厦门大学《应用多元统计分析》习题第03章 多元正态分布均值向量和协差阵的检验
厦门大学《应用多元统计分析》试题A答案
![厦门大学《应用多元统计分析》试题A答案](https://img.taocdn.com/s3/m/96bf9368a98271fe910ef9b3.png)
一、判断题 1. 正确
( ) 证明: ∀c = c1, c2 ,"cp ,
∑∑ c′∑c =
cic jσ ij
ji
= ∑∑cic j [E(Xi − E(Xi ))(Xj − E(Xj ))]
ji
= E⎢⎡∑c j (Xi − E(Xi ))∑ci (Xj − (E Xj ))⎥⎤
=
(n
−1)[
(n −1) p
n(X − μ0 )′S−1
n(X − μ0 )]
八、
( ) ( ) 在典型相关分析中 X (1) =
X
(1)
1
,
X
(1)
2
"
X
(1)
p
′
,
X
(2)
=
X 1(2 ) ,
X
(2
2
)
"
X
(2
q
)
′
是
两个相互关联的随机向量,分别在两组变量中选取若干有代表性的综合变量 Ui、Vi,使
计算共因子的方差贡献得:
g12
=
λ1
= 1.9633;
g
2 2
=
0.6795;
g 32
=
0.3572 ,分别为公共因子
F1, F2 ,
F
对X
的贡
献,是衡量每个公共因子的相对重要性的尺度。
三、解:先求三元总体 X 的协方差阵 ∑ 的特征根,
σ2 −λ ∑ −λE = ρσ 2
0
ρσ 2 σ2 −λ
ρσ 2
−00.7.6439749⎟⎟⎞⎜⎜⎜⎛ 1.9633 − 0.1772⎟⎠⎜⎜⎝ 0.4479 ⎟⎞ − 0.3812⎟ − 0.1059⎟⎠
多元正态分布均值向量和协差阵的检验
![多元正态分布均值向量和协差阵的检验](https://img.taocdn.com/s3/m/6ceb3a370740be1e640e9a1a.png)
1T
2
~
F( p, n
m
p
1)
经ቤተ መጻሕፍቲ ባይዱ算得
X=(64,43,30.5,63),Y=(51.5,51,40,70.5)
490 -170 -120 245 502.5 60 175 -7.5
S
=-170 x -120
510 10
10 332.5
310 260
;S
= y
i 1
i 1
S Sx Sy ~ Wp (m n 2, )
又由于
mn n+m
(
X
Y)
~
N p (0, )
所以有
F
(n+m 2) (n+m
p 2) p
1T
2
~
F( p,n
m
p
1)
以后假设统计量的选取和前面统计量的选取思路是
一样的,只提出待检验的假设,然后给出统计量及其分 布,为节省篇幅,就不再重复解释。
60 175
390 50
50 450
195
-100
245 310
260
510
-7.5 195 -100 322.5
992.5
S
Sx
S
= y
-110 55
252.5
-110 900 60 505
55 60 802.5 160
252.5
505
其中,T 2 (n 1)[ n ( X 0 )T S 1 n ( X 0 )]
给定检验水平,查F分布表,使PF F =,确定出临界值F。
第章多元正态分布均值向量和协差阵的检验
![第章多元正态分布均值向量和协差阵的检验](https://img.taocdn.com/s3/m/d6bba380561252d381eb6e39.png)
第一章多元正态分布的参数估计一、填空题1.设X、Y为两个随机向量,对一切的"、V,有_____________________________________ ,则称X与丫相互独立。
2.多元分析处理的数据一般都属于_______________ 数据。
3.多元正态向量X=(X|,…,Xp)'的协方差阵》是 ______________ ,则X的各分量是相互独立的随机变量。
4.一个卩元函数能作为中某个随机向量的密度函数的主要条件是和___________________________________ O5. ____________________________________________________________________ 若p个随机变量A;, X?,…,匚的联合分布等于 _____________________________________________ ,则称X】,X’,…,X。
