化学反应中热量的变化
化学反应中的能量变化
反应物的总能量高 放 热 反 应
生成物的总能量高 吸 热 反 应 反应物的总能量低
生成物的总能量低
3、化学反应中热量变化的原因:
放热反应: 反应物的总能量>生成物的总能量 吸热反应: 反应物的总能量<生成物的总能量
二、热化学方程式
1、定义:表明反应所放出或吸收的热量的化学 方程式。
例1、2H2(g) + O2(g) = 2H2O(l); △H=- 571.6 kJ/mol 表示: (1)反应物和生成物的种类; (2)反应中各物质的物质的量比和质量比; (3)反应中放出或吸收的热量。 每2mol 氢气与1mol 氧气反 应生成2mol 水,放热571.6 千焦。
2-2-2 燃料燃烧释放的热量
一、燃料燃烧释放的热量 表2-4 几种燃料的热值
物质
热值 /kJ/g
天然气 石油
煤炭
氢气
甲醇
约56
约48量相同的不同燃料,完全燃烧后 放出的热量不相等?燃料燃烧中释放的能量从何 而来?
1、化学反应热效应的实质 拆开化学键:吸收热量; 形成化学键:放出热量。 吸热反应 吸热 > 放热 当 放热反应 吸热 < 放热 [ 交流与讨论 ] 计算 2H2+O2=2H2O 反应中的能量 变化.
(2)H2(g) + 1/2O2(g) = H2O(l) △H =- 286 kJ/mol
[思考2]为什么聚集状态不同,热量值不同? (1)2H2(g) + O2(g) = 2H2O(l);△H =- 572kJ/mol
(2)2H2(g) + O2(g) = 2H2O(g);△H =- 484 kJ/mol
活动与探究 【实验 1】向一支试管中放入用砂纸打磨光亮的 镁条,加入5mL2mol/L盐酸,用手触摸试管外壁, 有什么感觉? 【实验2】在100mL小烧杯中加入约20g经研磨的 氢氧化钠晶体 [Ba(OH)2· 8H2O] ,然后加入约 10g 氯化铵晶体,用玻璃棒搅拌,使之充分混合。用 手触摸烧杯外壁,反应混合物的温度有什么变化?
化学反应中的热量变化
写出下列反应的热化学方程式。 (1)1mol硫粉完全燃烧生成二氧化硫气体,放出296kJ 热量 (2)9g铝与足量氯气化合生成固体氯化铝,放出热量 274.2kJ (3)10g CaCO3分解吸收热量17.56kJ (4) 4g硫粉完全燃烧生成二氧化硫气体,放出37kJ热 量
3、下列说法正确的是(
你见过化学反应中伴随着的 能量转化吗?能举例说明吗?
镁条的燃烧
闪电时产生氮氧化物
专题2 化学反应与能量转化
第二单元 化学反应中的热量
学习目标
•了解放热反应、吸热反应的定义及判断 •掌握热化学方程式的书写 •能够从宏观和微观两个角度分析化学反 应中的能量变化并能够进行计算
所有化学反应均伴随着热量变化 A + B = C
如何用化学用语表示放热反应和 吸热反应?
二、热化学方程式
1.定义:表明反应放出或吸收的热量的化学 方程式叫热化学方程式。
观察与比较
氢气燃烧的化学方程式:2H2 + O2 == 2H2O
氢气燃烧的热化学方程式
① 2H2(g) + O2(g) = 2H2O(l) ② H2(g) + 1/2O2(g) = H2O(l) △H =-571.6 kJ •mol- 1 △H =-285.8 kJ •mol- 1
C.2H2(g)+O2(g) === 2H2O(l) △H=- 571.6 kJ/mol
D.C(s) + O2(g) === CO2(g) △H= + 393.5 kJ/mol
3、热化学方程式C(s)+H2O(g) = CO(g)+H2(g); △H =+131.3kJ/mol表示( C)
A.碳和水反应吸收131.3kJ能量 B.1mol碳和1mol水反应生成一氧化碳和氢 气,并吸收131.3kJ热量 C.1mol固态碳和1mol水蒸气反应生成一氧化 碳气体和氢气,并吸热131.3kJ D.1个固态碳原子和1分子水蒸气反应吸热 131.1kJ
化学反应中的焓变与熵变
化学反应中的焓变与熵变化学反应是物质之间相互转化的过程,包括生成、分解、氧化、还原等。
在化学反应中,焓变和熵变是描述反应过程中能量和混乱程度变化的重要物理量。
本文将就化学反应中的焓变和熵变进行讨论。
一、焓变焓变(ΔH)是指化学反应过程中热量的变化量。
焓是热力学函数,常用来描述在恒压条件下反应过程中的能量变化。
ΔH为正值表示吸热反应,反应过程中吸收了外界热量;ΔH为负值表示放热反应,反应过程中释放了热量。
化学反应的焓变可以通过实验测量得到。
在常温常压下,可以使用燃烧弹量热计等设备进行实验测定。
在热力学中,焓变可以通过ΔH=ΔU+PΔV计算得到,其中ΔU为内能变化,P为常压。
焓变的正负值与反应的方向有关,用于判断反应是吸热反应还是放热反应。
二、熵变熵变(ΔS)是指化学反应过程中系统熵的变化量。
熵是热力学函数,常用来描述物质的无序程度。
ΔS为正值表示反应过程中系统的熵增加,物质的无序程度增加;ΔS为负值表示反应过程中系统的熵减少,物质的无序程度减少。
熵变也可以通过实验测量得到。
