线八
角” 的关系奠定基础。 问题 3:什么叫两条直线平行?
A D
O
C
B
复习平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着 大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方 法予以解决。 1. 2.




教学内容
第一环节
走进生活 引入课题
活动内容一:两条直线的位置关系
1. 巩固练习:教师展示下列图片,学生快速回答:
可根据学生实 际增减内容
m n
直线外一点与直线上 各点连接的所有线段 中,垂线段最短。
第三环节 学以致用,步步为营 请动手画一画四 如图: 一辆汽车在直线形的公路上由 A 向 B 行驶, M、N 分别是位于公路 AB 两侧的两所学校。 问题 1: 汽车行驶时,会对公路两旁的学校造成一定的噪音影响。当汽车 行驶到何处时,分别对两个学校影响最大?在图中标出来。 问题 2: 当汽车由 A 向 B 行驶时,在哪一段上对两个学校影响越来越大? 越来越小? 问题 3: 在哪一段对 M学校影响逐渐减小而对 N学校影响逐渐增大? ( 用
A
B
2.1— 9
A D2.1— 10 B
问题 1 : ① . 因为∠ 1+∠ 2=90 o,∠ 2+∠ 3=90 o,所以∠ 1=
,理由
是.
② 因为∠ 1+ ∠ 2=180o,∠ 2+∠ 3=180 o,所以∠ 1= ,理由

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 掌握平行线的性质及判定方法。

3. 能够运用平行线的性质解决实际问题。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及判定方法。

4. 运用平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的特点。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用平行线的性质解决实际问题。

教学步骤:1. 引入相交线与平行线的概念,展示相关图片,让学生直观地感受。

3. 引导学生通过实际操作,发现并证明平行线的性质。

4. 讲解平行线的判定方法,让学生学会判断两条直线是否平行。

5. 利用例题,让学生运用平行线的性质解决实际问题。

教学评价:1. 课堂问答,检查学生对相交线与平行线概念的理解。

2. 课后作业,检验学生对平行线性质及判定方法的掌握。

第二章:相交线与平行线的性质探究教学目标:1. 掌握相交线与平行线的性质。

2. 学会运用相交线与平行线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 平行线的性质。

3. 运用相交线与平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的性质。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用相交线与平行线的性质解决实际问题。

教学步骤:1. 复习相交线与平行线的定义,引导学生回顾已学的性质。

2. 通过多媒体演示,让学生直观地感受相交线与平行线的性质。

4. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

5. 讲解运用相交线与平行线的性质解决实际问题的方法,引导学生学会运用。

教学评价:1. 课堂问答,检查学生对相交线与平行线性质的理解。

2. 课后作业,检验学生对相交线与平行线性质的掌握。

相交线与平行线整章教案

相交线与平行线整章教案

课题:5.1.1 相交线课型:复习学习目标:1.知识与技能:了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.过程与方法:师生互动,生生互动,共同探究新知;通过小组学习等活动进一步提高学生应用已有知识解决数学问题的能力.3.情感、态度、价值观:通过辨别对顶角与邻补角,培养识图的能力,使学生初步认识数学与现实生活的密切联系.学习重点:邻补角和对顶角的概念及对顶角相等的性质。

学习难点:在较复杂的图形中准确辨认对顶角和邻补角。

学具准备:剪刀、量角器学习过程:一、学前准备(学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,,教师给予明晰,并板书,板书后要求学生理解并熟记)1、互为补角的定义2、互为余角的定义3、补角的性质:同角或的补角。

余角的性质分别用符号表示为(小组可交流一下)4、邻补角的定义5、对顶角定义6、任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。

分别是。

总结:①两条直线相交所构成的四个角中,邻补角有对。

对顶角有对。

②对顶角形成的前提条件是两条直线相交......。

对应练习:①下列各图中,哪个图有对顶角?B B B AC D C D C DA AB B B(A)C D C A C DA D7、邻补角和对顶角的性质:邻补角。

注意:邻补角是互补的一种特殊的情况,数量上,位置上有一条。

对顶角的性质:对顶角。

二、 应用(学生独立思考,并用几何语言描述.教师深入学生中,指导学生,必要时板书过程)(一)例 如图,已知直线a 、b 相交。

∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°( )。

∠2=180°-∠1=180°-40°=140°( )。

∠4=∠2=140°( )。

你还有别的思路吗?试着写出来(三)变式训练分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.变式1:把图中的∠l=40°变为∠2-∠1=40°,求∠2、∠3、∠4的度数变式2:把∠1=40°变为∠2是∠l 的3倍,求∠2、∠3、∠4的度数变式3:把∠1=40°变为∠1 :∠2=2:9求∠2、∠3、∠4的度数三、自我检测:(一)选择题:(独立完成,小组交流,教师和学生代表点拔难点,易错,易混题) 1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA(1) (2) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个O EDC BA cb a 3412 4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( ) A.62°B.118°C.72°D.59° (二)填空题:1. 如图3所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A ODC BA12(3) (4) (5) 2.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图4所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图5所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____. 5、已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3= 。