是相互独立的。
6.多元正态分布的任何边缘分布为________________________ o7.若X〜N」",》),A为sxp阶常数阵,d为s维常数向量,贝ij AX + c/〜________________ 。
8.多元正态向量X的任何一个分量子集的分布称为X的______________________ o9. _____________________________________________________ 多元样本中,不同样品的观测值之间一定是__________________________________________________ 。
10. ______________________________________________________________ 多元正态总体均值向量和协差阵的极大似然估计量分别是_____________________________________ 。
第三章多元正态均值向量和协方差矩阵的检验
![第三章多元正态均值向量和协方差矩阵的检验](https://img.taocdn.com/s3/m/f60300ef9a89680203d8ce2f0066f5335a8167f3.png)
2022/2/18
3
第3页,此课件共92页哦
1、总体协方差矩阵已知时
由于 x1, x2,是, xn来自多元正态总体的简单随机样本 x1 (x11, x21,, xp1)
x2 (x12 , x22 ,, xp2 ) xn (x1n , x2n ,, xpn )
(1, 2 ,, p )
2022/2/18
T 2 n(Cx)CSC1 (Cx)
S
1 (n 1)
n i1
(xi
x)(xi
x)
2022/2/18
28
第28页,此课件共92页哦
在例中,假定人类的体形有这样一个一般规 律的身高、胸围和上臂围平均尺寸比例为6:4:1。 检验比例是否符合这一规律。检验:
H0
:
1 6
1
1 4
2
3
H1
:
1 6
1,
1 4
2022/2/18
6
第6页,此课件共92页哦
当T02 2 ( p)时,接受原假设; 当T02 2 ( p)时,拒绝原假设。
p P{ 2 ( p) 所计算出的样本统计量值 ,则拒绝原假设; p P{ 2 ( p) 所计算出的样本统计量值 ,则接受原假设。
2022/2/18
7
第7页,此课件共92页哦
由于 0 ,所以统计量取值在0到1之间。
2022/2/18
15
第15页,此课件共92页哦
由极大似然比原理,如果取值太小,说 明H0为真的时观测到此样本的概率要小得多 ,故有理由认为假设H0不成立。
可以证明当样本容量很大时
-2 ln
-2 ln
max
θ0
max θ
(L x(1) , x(2) ,..., x(n);θ) (L x(1) , x(2) ,..., x(n);θ)
(完整版)多元统计分析课后练习答案
![(完整版)多元统计分析课后练习答案](https://img.taocdn.com/s3/m/3df9fdf4168884868662d66b.png)
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析课后习题答案高惠璇第三章部分习题解答
![应用多元统计分析课后习题答案高惠璇第三章部分习题解答](https://img.taocdn.com/s3/m/13bcf9dbf90f76c661371a94.png)
Yr 1 X BX Y Γ BΓΓ Y HY (Yr 1 ,, Yn ) H 22 Yn
i 1
由于Y1,…,Yr ,Yr+1 ,…,Yn相互独立,故 X′AX与X′BX相互独立.
9
第三章 多元正态总体参数的检验
设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证明 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)相互独立 ΣAΣBΣ=0p×p.