在反应前后测量系统的混乱程度,可以得到系统的熵变。
若反应中生成了更多的气体或溶液的溶解度增加等现象,则系统的熵增加。
三、焓变与熵变的关系根据热力学第二定律,ΔG=ΔH-TΔS,其中ΔG为自由能变化,T为温度。
焓变和熵变通过ΔG的计算可以得到反应的驱动力和方向。
当ΔG为负值时,反应是自发的;当ΔG为正值时,反应是不自发的。
焓变和熵变对于能量和混乱程度的变化进行了定量描述,在化学反应中起到了重要的作用。
通过对焓变和熵变的研究,可以预测反应的方向和速率,指导合成新物质和优化反应条件。
结论在化学反应中,焓变和熵变是描述能量变化和混乱程度变化的重要物理量。
焓变描述反应过程中的热量变化,而熵变描述反应过程中的混乱程度变化。
焓变和熵变通过计算自由能变化ΔG来判断反应的驱动力和方向。
通过对焓变和熵变的研究,可以预测反应的发生性和优化反应条件。
化学反应中的焓变和熵变是热力学研究的重要内容,对于理解和控制化学反应过程具有重要意义。
化学反应热量变化与焓变的测定
热力学第一定律表达式
ΔU = Q + W,其中ΔU为系统内能变化,Q为系统 吸热或放热,W为外界对系统做功或系统对外界做 功。
应用于化学反应
化学反应中的热量变化与内能变化、做功等 因素相互关联,符合热力学第一定律。
02
焓变及其测定方法
焓变定义与性质
焓变定义
焓变是指在一个化学反应中,反应物 与生成物之间的能量差,通常以热量 的形式表现。
环境保护领域应用
01
化学反应热量变化与焓变的测定在环境保护领域也具有广泛应用。例如,在废 弃物处理过程中,通过测定废弃物燃烧或分解反应的热量变化,可以评估处理 过程的能量回收效率和环境排放情况。
02
在大气污染控制方面,测定大气中化学反应的热量变化有助于了解大气污染的 成因和机制,为制定有效的污染控制措施提供科学依据。
量热计精度
量热计的精度直接影响热量测定的准确性,应选用高 精度的量热计并定期进行校准。
温度传感器误差
温度传感器可能存在误差,导致温度测量不准确,进 而影响热量计算。应对传感器进行校准或更换。
环境干扰
外界环境的干扰,如震动、电磁干扰等,可能影响仪 器的稳定性,应采取相应措施减少干扰。
操作技巧与注意事项
03
此外,在环境监测领域,利用化学反应热量变化与焓变的测定技术可以监测环 境中污染物的浓度和分布情况,为环境保护和污染治理提供有力支持。
科研领域发展前景
化学反应热量变化与焓变的测定在科研 领域具有广阔的发展前景。随着科学技 术的不断进步,人们对化学反应过程中 能量转化和传递机制的认识将不断深入
。
未来,科研人员将利用更加先进的实验 技术和理论计算方法,对化学反应的热 量变化和焓变进行更加精确、快速的测 定和分析,以揭示反应过程的本质规律
化学反应中的热效应
化学反应中的热效应热效应是指化学反应伴随的热量变化。
在化学反应中,反应物之间的化学键在断裂和形成的过程中,会吸收或释放热量。
这种热量变化可以对反应速率、平衡态、产物质量等产生重要影响。
下面将介绍几种常见的化学反应热效应。
一、焓变与焓变反应例子在热力学中,焓变(ΔH)是指反应物到产物之间焓(H)的变化。
焓变可以根据反应条件的不同分为不同类型。
常见的焓变类型包括焓变为正的吸热反应,焓变为负的放热反应,以及焓变为零的等焓反应。
例子1:燃烧反应C6H12O6(葡萄糖)+ 6O2 → 6CO2 + 6H2O这是一种放热反应,即焓变为负。
在这个反应中,葡萄糖和氧气通过燃烧生成二氧化碳和水,放出大量的热能。
这种热能的释放使得我们可以利用葡萄糖作为能源。
例子2:溶解反应NaCl(固体)→ Na+(水溶液)+ Cl-(水溶液)这是一种吸热反应,即焓变为正。
在这个反应中,固态的氯化钠溶解于水中,过程中吸收了周围的热量。
这也是为什么我们在用食盐腌制肉类时,会感觉容器变冷的原因。
二、热效应对反应速率的影响热效应对化学反应速率有很大影响。
根据反应速率理论,温度的升高可以增加反应物的反应活性,加快反应速率。
这是因为加热会增大反应物的平均动能。
当反应物之间的化学键断裂,新的键形成时,伴随着热量的吸收或释放。
如果反应是吸热的,那么加热将提供所需的能量,促进反应进行。
反之,如果反应是放热的,加热将导致反应物的温度升高,增加反应活性,加快反应速率。
因此,热效应可以通过改变反应温度来控制化学反应的速率。
三、热效应对平衡态的影响化学反应可能会达到一个平衡态,在平衡态下,正向反应和逆向反应的速率相等。
热效应可以影响化学反应达到平衡态所需的温度。
根据Le Chatelier原理,当加热一个化学系统时,平衡将移动到吸热反应的方向,以吸收多余的热量。
反之,当冷却一个化学系统时,平衡将移动到放热反应的方向,以释放多余的热量。
因此,通过控制温度并利用热效应,我们可以调节平衡态的位置。
化学反应中的能量变化
化学反应中的能量变化化学反应是指物质之间发生化学变化的过程,而能量变化则是指在化学反应中所涉及的能量的转化与转移。
化学反应中的能量变化包括放热反应和吸热反应两种类型,其能量的变化情况有着重要的物理和化学意义。