新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)

新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)

赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

平行线与相交线教案

平行线与相交线教案

平行线与相交线教案第一章:平行线的概念与特征教学目标:1. 理解平行线的定义及其特征。

2. 学会使用直尺和圆规画出平行线。

3. 能够识别和判断图形中的平行线。

教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的特征:平行线永不相交,同一平面内,通过一点可以画出无数条平行线。

教学活动:1. 教师通过实物演示和图片引导学生观察和思考,提出平行线的概念。

3. 教师示范使用直尺和圆规画出平行线的步骤,学生跟随操作。

4. 学生进行练习,画出给定条件的平行线。

第二章:相交线的概念与特征教学目标:1. 理解相交线的定义及其特征。

2. 学会使用直尺和圆规画出相交线。

3. 能够识别和判断图形中的相交线。

教学内容:1. 相交线的定义:在同一平面内,相交于一点的两条直线叫做相交线。

2. 相交线的特征:相交线在交点处形成四个角,且四个角的和为360度。

教学活动:1. 教师通过实物演示和图片引导学生观察和思考,提出相交线的概念。

3. 教师示范使用直尺和圆规画出相交线的步骤,学生跟随操作。

4. 学生进行练习,画出给定条件的相交线。

第三章:平行线与相交线的性质与判定教学目标:1. 理解平行线与相交线的性质与判定方法。

2. 学会使用直尺和圆规判定平行线与相交线。

3. 能够应用性质与判定方法解决实际问题。

教学内容:1. 平行线的性质:平行线之间的对应角相等,同位角相等,内错角相等。

2. 相交线的性质:相交线之间的对顶角相等,相邻角互补。

3. 平行线与相交线的判定方法:同位角相等则两直线平行,对顶角相等则两直线相交。

教学活动:1. 教师通过示例和讲解,引导学生理解和掌握平行线与相交线的性质与判定方法。

2. 学生进行练习,运用性质与判定方法判断给定直线的平行或相交关系。

3. 教师提出实际问题,学生应用性质与判定方法解决。

第四章:平行线与相交线在实际应用中的举例教学目标:1. 理解平行线与相交线在实际应用中的重要性。

人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计

人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计

优质资料欢迎下载第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1.通过动手观察、操作、推断、交流等数学活动 , 进一步发展空间观念 , 培养识图能力、推理能力和有条理表达能力 .2.在具体情境中了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角 , 理解对顶角相等 , 并能运用它解决一些问题 .重点、难点重点 : 邻补角、对顶角的概念 , 对顶角性质与应用 .难点 : 理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读 , 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片 , 阅读其中的文字 .师生共同总结 : 我们生活的世界中, 蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征 , 相交线的一种特殊形式即垂直 , 垂线的性质 , 研究平行线的性质和平行的判定以及图形的平移问题 .二、观察剪刀剪布的过程, 引入两条相交直线所成的角教师出示一块布片和一把剪刀, 表演剪刀剪布过程 , 提出问题 : 剪布时 , 用力握紧把手 , 引发了什么变化 ?进而使什么也发生了变化?学生观察、思想、回答, 得出 :握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀刃之间的角边相应变小 . 如果改变用力方向 , 随着两个把手之间的角逐渐变大 , 剪刀刃之间的角也相应变大 .教师点评 : 如果把剪刀的构造看作两条相交的直线, 以上就关系到两条相交直线所成的角的问题, 本节课就是探讨两条相交线所成的角及其特征 .三、认识邻补角和对顶角, 探索对顶角性质1.学生画直线 AB、CD相交于点 O,并说出图中 4 个角 , 两两相配共能组成几对角 ? 各对角的位置关系如何?根据不同的位置怎么将它们C B分类 ?OA D(1)学生思考并在小组内交流, 全班交流 .当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达, 如:∠AOC和∠ BOC有一条公共边 OC,它们的另一边互为反向延长线 .∠AOC和∠ BOD有公共的顶点 O,而是∠ AOC的两边分别是∠BOD两边的反向延长线 .2.学生用量角器分别量一量各个角的度数 , 以发现各类角的度数有什么关系 , 学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等 .3.学生根据观察和度量完成下表 :两直线相交所形成的角分类位置关系数量关系134AOD教师再提问 : 如果改变∠ AOC的大小 , 会改变它与其它角的位置关系和数量关系吗 ?4.概括形成邻补角、对顶角概念 .(1)师生共同定义邻补角、对顶角 .有一条公共边 , 而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线 , 那么这两个角叫对顶角.(2)初步应用 .练习 1: 下列说法 , 你同意吗 ?如果错误 , 如何订正 .①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角, 互补的两个角也是邻补角?5.对顶角性质 .(1)教师让学生说一说在学习对顶角概念后 , 结果实际操作获得直观体验发现了什么 ?并说明理由 .(2)教师把说理过程 , 规范地板书 :在图 1 中, ∠AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC 互补 , ∠AOC与∠ AOD 互补 , 根据“同角的补角相等”, 可以得出∠AOD=∠BOC,类似地有∠ AOC=∠BOD.教师板书对顶角性质 : 对顶角相等 .强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系 , 对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象 .四、巩固运用1. 例: 如图 , 直线 a,b 相交 , ∠1=40°, 求∠ 2, ∠3, ∠43的度2数 .a14b 教学时 , 教师先让学生辨让未知角与已知角的关系, 用指出通过什么途径去求这些未知角的度数的, 然后板书出规范的求解过程.2.练习 :(1)课本 P5练习.(2)补充 : 判断下列图中是否存在对顶角 .11122221五、作业课本 P9.1,2,P10.7,8.垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1.使学生掌握垂线的概念。

第5章 相交线和平行线全章教案(共13份)

第5章 相交线和平行线全章教案(共13份)

流程课
活动1
行线的概念一、创设情境,探究平行线的概念
活动1
观察,分别将木条a、b、c钉在一起,并把它们想象成
两端可以无限延伸的三条直线.转动直线a,直线a从在直
线c的下侧与直线b相交逐步变为在上侧与b相交,想象一
下在这个过程中,有没有直线a与直线b不相交的位置?
在学生想象、描述的基础上引导学生进行归纳.
充分发挥
学生的想
象能力,把
三个木条
想象成三
条直线,想
象在转动
过程中不
活动4
究两
引导学生用几何语言进行说明,适时引入反证法(仅仅介
绍,让学生认识到用这样的方法可以说明道理,而不要求会用
这样的方法).
假设a与c不平行,则可以设a与c相交于点O,又a//b,
b//c,于是过O点有两条直线a和c都与b平行,于是和平行
公理矛盾,所以假设不正确,因此a和c一定平行.
在此环节主要培养学生的逻辑推理能力.
学生独立
思考,完成。