性质4 分块Wishart矩阵的分布:设X(α) ~ Np(0,Σ) (α =1,…,n)相互独立,其中
又已知随机矩阵
W11 W X ( ) X ( ) W21 1
n
11 12 r 21 22 pr W12 r ~ Wp (n, ) W22 p r
19
1 1 1 1 exptr[ 0 A] tr[ 0 A0 ] 2 2
0
第三章 多元正态总体参数的检验
n 1 ln ( X 0 ) 0 ( X 0 ) 2
1 2 ln n( X 0 )0 ( X 0 ) def
0
max L( 0 , 0 ) max L( , 0 )
0
1 1 n 1 分子 exp ( X ( ) 0 )0 ( X ( ) 0 ) n/2 | 20 | 2 1
n 1 1 1 exp tr[0 ( X ( ) 0 )( X ( ) 0 )] n/2 | 20 | 1 2
3
第三章 多元正态总体参数的检验
其中非中心参数为
4
第三章 多元正态总体参数的检验
厦门大学应用多元统计分析第多元正态分布的参数估计
![厦门大学应用多元统计分析第多元正态分布的参数估计](https://img.taocdn.com/s3/m/992ec40a814d2b160b4e767f5acfa1c7aa00820d.png)
则称 X 为连续型随机变量,称 f (x1, x2 ,, x p ) 为分布密度函
数,简称为密度函数或分布密度。
一个 p 元函数 f (x1, x2 ,, x p ) 能作为 R p 中某个随机向量的
密度函数的主要条件是:
(1) f (x1, x2 ,, x p ) 0 , (x1, x2 ,, xp ) R p ;
当 X 有分布密度 f (x1, x2 ,, x p ) 时(亦称联合分布密度函 数),则 X (1) 也有分布密度,即边缘密度函数为:
f1(x1, x2 ,, xq ) f (x1,, x p )dxq1,, dxp
【例 2.2】对例 2.1 中的 X ( X1, X 2 ) 求边缘密度函数。
然而在实际问题中,多元正态分布中均值向量和协差阵通 常是未知的,一般的做法是由样本来估计。这是本章讨论的 重要内容之一,在此我们介绍最常见的最大似然估计法对参 数进行估计,并讨论其有关的性质。
第二节 基本概念
一 随机向量 二 多元分布 三 随机向量的数字特征
一、随机向量
我们所讨论的是多个变量的总体,所研究的数据是同时p个 指标(变量),又进行了n次观测得到的,我们把这个p指标 表示为X1 ,X2,…,Xp,常用向量X = (X1 , X2 , … , XP)'
阵为
Cov( X ,Y )E( X E( X ))(Y E(Y ))
Cov( X1,Y1)
Cov(
X
2
,
Y1
)
Cov( X1,Y2 ) Cov( X 2,Y2 )
Cov( X p ,Y1) Cov( X p ,Y2 )
当 X = Y 时,即为 D( X ) 。
Cov( X1,Yp )
多元统计分析-均值向量和协方差阵检验
![多元统计分析-均值向量和协方差阵检验](https://img.taocdn.com/s3/m/89b4255f5627a5e9856a561252d380eb63942309.png)
81
60.8
84
59.5
上半壁围(cm) 16.5 12.5 14.5 14.0 15.5 14.0
3.独立样本检验
• 即对相互独立的两个样本的均值进行比较,看二者 是否有显著的差异。与单一样本T检验的原理相同, 采用小概率反证法。
• 首先假设:H0两个样本来自同一总体,u1=u2 • 独立样本t检验的前提: (1)两个样本相互独立 (2)两个样本来自正态总体 若违反这一假设,应采用非参数检验或变换变量使适
6r2 (n 1)2
1 }, nr n1 n2
至少有一对ni nr
nj
检验的基本步骤:
一.提出待检验的假设H0和H1
二.给出检验的统计量及它服从的分布 三.给定检验水平 ,查统计量的分布表,确定临界值,从而得到否定域 四.根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待
(1)当 已知时,用统计量 x 0 n
其中:
1 n
x n i1 xi
为样本均值。
当假设成立时, ~N(0,1),否定域为| | /2 , / 2 为 N (0,1) 的上 / 2 分位点。
n
(2)当 未知时,用 S 2 (xi x )2 /(n 1) 作为 2 的估计,用统计量 i 1