一、放热反应放热反应是指在化学反应过程中,反应物所含的化学能转化为热能释放出来的情况。
这种反应通常伴随着温度升高,产热现象明显。
放热反应是自发进行的,也就是说反应物的自由能降低,反应的焓变为负值。
放热反应的例子有燃烧反应,如燃烧氢气生成水的反应:2H2(g) + O2(g) → 2H2O(l) + 热能释放此反应是一个放热反应,它释放出的能量以热的形式迅速传递给周围,导致火焰和热量产生。
二、吸热反应吸热反应是指在化学反应过程中,反应物吸收周围环境的热量进行反应的情况。
这种反应通常伴随着温度降低,吸热现象明显。
吸热反应是非自发进行的,也就是说反应物的自由能升高,反应的焓变为正值。
吸热反应的例子有许多,如溶解氯化铵的反应:NH4Cl(s) + 热量吸收→ NH4+(aq) + Cl-(aq)此反应是一个吸热反应,它从周围环境吸收热量以完成反应。
这种反应在实验室中通常用来制冷或吸附湿度。
三、能量守恒定律化学反应中的能量变化遵循能量守恒定律,即能量在化学反应中既不能被创造,也不能被毁灭,只能从一种形式转化为另一种形式。
根据热力学第一定律,能量的变化等于吸热与放热的代数和。
在生活中,了解化学反应中的能量变化是非常重要的。
例如,在燃料的燃烧过程中,我们需要知道能量的释放情况来优化能源利用和环境保护。
而在化学工业中,了解吸热反应的特性可以帮助我们设计更高效的化学过程,并控制温度变化。
总结:化学反应中的能量变化是化学反应过程中的重要现象之一。
放热反应释放出能量,吸热反应吸收能量。
能量在化学反应中不会被创造或者消失,只能在不同形式之间进行转化。
深入了解化学反应中的能量变化有助于我们更好地理解和应用化学知识,为科学研究和应用提供基础。
化学反应中热量变化
二、反应热
1、定义:化学反应过程中放出或吸收 的热量 2、符号:△H
3、放热反应:△H为“-”或△H<0
吸热反应:△H为“+” 或△H>0 4、单位:kJ/mol
?
疑问
为什么有的反应放出热量,而有的 反应吸收热量?
水能、化学能变化对比示意图
• 图1将水由低处抽向高处需提供能量
都需要。 它与只消只放需耗由热略的反、微能应吸 加量物热用的无就于总关能断能,引量
⑤ 怎样高效、清洁地体利燃用料煤以炭雾?状喷出,以增 ⑥ 怎样提高固体和液大体燃燃料料与的空燃气烧的效接率触?面
高效清洁利用煤炭的重要途径 煤的气化(水煤气或干馏煤气)
将焦炭在高温下与水蒸气反应,则得到CO和H2
C(s) + H2O(g)
高温 CO(g) +
H煤2(g的) 液化
练习:简要说明使煤炉中的煤充
分燃烧所应采取的措施。
打打打开开炉炉门
燃烧时要有足 够多的空气
门
在在开煤煤炉饼门饼上上打打孔孔或或将将煤做煤成做煤成块煤块
燃料与空气 要有足够大
巩固练习
1、下列燃料中不属于化石燃料的是 ( ) A、煤 B、石油 C、水煤气 D、天然气
2、下列燃料的燃烧,不会污染空气的是 ( ) A、无铅汽油 B、含铅汽油 C、煤 D、氢气
△H:表示反应体系所含化学能的变化量
化 反应物 学 能
高
放出能量 放热反应
△H为“”
生成物 低
反应过程
△H:表示反应体系所含化学能的变化量
化 学 能
反应物
生成物 高 吸收能量 吸热反应
△H为“+” 低
反应过程
化学键与化学反应中的能量变化
化学反应中的能量变化与热量
化学反应中的能量变化与热量化学反应是指原子、离子或分子之间发生的变化,产生新的物质和能量的过程。
在化学反应中,能量会发生变化,这种变化可以通过热量的转移来衡量。
本文将探讨化学反应中的能量变化与热量。
一、能量变化的概念能量是物质存在的一种形式,可以存在于不同的形式,例如热能、化学能、机械能等。
在化学反应中,化学键的形成和断裂导致了能量的吸收或释放,从而引起能量的变化。
能量的变化可以用化学反应的焓变(ΔH)来表示。
二、化学反应中的热量变化热量是指物体的内部能量的传递,它是一种能量的形式。
在化学反应中,热量的变化可以通过测定反应物和产物之间的温度变化来确定。
当化学反应释放热量时,温度将升高;反之,吸收热量时,温度将降低。
三、化学反应的热量变化与焓变焓变表示化学反应过程中的热量变化,可以是吸热反应(ΔH>0)或放热反应(ΔH<0)。
吸热反应是指反应过程中吸收了热量,而放热反应则是指反应过程中释放了热量。
化学反应的焓变取决于反应物和产物之间的化学键的形成和断裂。
在化学键形成的过程中,需要输入能量;而在化学键断裂的过程中,会释放能量。
因此,化学反应的焓变可以通过化学键的能量差来计算。
四、热化学方程式热化学方程式是用来表示化学反应过程中的热量变化的方程式。
它通常采用以下形式:反应物1 + 反应物2 + ... → 产物1 + 产物2 + ... + 热量热量的符号(正负号)表示了反应过程中的放热或吸热特性。
例如,当热量为正时,表示反应为吸热反应;而热量为负时,表示反应为放热反应。
五、化学反应中的能量变化与热化学方程式的应用热化学方程式可以用来预测化学反应的热量变化。