100平行线与相交线教案

100平行线与相交线教案

100平行线与相交线教案第一章:引言1.1 教学目标让学生了解平行线与相交线的概念。

引导学生通过观察实际例子,发现平行线与相交线的特征。

1.2 教学内容平行线与相交线的定义。

平行线与相交线的特征。

1.3 教学步骤1. 引入话题:让学生观察教室里的直线,引导学生发现有些直线永远不会相交,有些直线则会相交。

2. 讲解平行线与相交线的定义:解释什么是平行线,什么是相交线。

3. 观察实际例子:让学生观察教室里的直线,找出平行线和相交线。

第二章:平行线的特征2.1 教学目标让学生了解平行线的特征。

引导学生通过观察和实验,发现平行线的性质。

2.2 教学内容平行线的性质。

2.3 教学步骤1. 回顾平行线的定义:让学生回顾一下平行线的概念。

2. 观察和实验:让学生观察教室里的直线,进行实验,发现平行线的性质。

3. 讲解平行线的性质:解释并证明平行线的性质。

第三章:相交线的特征3.1 教学目标让学生了解相交线的特征。

引导学生通过观察和实验,发现相交线的性质。

3.2 教学内容相交线的性质。

3.3 教学步骤1. 引入话题:让学生观察教室里的直线,引导学生发现有些直线会相交。

2. 观察和实验:让学生观察教室里的直线,进行实验,发现相交线的性质。

3. 讲解相交线的性质:解释并证明相交线的性质。

第四章:平行线与相交线的应用4.1 教学目标让学生了解平行线与相交线的应用。

引导学生通过实际例子,运用平行线与相交线的性质解决问题。

4.2 教学内容平行线与相交线的应用。

4.3 教学步骤1. 引入话题:让学生思考在日常生活中,平行线与相交线有哪些应用。

2. 讲解应用:解释并给出平行线与相交线的应用实例。

3. 练习解决问题:让学生练习运用平行线与相交线的性质解决问题。

5.1 教学目标引导学生评价自己的学习成果。

5.2 教学内容5.3 教学步骤2. 评价学习成果:让学生评价自己在学习平行线与相交线方面的进步。

第六章:平行线的判定6.1 教学目标让学生掌握平行线的判定方法。

第五章 相交线与平行线 全章教案

第五章 相交线与平行线 全章教案

第五章相交线与平行线全章教案第五章相交线与平行线相交线学习内容:相交线. 学习目标:1.经历探究对顶角.邻补角的位置关系的过程;2.了解对顶角.邻补角的概念;3.知道“对顶角相等”并会运用它进行简单的说理. 重点、难点:对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点.教学资源的使用:课件. 导学流程:一、情景导入下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线.“米”字形中的线段都相交,“米”字形中间的线段都平行,等等.相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用.我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备.二、呈现目标、任务导学呈现目标学习对顶角和邻补角的性质. 互动探究面是一把剪刀,你能联想到什么几何图形?A C B两条直线相交,如图.143BO 2 D BB BB上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即: ∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4. 量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是180o;∠1和∠3、∠2和∠4为二类,它们相等.第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线. 具有这种关系的两个角,互为邻补角. 讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关.第二类角有什么共同的特征有公共的顶点,两边互为反向延长线. 具有这种位置关系的角,互为对顶角. 思考:〔投影3〕下列图形中有对顶角的是〕A B C D 注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个.在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片.在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?为了回答这个问题,我们先来研究下面的问题.如图,直线AB和直线CD相交于点O,∠1和∠3有什么关系?为什么? D1 A 4 B2 ∠1和∠3相等.O .3 ∵∠1+∠2=180o,∠2+∠3=180oCBB∴∠1=∠3同理∠2和∠4相等. 这就是说:对顶角相等.你能利用这个性质回答上面的问题吗?因为剪刀的构造可以看成两条相交的直线,所以两个把手之间的角与剪刀刃之间的角互为对顶角,于对顶角相等,因此,两个把手之间的角与剪刀刃之间的角始终相等.应用示例如图,直线a、b相交,∠1=40,求∠2、∠3、∠4的度数.A C4 1O 32 DB解:∵∠1+∠2=180o,∴∠2=180o—∠1=180o—40o =140o.- 2 -∠3=∠1=40o,∠4=∠2=140o. 三、强化训练.当堂达标课本5面练习.四、设计问题.布置预习完成习题中2题,预习“垂线”一节. 课后反思:相交线学习内容:垂线.学习目标:1.了解垂线的概念.2.理解垂线的性质1.3.会用三角尺或量角器过一点画一条直线垂直于已知直线. 重点.难点:垂线的概念、性质1和画法是重点;画线段和射线的垂线是难点. 教学资源的使用:投影仪. 导学流程:一、情景导入b 如图,取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.当b的位置变化时,a、b所成的角是也会发生变化,如a ·当=90o时;垂直.二、呈现目标、任务导学b 自主学习显然,垂直是相交的一种特殊情形,即两条直线相交成90o的情况.