02
如在医学研究中, 分析几中药物对某 种疾病的疗效;
为什么多样本均值检验不采 用两两样本的t检验,而一定 要采用方差分析
统计结论都是概率性的。假 设实际情况是H0成立,那么 根据设置的显著性水平如 0.05, 平均每100次检验中 有5次会得出拒绝H0的错误 结论。
设有4个样本,若采用两两样本的t检验,共要进行4!/[2!(42)!]=6次,
由 的函数的近似分布进行检验
多元正态分布均值向量和协差阵的检验m
![多元正态分布均值向量和协差阵的检验m](https://img.taocdn.com/s3/m/8f466faf284ac850ad02428a.png)
的样本,则统计量 t 其中 显然
2 2 与前面给出的 T 统计量形式类似,且 X ~ N 0, , n 由此可见,T 2分布是一元统计分布中 t分布的推广。
HotellingT
2
分布基本性质
在一元统计中,若统计量t ~ t n 1分布, 则t 2 ~ F 1, n 1分布,即把t分布的统计量转 化为F统计量来处理,在多元统计分析中T 2 统计量也具有类似的性质。
n p 2 给定检验水平 ,查F分布表,使P T F , n 1 p 可确定出临界值 F,再用样本值计算出 T 2。 n p 2 若 T F,则否定H 0,否则H 0相容。 n 1 p
H 0 : 0
H1 : 0
这里所谓的不合理,并不是形式逻辑中的绝对矛 盾,而是根据小概率原理,即发生概率很小的随 机事件再一次试验中几乎不可能发生,通常把概 率不超过0.05的时间当做小概率事件。
二、假设检验中的否定域和接受域
H0 为原假设或零假设,H1为对立假设或备择假 设
拒绝原假设的区域称为拒绝域或否定域,否定域 之外的区域为接受域 若根据样本值计算的统计量之值落入拒绝域,则 认为原假设不成立,称为在显著性水平α下拒绝 H0,否则认为成立,称为在显著性水平α下接受
关于μ和∑的各种形式的假设检验
构成了本章内容。本章的许多内容 是一元的直接推广,但由于多指标 问题的复杂性,本章只列出检验用 的统计量,详细介绍如何使用这些 统计量做检验。
第一节 均值向量的检验 第二节 协差阵的检验
假设检验的四个基本步骤:
⑴提出待检验的假设H0和H1。 ⑵给出检验的统计量及其服从的分布。 ⑶给定检验水平α,查统计量的分布表,
多元统计分析——均值向量和协方差阵检验
![多元统计分析——均值向量和协方差阵检验](https://img.taocdn.com/s3/m/895d9a31f8c75fbfc67db224.png)
某地区农村男婴的体格测量数据
编号 1
身高(cm) 78
胸围(cm) 60.6
上半壁围(cm) 16.5
2
76
58.1
12.5
3
92
63.2
14.5
4
81
59.0
14.0
5
81
60.8
15.5
6
84
59.5
14.0
这是假设检验问题: H0 :μ = 0 , H1 :μ≠ 0
第7页/共31页
3.独立样本检验 • 即对相互独立的两个样本的均值进行比较,看二者是否有显著的差异。与
1 1 n1 n2
当 H0 成立时,t 服从自由度为 n1 n2 2 的 t 分布,即 t t(n1 n2 2) 。
检验规则为:
当| t | t /2 (n1 n2 2) 时,拒绝 H0 ;
当| t | t /2 (n1 n2 2) 时,接受 H0 。
第10页/共31页
3、两个p维正态总体均值的检验
——这就需要用到均值比较的方法
第1页/共31页
2.单一样本检验
• 已知某校大三学生的平均身高是163cm。现从某院大三学生中随机抽取20个测量出其身高。检验该院大三 学生的身高与该校大三学生的身高平均值是否相等。
• 建立一个原假设:H0:假设该院大三学生的身高与该校大三学生的平均身高相等。 • 这属于单个变量的均值与已知常数的比较
《应用多元统计分析》第03章-多元正态分布均值向量和协差阵的检验
![《应用多元统计分析》第03章-多元正态分布均值向量和协差阵的检验](https://img.taocdn.com/s3/m/576fdef926fff705cc170a70.png)
(3.7)
其中, T 2 (n 1)[ n(X μ0)S1 n(X μ0)]
给定检验水平
,查
F
分布表 ,使
P
n p (n 1) p
T
2
F
,可
确定出临界值
F
,再用样本值计算出 T 2 ,若
n p (n 1) p
T2
F
,