通过实验测定反应物和产物的物质的量,以及温度的变化,可以计算出焓变。
这些数据可用于热化学方程式中的热量值。
利用热化学方程式,可以计算出化学反应的焓变,从而了解反应过程中的能量变化。
这对于理解化学反应的热力学性质非常重要,也对于工业生产和能源利用有着重要的意义。
化学反应中的热量变化
1molH2分子中 的化学键断裂时需 吸收436.4kJ的能量 吸收 的能量
1molCl2分子中的化学键 断裂时需吸收242.7kJ的能量 断裂时需吸收 的能量
2molHCl分子中的化学键形成时要释 分子中的化学键形成时要释 放431.8kJ/mol×2mol=863.6kJ的能量 × 的能量
向一支试管中放入用砂纸打磨光亮 的镁条,加入5 mol/L盐酸 盐酸, 的镁条,加入5 mL 2 mol/L盐酸,用 手触摸试管外壁,有什么感觉? 手触摸试管外壁,有什么感觉? Mg+2HCl=MgCl2+H2
实验2 氢氧化钡 实验2 氢氧化钡与氯化铵反应 向小烧杯中加入约20g氢氧化钡晶体 烧杯中加入约2 再加入约10 10g 【 Ba(OH)2·8H2O 】 ,再加入约 10 g 氯化铵 晶体,用玻璃棒搅拌,使之充分混合, 晶体,用玻璃棒搅拌,使之充分混合, 用手触摸烧杯外壁, 感觉反应混合物的 用手触摸烧杯外壁, 感觉反应混合物的 温度有何变化? 温度有何变化?
Ba(OH)2· 8H2O + 2NH4Cl=BaCl2 +2NH3 +10H2O =
判断下列说法是否正确: 判断下列说法是否正确:
①浓硫酸稀释后温度升高,为放热反应 浓硫酸稀释后温度升高, ②硝酸铵晶体加入水中温度降低,为吸热反应 硝酸铵晶体加入水中温度降低, ③金属钠加入水后温度升高,为放热反应 金属钠加入水后温度升高,
思考: 思考:下列热化学方程式书写正确的是 C
A.2SO2 + O2 ==== 2SO3 △H=-196.6 kJ/mol . - B.H2(g)+1/2O2(g)=== H2O (g) △H=-241.8 kJ . - C.2H2(g)+O2(g) === 2H2O(l) △H=-571.6 kJ/mol . - D.C(s) + O2(g) === CO2(g) △H= +393.5 kJ/mol .
化学反应热量变化实验原理
化学反应热量变化实验原理一、概念解释1.化学反应:物质之间的原子重新组合,生成新物质的过程。
2.热量变化:化学反应过程中,能量的吸收或释放现象。
3.放热反应:化学反应过程中,系统释放能量,温度升高的现象。
4.吸热反应:化学反应过程中,系统吸收能量,温度降低的现象。
二、实验原理1.能量守恒定律:化学反应过程中,系统的总能量保持不变。
2.热力学第一定律:化学反应过程中,系统的内能变化等于能量的吸收或释放。
3.热化学方程式:表示化学反应过程中能量变化的方程式,包括反应物和生成物的能量。
4.熵增原理:化学反应过程中,系统的熵值(无序度)增加。
三、实验方法1.热量测定:利用热量计测定反应前后的温度变化,计算反应热量。
2.比热容测定:通过测量反应物和生成物的比热容,计算反应热量。
3.热量计:常用的热量计有量热计、热电偶、红外线测温仪等。
4.实验装置:包括反应容器、加热设备、温度传感器、数据记录器等。
四、常见放热反应和吸热反应1.放热反应:燃烧、金属与酸反应、酸碱中和反应等。
2.吸热反应:分解反应、化合反应(如C和CO2反应)、复分解反应等。
五、实验注意事项1.确保实验装置的气密性,避免热量损失。
2.选用准确的温度传感器和热量计,确保实验数据准确。
3.避免实验过程中的热量的散失和误差。
4.注意实验安全,遵守实验室规定。
六、实验应用1.测定反应热:计算反应物和生成物的能量差,了解反应热效应。
2.研究反应动力学:通过热量变化,了解反应速率与反应条件的关系。
3.分析化学反应的平衡:根据反应热量,计算反应的平衡常数。
4.能量转换:利用化学反应实现能量的转换,如电池的制作。
化学反应热量变化实验原理是通过测定反应前后的温度变化,研究化学反应过程中能量的吸收或释放现象。
实验方法包括热量测定、比热容测定等,注意事项包括装置气密性、数据准确性等。
通过实验,可以了解反应热效应、反应速率与反应条件的关系、反应平衡等,为化学研究提供重要依据。
化学反应中的能量变化计算
化学反应中的能量变化计算化学反应中的能量变化是一个重要的研究领域,对于了解反应过程的热力学特征以及优化化学反应具有重要意义。
本文将介绍化学反应中能量变化的计算方法。
一、热量变化的计算方法化学反应中的热量变化,通常用焓变(ΔH)来表示。
焓是系统在常压下的内能与对外界做的功之和,可以通过实验测量反应物与生成物的温度变化来计算。
化学反应的热量变化由以下公式给出:ΔH = q / n其中,ΔH为焓变,q为实验测得的热量变化,n为反应物或生成物的摩尔数。
二、标准反应焓的计算方法标准状态下的反应焓(ΔH°)是指在常压、恒温下,1mol参与反应物质生成反应物所放出或吸收的热量。
标准反应焓可以根据化学方程式及标准物质的标准反应焓计算得出。