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB垂直于直线CD,记作AB⊥CD,垂足为O.在生产和日常生活中,两条直线互相垂直的情形是很常见的,如:〔投影2〕CAO D十字路口的两条道路方格本的横线和竖线B铅- 3 -交流展示你能再举一些其它的例子吗?思考:下面所叙述的两条直线是否垂直?①两条直线相交所成的四个角相等.②两条直线相交,有一组邻补角相等. ③两条直线相交,对顶角互补.①②③都是垂直的. 互动探究探究(投影4):学生用三角尺或量角器画已知直线l的垂线. (1)画已知直线l的垂线,这样的垂线能画出几条(2)经过直线l上的一点A画l的垂线,这样的垂线能画几条 (3)经过直线l外的一点B画l的垂线,这样的垂线能画几条画图可知:(1)可以画无数条; (2)可以画一条; (3)可以画一条.这就是说,经过直线上或直线外一点,可以画一条垂线,并且只能画一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直. 解决疑难、适度拓展①“有”指存在,“只有”指唯一;②“过一点”中的“点”在直线上或在直线外. 总结梳理1.垂线的概念,垂直的表示;2.垂直的性质1;三、强化训练、当堂达标课本5面练习1、2题. 3.垂线的画法.四、设计问题、布置预习完成课本8面3、4、5题,预习下一节.课后反思:相交线学习内容:垂线段. 学习目标:1.了解垂线段的概念.2.理解“垂线段最短”的性质.3.体会点到直线的距离的意义,并会度量点到直线的距离. 重点、难点:- 4 -“垂线段最短”的性质,点到直线的距离的概念及其简单应用是重点;理解点到直线的距离的概念是难点.教学资源的利用:投影仪. 导学流程:一、情景导入如图,在灌溉时,要把河中的水引到农田P处,如何挖渠能使渠道最短?说到最短,上学期我们曾经学过什么最短的知识,还记得吗?两点之间,线段最短. 如果把渠道看成是线段,它的一个端点自然是点P,那么另一个端点的位置在什么地方呢?把江河看成直线l,那么原问题就是这样的数学问题:在连接直线l外一点P与直线l 上各点的线段中,哪一条最短二、呈现目标、任务导学呈现目标垂线段最短的性质. 互动探究演示:在黑板上固定木条l, l外一点P,木条a一端固定在点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结学生活动:表格中的结论均由学生自己口答填出.五、布置作业:课本P3练习教学后记:5.1.2垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.重点两条直线互相垂直的概念、性质和画法.教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.学生观察课本P3图思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的其中会有特殊情况出现吗当这种情况出现时,a、b所成的四个角有什么特殊关系教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.5.简单应用(1)学生观察课本P6图中的一些互相垂直的线条,并再举出生活中其他实例.(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗能画几条通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直. (2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条从中你又得出什么结论教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗四、布置作业:课本P7练习,,4,5,9.教学后记:5.1.2垂线(第二课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离.教学重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.教学难点:对点到直线的距离的概念的理解.教学过程一、创设问题情境1.教师展示课本图,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短学生看图、思考.2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗学生说出:两点间线段最短.(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P. 使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与L的位置关系如何用三角尺检验.4.学生画图操作,得出结论.(1)画出直线L,L外一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短.5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.二、点到直线的距离1.师生根据两点间的距离的意义给出点到直线的距离命名.结合课本图形(图,深入认识垂线段PO:PO⊥L,∠POA=90°,O为垂足,垂线段PO的长度比其他线段PA1、PA2……中是最短的.按照两点间的距离给点到直线的距离命名,教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图中,PO的长度是点P到直线L的距离,其余结论PA、PA2……长度都不是点P到L的距离.2、练习课本P6练习三、课堂小结:通过这节课,我们主要学习了什么呢四、布置作业:课本,,11,12,P11观察与猜想.教学后记:5.1.3同位角、内错角、同旁内角教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角.重点:同位角、内错角、同旁内角的概念与识别;难点:识别同位角、内错角、同旁内角。