则否定 H 0 ,否则接受 H 0 。
例如,我们要考察全国各省、自治区和直辖市的社会经济发展 状况,与全国平均水平相比较有无显著性差异等,就涉及到多 元正态总体均值向量的检验问题等。
本章类似单一变量统计分析中的各种均值和方差的检验,相 应地给出多元统计分析中的各种均值向量和协差阵的检验。
其基本思想和步骤均可归纳为: 第一,提出待检验的假设H0和H1; 第二,给出检验的统计量及其服从的分布;
设 X (1) , X (2) , , X (n) 是 来 自 p 维 正 态 总体 N p ( μ , Σ ) 的 样
本,且
X
1 n
n
X ( )
1
,S
n
( X (a)
a 1
X )( X (a)
X ) 。
(一) 协差阵 Σ 已知时均值向量的检验
H0:μ μ0 ( μ0 为已知向量) H1:μ μ0
假设 H 0 成立,检验统计量为
T02 n( X μ0 )Σ 1( X μ0 ) ~ 2 ( p) (3.6)
给定检验水平 ,查 2 分布表使 P T02 2 ,可确定
出临界值
2
应用多元统计分析-第三章 均值向量和协差阵检验
![应用多元统计分析-第三章 均值向量和协差阵检验](https://img.taocdn.com/s3/m/bb163f8c647d27284a735144.png)
假设检验的过程-以妇女身高为例
首先要提出一个原假设,如妇女身高的
均值等于160cm( 160cm)。这种原假
设也称为零假设(null hypothesis),记 为H0。 与此同时必须提出对立假设,如妇女身
高均值不等于160cm( 160c)m。对立
假设又称为备选假设或备择假设 (alternative hypothesis)记为H1。
如果是两个以上总体的均值检验,则将 用到方差分析,到方差分析一章时,再 进行介绍。
根据一个样本对其总体均值大小进行检验
例3.1:如果你买了一包标有500g重的一包红糖, 你觉得份量不足。于是你找到监督部门; 当然他们会觉得一包份量不够可能是随机的。 于是监督部门就去商店称了50包红糖(数据在 sugar.sav); 其中均值(平均重量)是498.35g;这的确比 500g少,但这是否能够说明厂家生产的这批红 糖平均起来不够份量呢? 于是需要统计检验。 首先,可以画出这些重量的直方图(图5.)
这一步一般都可由计算机软件来完成。
第五,进行判断:如果p-值小于或等于a,
就拒绝零假设,这时犯错误的概率最多
为 ;如果p-值大于 ,就不拒绝零假
设,因 为证据不足。
假设检验的过程
在这个意义上,p-值又称为观测的显著 性水平(observed significant level)。 在统计软件输出p-值的位置,有的用“pvalue”,有的用significant的缩写“Sig” 就是这个道理。
n
如果 (x X ) 2cm 真是由抽样误差造成的, 那么它就不应该大于2或3个标准差,即
(x
X
)
2或3
n
如何假设检验?
反之,如果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2
50.5
2.25
53
2.25
3
51
2.5
51.5
2.5
4
56.5
3.5
51
3
5
52
3
51
3
6
76
9.5
77
7.5
7
80
9
77
10
8
74
9.5
77
9.5
9
80
9
74
9
10
76
8
73
7.5
11
96
13.5
91
12
12
97
14
91
13
13
99
16
94
15
14
92
11
92
12
15
94
15
91
12.5
3.6 1992 年美国总统选举的三位候选人为布什、佩罗特和克林顿。从支
持三位候选人的选民中分别抽取了 20 人,登记他们的年龄段( x1 )、受教育
程度( x2 )和性别( x3 )资料如下表所示:
投票人
x1
x2
x3
投票人
x1
x2
x3
布什
2
1
2
1
1
11
1
1
2
2
1
3
2
12
4
1
2
3
3
3
1
13
4
0
2
4
1
3
2
14
3
4
2
5
3
1
2
15Βιβλιοθήκη 3326
3
1
2
16
2
3
1
7
1
1
2
17
2
1
1
8
教育( x1 )、学校生活环境( x2 )、学校周围环境( x3 )和个人向上发展的
心理动机( x4 )等。从某大学在校学生中抽取了 20 人对以上因素在自己成
长和发展过程中的影响程度给予评分(以 9 分制),数据如下表所示:
学生
x1
x2
x3
x4
1
5
6
9
8
2
8
5
3
6
3
9
6
7
9
4
9
2
2
8
5
9
4
3
7
6
9
1 LF HF 3.71 1.76 3.63 3.17 4.49 4.08 5.70 4.78 4.96 3.39 5.83 4.02 5.22 5.08 4.15 2.39
2 LF HF 3.96 2.47 3.64 3.19 4.86 4.12 5.72 5.44 5.14 3.88 5.64 4.06 5.03 4.99 4.15 2.08
时各小时的低频心电频谱值(LF)、高频心电频谱值(HF),资料见下表。试
分析这两个指标的各次重复测定均值向量是否有显著差异(α = 0.05 )。
3
1 LF HF 4.66 2.89 4.54 4.65 5.91 4.53 4.95 3.31 5.51 3.78 4.22 2.61 4.61 3.10 5.08 4.38
5
3
7
7
6
9
5
5
8
8
5
4
4
9
8
4
3
7
10
9
4
3
6
11
9
3
2
8
12
9
6
3
4
13
8
6
7
8
14
9
3
8
6
15
9
3
4
6
16
9
6
2
8
17
7
4
3
9
18
6
8
4
9
1
19
9
6
8
9
20
8
7
6
8
假定 x = (x1, x2 , x3, x4 )′ 服从四元正态分布。试检验
H0
:
μ
=
μ 0
=
(7,5, 4,8) ,
H1
:
μ
思考与练习
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步 骤。
3.2 试述多元统计中 Hotelling T 2 分布和 Wilks Λ 分布分别与一元统计中
t 分布和 F 分布的关系。
3.3 试述 Wilks 统计量在多元方差分析中的重要意义。 3.4 大学生的素质高低要受各方面因素的影响,其中包括家庭环境与家庭
1
4
4
1
2
14
2
1
2
5
2
3
2
15
4
1
1
6
4
0
2
16
2
2
1
7
3
2
1
17
3
3
1
8
4
0
1
18
3
2
2
9
2
1
1
19
3
1
1
10
3
1
2
20
4
0
2
假定三组都服从多元正态分布,检验这三组的总体均值是否有显著性差异
(α = 0.05 )。
3.7 某医生观察了 16 名正常人的 24 小时动态心电图,分析出早晨 3 个小
2 LF HF 4.29 3.03 4.69 4.77 5.28 4.41 5.05 3.28 4.94 3.56 4.54 3.28 4.26 3.11 5.56 5.36
3 LF HF 4.77 3.57 4.58 3.04 5.37 4.79 4.65 2.86 4.68 3.97 4.61 4.40 5.27 3.88 5.55 5.00
3 LF HF 4.16 2.70 3.30 3.10 4.64 3.87 5.54 4.89 5.21 3.88 5.26 3.84 5.43 4.50 4.57 2.32
3.8 根据习题 3.5 中的数据,检验男性婴幼儿与女性婴幼儿的协差阵是否
相等(α = 0.05 )。
3.9 根 据 习 题 3.6 中 的 数 据 , 检 验 三 位 候 选 人 的 协 差 阵 是 否 相 等
(α = 0.05 )。
3.10 试对你感兴趣的某一实际现象进行总体均值向
4
≠
μ0 ; (α
=
0.05) 。
3.5 测量 30 名初生到 3 周岁婴幼儿的身高( x1 )和体重( x2 )数据如
下表所示,其中男女各 15 名。假定这两组都服从正态总体且协方差阵相等,
试在显著性水平α = 0.05 下检验男女婴幼儿的这两项指标是否有差异。
编号 1
男
x1
x2
54
3
女
x1
x2
54
2
3
1
18
3
1
1
9
2
1
2
19
1
3
2
10
3
1
1
20
1
1
2
佩罗特
1
2
1
1
11
2
1
1
2
1
2
1
12
1
3
2
3
1
0
2
13
2
1
1
4
1
3
2
14
1
1
2
5
3
1
2
15
2
1
1
6
2
4
1
16
3
1
1
7
1
1
1
17
1
1
2
8
1
3
2
18
3
1
1
9
4
1
2
19
4
3
1
10
3
3
2
20
2
1
1
克林顿
1
4
1
1
11
3
1
2
2
4
1
2
12
2
3
1
3
2
1
2
13
4
0