ΔH° = Σ(nfΔH°f- nrΔH°r)其中,nf为生成物的摩尔系数,ΔH°f为生成物的标准反应焓;nr 为反应物的摩尔系数,ΔH°r为反应物的标准反应焓。
三、能量守恒定律在化学反应中的应用能量守恒定律指出在封闭系统中,能量不会从系统内部转移到外部或从外部转移到系统内部,能量只能在系统内部进行转化。
在化学反应中,根据能量守恒定律,可以应用以下公式计算焓变:ΔH = ΔH° + ΔE其中,ΔH为焓变,ΔH°为标准反应焓,ΔE为系统内部能量变化。
四、化学反应中的热力学计算化学反应的热力学计算广泛应用于工业生产和实验室研究。
根据热力学定律和实验数据,可以计算出反应的热力学参数,如反应熵变(ΔS)和反应自由能变(ΔG)。
ΔS = Σ(nfSf- nrSr)其中,nf为生成物的摩尔系数,Sf为生成物的摩尔熵;nr为反应物的摩尔系数,Sr为反应物的摩尔熵。
ΔG = ΔH - TΔS其中,ΔG为反应的标准自由能变,T为反应的温度。
五、小结通过热量变化的计算,可以了解化学反应中的能量变化情况。
标准反应焓的计算方法可以根据化学方程式和标准物质的数据计算得到。
化学反应中能量变化的有关概念及计算
{{化学反应中能量变化的有关概念及计算}}一、有关概念化学反应中的能量变化化学反应中的能量变化,通常表现为热量的变化。
探讨化学反应放热、吸热的本质时,要注意四点:①化学反应的特点是有新物质生成,新物质和反应物的总能量是不同的,这是因为各物质所具有的能量是不同的(化学反应的实质就是旧化学键断裂和新化学键的生成,而旧化学键断裂所吸收的能量与新化学键所释放的能量不同导致发生了能量的变化);②反应中能量守恒实质是生成新化学键所释放的能量大于旧化学键断裂的能量而转化成其他能量的形式释放出来;⑴燃烧热:在101kPa时,1mol可燃物完全燃烧生成稳定的氧化物时所放出的热量。
⑵中和热:在稀溶液中,酸和碱发生中和反应生成1mol水时的反应热。
(3)反应热,通常是指:当一个化学反应在恒压以及不作非膨胀功的情况下发生后,若使生成物的温度回到反应物的起始温度,这时体系所放出或吸收的热量称为反应热。
符号ΔH ,单位kJ/mol (4)如果反应物所具有的总能量高于生成的总能量,则在反应中会有一部分能量转变为热能的形式释放,这就是放热反应,反之则是吸热反应;(5)盖斯定律换句话说,化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关,而这可以看出,盖斯定律实际上是“内能和焓是状态函数”这一结论的进一步体现。
利用这一定律可以从已经精确测定的反应热效应来计算难于测量或不能测量的反应的热效应。
尽管盖斯定律出现在热力学第一定律提出前,但亦可通过热力学第一定律推导出。
由于热力学能(U)和焓(H)都是状态函数,所以ΔU和ΔH 只与体系的始、末状态有关而与“历程”无关。
可见,对于恒容或恒压化学反应来说,只要反应物和产物的状态确定了,反应的热效应Qv或Qp也就确定了,反应是否有中间步骤或有无催化剂介入等均对Qv或Qp数值没有影响。
…使用该定律要注意:1、盖斯定律只适用于等温等压或等温等容过程,各步反应的温度应相同;2、热效应与参与反应的各物质的本性、聚集状态、完成反应的物质数量,反应进行的方式、温度、压力等因素均有关,这就要求涉及的各个反应式必须是严格完整的热化学方程式。
化学反应中的能量变化知识点及例题解析
考点3化学反应中的能量变化一、反应热1、化学反应过程中放出或吸收的热量,通常叫做反应热。
反应热用符号ΔH表示,单位一般采用kJ/mol。
当ΔH为负值为放热反应;当ΔH为正值为吸热反应。
测量反应热的仪器叫做量热计。
2、燃烧热:在101kPa时,1mol物质完全燃烧生成稳定的氧化物时放出的热量,叫做该物质的燃烧热。
3、中和热:在稀溶液中,酸跟碱发生中和反应生成1molH2O,这时的反应热叫做中和热。
中学阶段主要讨论强酸和强碱的反应。
二、热化学方程式1、书写热反应方程式应注意的问题:(1)由于反应热的数值与反应的温度和压强有关,因此必须注明,不注明的是指101kPa和25℃时的数据。
(2)物质的聚集状态不同,反应热的数值不同,因此要注明物质的聚集状态。
(3)热化学方程式中的化学计量数为相应物质的物质的量,它可以是整数,也可以是分数。
2、书写热化学方程式的一般步骤(1)依据有关信息写出注明聚集状态的化学方程式,并配平。
(2)根据化学方程式中各物质的化学计量数计算相应的反应热的数值。
(3)如果为放热反应ΔH为负值,如果为吸热反应则ΔH为正值。
并写在第一步所得方程式的后面,中间用“;”隔开。
(4)如果题目另有要求,如反应燃料燃烧热的热化学方程式和有关中和热的热化学方程式,可将热化学方程式的化学计量数变换成分数。
三、中和热的测定1、测定前的准备工作(1)选择精密温度计(精确到0.10C),并进行校对(本实验温度要求精确到0.10C)。
(2)使用温度计要轻拿轻声放。
刚刚测量高温的温度计不可立即用水冲洗,以免破裂。