教学过程一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。

二、同位角、内错角、同旁内角如图,直线a 、b 与直线c 相交,或者说,两条直线a 、b 被第三条直线c 所截,得到八个角。

我们来研究那些没有公共顶点的两个角的关系。

∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。

同位角形如字母“F ”。

∠3与∠2、∠4与∠6的位置有什么共同的特点在截线的两旁,被截直线之间。

具有这种位置关系的两个角叫做内错角.内错角形如字母“Z ”。

∠3与∠6、∠4与∠2的位置有什么共同的特点在截线的同旁,被截直线之间。

具有这种位置关系的两个角叫做同旁内角.同旁内角形如字母“U ”。

思考:这三类角有什么相同的地方(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。

三、例题例如图,直线DE ,BC 被直线AB 所截,(1)∠1与∠2、∠1与∠3、∠1与∠4各是什么角为什么(2)如果∠1=∠4,那么∠1与∠2相等吗∠1与∠3互补吗为什么解:(1)∠1与∠2是内错角,因为∠1与∠2在直线DE ,BC 之间,在截线AB 的两旁;∠1与∠3是同旁内角,因为∠1与∠3在直线DE ,BC 之间,在截线31 BD 4AC E 2 cb a43215 6 87AB 的同旁;∠1与∠4是同位角,因为∠1与∠4在直线DE ,BC 的同方向,在截线AB 的同方向。

(2)如果∠1=∠4,又因为∠2=∠4,所以∠1=∠2;因为∠3+∠4=1800,又∠1=∠4,所以∠1+∠3=1800,即∠1与∠3互补。

相关文档
最新文档