(3)测量溶液的温度应将温度计悬挂起来,使水银球处于溶液中间,不要靠在烧杯壁上或插到烧杯底部。
不可将温度计当搅拌棒使用。
2、要想提高中和热测定的准确性,实验时应注意的问题(1)作为量热器的仪器装置,其保温隔热的效果一定要好。
因此可用保温杯来做。
如果按教材中的方法做,一定要使小烧杯杯口与大烧杯杯口相平,这样可以减少热量损失。
化学反应的能量变化
化学反应的能量变化化学反应是指物质之间的原子重组过程,其伴随着能量的变化。
在化学反应中,原子之间的化学键被打破,新的化学键形成,从而产生了能量的变化。
能量可以以不同的形式存在,如热能、化学能、电能等。
本文将深入探讨化学反应中的能量变化过程。
一、热能的变化化学反应中最常见的能量变化形式是热能的变化。
化学反应可以释放热能,也可以吸收热能。
释放热能的反应称为放热反应,吸收热能的反应则称为吸热反应。
1. 放热反应放热反应是指在化学反应中释放出热能。
这种反应通常是一个自发的过程,会伴随着温度升高或周围环境变热。
放热反应常见的例子包括燃烧反应和酸碱中和反应。
例如,将燃料与氧气反应时,会产生大量热能,例如燃烧木材产生的火焰和热量。
2. 吸热反应吸热反应是指在化学反应中吸收热能。
这种反应需要外界向系统提供能量,因此周围环境会变冷。
吸热反应常见的例子包括融化冰块和蒸发水等过程。
在这些反应中,吸收热能使得物质的状态发生改变。
二、化学能的变化化学反应中,化学键的断裂和形成是伴随着化学能的变化的。
当化学键被打破时,化学能会被释放出来,而当新的化学键形成时,化学能会被吸收。
1. 化学键能化学键能是指在成键过程中释放或吸收的能量。
不同化学键的能量不同,常见的化学键有离子键、共价键和金属键等。
通过断裂和形成这些化学键,化学反应中的化学能发生变化。
2. 反应势能反应势能是指化学反应在不同阶段所具有的能量。
在化学反应过程中,反应物的势能发生改变,并决定了反应的进行方向和速率。
当反应物的势能高于产物时,反应是可逆的,而当反应物的势能低于产物时,反应是不可逆的。
三、其他能量变化除了热能和化学能的变化外,化学反应中还可以伴随其他形式的能量变化。
例如,电能在电化学反应中发挥重要作用。
在电化学反应中,化学能被转化为电能,反之亦然。
结语化学反应的能量变化是化学研究中的重要内容。
热能和化学能的变化是化学反应中最常见和最显著的能量变化形式,而其他形式的能量变化则根据具体反应的特点而定。
化学反应中的能量变化
化学反应中的能量变化化学反应是物质转化过程中发生的重要现象,众多化学反应都会涉及能量变化。
能量在化学反应中的变化对反应速率、反应热、反应平衡等方面都有重要的影响。
本文将探讨化学反应中的能量变化,以及其对反应过程的影响。
一、化学反应的能量变化类型在化学反应中,能量可以以不同的形式进行转化。
常见的能量变化类型有以下几种:1. 焓变(ΔH):焓变是指在常压条件下,反应中吸热或放热的过程。
当反应吸热时,焓变为正值,表示系统吸收了热量;当反应放热时,焓变为负值,表示系统释放了热量。
2. 动能变化:有些化学反应中,反应物和生成物的分子速度发生改变,导致动能的变化。
例如,爆炸反应中,反应物的分子速度突然增加,从而导致动能的增加。
3. 电能变化:在某些化学反应中,电子转移也可以导致能量的变化。
例如,电池中的反应就涉及电子的转移,从而产生电能。
二、能量变化对化学反应的影响能量变化对化学反应具有重要的影响,主要体现在以下几个方面:1. 反应速率:化学反应的速率与反应物之间的能量差有关,能量变化越大,反应速率通常越快。
这是因为能量变化可以改变反应物粒子的动能,使它们更容易克服活化能,从而提高反应速率。
2. 反应热:焓变(ΔH)反映了反应过程中的放热或吸热现象。
当反应放热时,系统释放了热量,反应是放热反应;当反应吸热时,系统吸收了热量,反应是吸热反应。
反应热的大小决定了化学反应的热效应。
3. 反应平衡:在化学反应达到平衡时,反应物与生成物的浓度不再变化。
能量变化可以影响反应平衡的位置。
根据Le Chatelier原理,当系统受到外界能量变化刺激时,系统会试图抵消这种变化,从而使平衡位置发生偏移。
三、实例分析:焙烧反应焙烧反应是指将金属矿石加热至高温,使其发生热分解,转变为金属与非金属氧化物的反应。
以焙烧铁矿石(Fe2O3)为例,化学方程式如下:2Fe2O3(s) → 4Fe(s) + 3O2(g)在这个反应中,可以观察到以下能量变化现象:1. 吸热现象:焙烧反应需要提供大量的热能,因为反应需要克服Fe2O3的化学键强度,使其分解为Fe和O2。
化学反应的放热与吸热过程的热量变化
化学反应的放热与吸热过程的热量变化化学反应是物质进行转化的过程,它伴随着热量的变化,这种热量变化可以是放热过程,也可以是吸热过程。
本文将从放热与吸热的角度,探讨化学反应中热量的变化。
一、放热反应在化学反应中,有些反应会释放出热量,这种反应称为放热反应。
放热反应常常伴随着能量的释放,反应系数为负值。
放热反应能够提供给周围环境一定的能量,常见的例子有燃烧反应、酸碱中和反应等。
以燃烧为例,燃烧是一种常见的放热反应。
在燃烧过程中,燃料与氧气发生反应,释放出大量的热量。
例如烧木柴,木柴中的有机物与氧气反应生成二氧化碳和水,这个过程放出的热量可以使我们的身体感到温暖。
放热反应不仅在日常生活中常见,在工业生产中也起到重要作用。
比如合成氨的工业过程中,反应放出的大量热量可用于发电等其他用途。
二、吸热反应与放热反应相反,有些化学反应吸收了周围的热量,这称为吸热反应。
吸热反应的反应系数为正值,需要从外界吸收热量才能进行反应。
典型的例子有溶解反应、融化反应等。
以融化反应为例,当我们加热固体物质时,它们会逐渐熔化成液体,这个过程就是一种吸热反应。
在融化过程中,固体物质吸收了周围环境的热量,将固体转化成液体形态。
吸热反应的典型特点是吸收热量后,系统温度发生变化,反应后的产物的温度通常比反应前的物质低。
吸热反应也在许多实际应用中发挥着重要作用。
例如,我们平时喝的冷饮中,常添加冰块。
当冰块与饮料接触时,冰块就会吸收热量,使饮料的温度降低,达到清凉的目的。
再如草酸与氢氧化钠溶液按一定比例混合时,会发生吸热反应,温度下降,产生寒冷感。
三、热量变化的计量在化学反应中,热量变化可以通过物质的焓变来计量。
焓(H)是热力学中的一个物理量,它表示系统在常压下的能量变化。
焓变(ΔH)是指化学反应中热量发生变化的大小。
焓变可以通过实验测定获得。
实验条件下,反应物经过一系列的化学变化,最终转化为产物。
反应过程中,放出或吸收的热量被测量。
当反应为放热反应时,焓变为负值,表示热量从系统中流出;当反应为吸热反应时,焓变为正值,表示热量进入系统。
化学反应中的温度与热量变化
化学反应中的温度与热量变化化学反应是物质之间发生变化的过程,它不仅与物质的性质有关,还与反应条件有密切的联系。
其中,温度是影响化学反应速率和热量变化的重要因素之一。
本文将重点探讨化学反应中温度与热量变化之间的关系。
1. 化学反应与温度在化学反应中,反应物通过碰撞、分子间力的作用等方式发生化学变化,形成新的产物。
温度对于反应物的能量分布和分子运动具有重要影响。
根据物理学的基本原理,温度越高,分子运动越剧烈,发生碰撞的机会也就越大,从而促进反应速率的增加。
当温度升高时,理论上反应速率会呈指数增加。
这主要是由于高温下分子碰撞频率加快,有更高的能量来克服反应物的潜能垒。
因此,温度的升高可以提供更多的活化能,从而促进反应的进行。
同时,温度还与反应平衡有密切关系。
根据热力学第二定律,温度的升高会使反应方向发生变化,导致反应平衡位置的改变。
在一些可逆反应中,温度的变化可以影响平衡常数的数值,从而使反应向正向或逆向进行。
这为对于一些工业反应的控制提供了重要的依据。
2. 温度对热量变化的影响在化学反应中,热量变化是衡量反应释放或吸收热量的重要指标。
热量变化的大小与温度变化密切相关。
根据热力学的基本原理,物质的热量变化可以用反应焓变(ΔH)表示。
在放出热量的反应中,ΔH为负值,表示反应物中的化学键断裂,释放热能。
这种反应称为放热反应。
例如,燃烧反应就是一种放热反应,它会释放大量的热量。
温度升高可以使放热反应的热量变化更为显著,因为更高的温度会提高反应物分子的能量,在化学键断裂过程中,释放更多的热量。
相反,在吸热反应中,ΔH为正值,表示反应物中的化学键形成,吸收热能。
例如,溶解一些物质在水中会吸收热量,这是一种吸热反应。
温度上升会增加吸热反应的热量变化,因为高温下反应物分子的能量更高,可以克服更多的呈键能力,使反应进行。
3. 温度与热化学反应的定量关系根据热力学的定量关系,温度与热量变化之间存在一定的数学关系。
根据能量守恒定律,反应前后体系的能量没有改变,即:反应物的热量+ ΔH = 产物的热量这个表达式被称为热化学方程式。
化学反应伴随的能量变化形式
化学反应伴随的能量变化形式一、化学反应中的能量变化化学反应是物质发生变化的过程,伴随着能量的转化和变化。
在化学反应中,能量可以以不同的形式表现出来,主要包括放热反应和吸热反应两种形式。
1. 放热反应放热反应是指在反应过程中,系统向周围环境释放热量的反应。
这种反应释放的热量可以使周围温度升高,或者产生明显的热效应。
放热反应常常伴随着物质的燃烧、氧化等过程,是一种常见的能量释放形式。
例如,燃烧是一种放热反应。
当物质与氧气发生反应时,会释放出大量的热量。
例如,火焰燃烧时,燃料与氧气发生反应,产生的热量使得火焰升高,周围温度升高。
2. 吸热反应吸热反应是指在反应过程中,系统从周围环境吸收热量的反应。
这种反应吸收的热量可以使周围温度降低,或者产生明显的冷效应。
吸热反应常常伴随着物质的溶解、融化等过程,是一种常见的能量吸收形式。
例如,物质的融化是一种吸热反应。
当固体物质受热而融化时,会吸收大量的热量。
这是因为在融化过程中,固体分子之间的相互作用力被克服,需要吸收热量才能使固体转变为液体。
二、化学反应中能量变化的原因化学反应中能量的变化主要是由于反应物和生成物之间的键能的变化所致。
在化学反应中,化学键的形成和断裂使得反应物的化学能发生变化,从而导致能量的转化。
1. 化学键的形成在化学反应中,反应物中的原子通过化学键的形成组合成新的分子或离子。
化学键的形成是一种放出能量的过程,这是因为化学键的形成使得反应物的内能降低,从而释放出一定的能量。
例如,氢气与氧气发生反应生成水分子时,氢原子和氧原子通过共价键结合成水分子。
在这个过程中,氢气和氧气的分子内能降低,释放出大量的能量。
2. 化学键的断裂在化学反应中,反应物中的化学键可以被断裂,从而使得反应物的内能增加。
化学键的断裂是一种吸收能量的过程,这是因为化学键的断裂需要克服原子之间的相互作用力,从而吸收一定的能量。
例如,水分子发生电解反应时,水分子中的氧气与氢气的化学键被断裂。
化学反应过程中的热量变化计算
化学反应过程中的热量变化计算一、热量变化的概念1.放热反应:在化学反应过程中,系统向周围环境释放热量的现象。
2.吸热反应:在化学反应过程中,系统从周围环境吸收热量的现象。
3.热量变化:反应物和生成物之间的能量差,用ΔH表示。
二、热量变化的计算方法1.标准生成焓:在标准状态下,1mol物质生成时的热量变化,用ΔH°表示。
2.反应焓变:反应物和生成物焓变的差值,ΔH = ΣΔH°(生成物) -ΣΔH°(反应物)。
3.热量变化计算公式:ΔH = q(products) - q(reactants),其中q表示反应物和生成物的热量。
三、热量变化的单位1.焦耳(J):国际单位制中能量和热量的单位。
2.千卡(kcal):常用单位,1kcal = 4184J。
3.兆焦(MJ):大型能源单位,1MJ = 10^6J。
四、热量变化的实际应用1.燃烧反应:燃料燃烧时,放出的热量可用于发电、供暖等。
2.化学动力学:反应速率与温度、浓度等条件有关,热量变化是影响因素之一。
3.热力学循环:如卡诺循环、布伦塔诺循环等,热量变化是循环效率的关键因素。
五、注意事项1.热量变化与反应物和生成物的状态有关,要考虑温度、压力等因素。
2.在计算热量变化时,要注意反应物和生成物的化学计量数。
3.热量变化具有方向性,放热反应不能转化为吸热反应,反之亦然。
化学反应过程中的热量变化计算是化学热力学的基本内容,掌握热量变化的概念、计算方法和实际应用对于中学生来说至关重要。
通过学习热量变化,我们可以更好地理解化学反应的本质,以及能量在化学反应中的转换和传递。
习题及方法:1.习题:某放热反应的热量变化为-5.4kJ/mol,若2.8g的该反应物完全反应,释放出多少热量?解题思路:首先计算反应物的物质的量,然后根据热量变化和物质的量关系计算释放的热量。
n(反应物) = m/M = 2.8g / (反应物的摩尔质量)释放的热量 = n(反应物) × ΔH = 2.8g / (反应物的摩尔质量) × (-5.4kJ/mol)2.习题:在标准状态下,1mol氧气生成时放热285.8kJ,求1mol臭氧在标准状态下生成时的热量变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mg+2HCl═MgCl2+H2↑ ΔH<0 2NH₄Cl+Ba(OH)₂=BaCl₂+2NH₃↑+2H₂O
ΔH>0
写出下列反应并判断反应是吸热反应还是放热反应? 镁条燃烧 碳充分燃烧 高温煅烧石灰石 氧化钙与水的反应 盐酸和氢氧化钠溶液反应
提示信息:
热化学方程式
① C(s)+O2(g)═CO2(g) △H =﹣393.6 kJ•mol﹣1 ②CaCO3(s) =CaO(s)+CO2(g) △H = + 178.5KJ·mol-1
△H = 436.4kJ•mol-1 + 242.7kJ•mol-1 - 2 x 431.8kJ•mol-1
பைடு நூலகம்
热化学反应方程式和化学反应方程式有何不同? 如何正确书写热化学反应方程式?书写原则。
①和②热化学反应方程式的含义 热化学反应方程式中,化学计量数(系数)代表物质的量。
从物质总能量的角度,哪个图像是吸热反应,哪个是放热反应? 说说你的判断依据。
ΔH > 0
ΔH < 0
为什么化学反应总伴随着能量变化?试分析本质原因。
提示信息:
H2 + Cl2 = 2HCl △H =﹣184.5 kJ•mol﹣1
H-H键能为436.4kJ•mol-1 Cl-Cl键能为242.7kJ•mol-1 H-Cl键能为431.8kJ•mol-1
初中是如何形容化学反应本质?
吸
释
H-H
收
H Cl
放
Cl-Cl
能
Cl H
能
量
量
H-Cl H-Cl
回忆一下,在生活中你能够感知到在化学反应中的能量变化?
提示信息:Mg+2HCl═MgCl2+H2↑ 2NH₄Cl+Ba(OH)₂=BaCl₂+2NH₃↑+2H₂O
猜一下 Mg和盐酸反应,吸热还是放热? Ba(OH)2·10H2O和NH4Cl反应,吸热还是放热?
手持技术-测定温度的变化
阅读教材 什么是吸热反应,什么是放热反应? 化学方程式如何表达吸热反应和放热反应?