-原子吸收光谱法

合集下载

原子吸收光谱法

原子吸收光谱法
但是石墨炉原子化法的分析速度较慢,分析成本高 ,精密度差,基体干扰比较大。
低温原子化法:低温原子化法也称为化学原子化法 ,包括冷原子化法和氢化物发生法。
一般冷原子化法与氢化物发生法可以使用同一装置 。
冷原子化法:直接测量Hg 氢化物发生法:氢化物发生器生成金属或类金属元
素氢化物,进入原子化器。
第四节 干扰及其消除方法
物理干扰:由于溶液的物理性质(如粘度、表面张力、密度和蒸 气压等)的变化引起的试液抽吸过程、雾化过程和蒸发过程的比 例不同。消除物理干扰的主要方法是配制与被测试样相似组成的 标准溶液,或采用标准加入法。
电离干扰:在高温下,原子电离成离子,而使基态原子数目减少 ,导致测定结果偏低,此种干扰称电离干扰。消除办法是向试液 中加入过量比待测元素电离电位低的其他元素(通常为碱金属元 素)。例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的 电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离使钙离子 得到电子而生成原子。
{ C2H2:空气
> ¼ 富燃火焰 ≈¼ 中性火焰 化学计量火焰
< ¼ 贫燃火焰
根据燃气和助燃气的种类不同常用的有以下火焰:
乙炔-空气火焰; 氢-空气火焰; 乙炔-氧化亚氮火焰。
① Al,Ti,Ta,Zr等易形成难解离氧化物,不宜使用
② As 193.64,197.20nm;Se 196.09nm 不易使用 乙炔—空气火焰 是原子吸收测定中最常用的火焰,该火焰 燃烧稳定,重现性好,温度较高,可达23000C ,对大多数元
化学干扰:被测元素与共存组分发生化学反应,生成更稳定的 化合物,影响被测元素的原子化。由于PO43-的存在,钙与其形 成了磷酸钙、焦磷酸钙等化合物,这些化合物其键能很高,在 火焰中不易分解产生钙原子,结果偏低。消除方法:加入干扰 抑制剂的方法,如加入锶盐后Sr与PO43-反应生成比磷酸钙更加 稳定的化合物,从而释放出钙原子,消除了磷酸根离子对钙的 干扰。

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点
1.高选择性和灵敏度:原子吸收光谱法可以检测到极小量的化合物,从而具有极高的灵敏度和选择性。

2. 精度高:原子吸收光谱法采用单光子计数技术,可以提供高精度的数据。

3. 适用于大多数元素:原子吸收光谱法对于大多数元素,包括稀土元素和金属元素等,都具有较高的敏感性和选择性。

4. 直观、可靠:原子吸收光谱法操作简单、直观,且可靠。

缺点:
1. 不能确定化合物结构:原子吸收光谱法只能确定原子的存在,不能确定化合物的结构。

2. 不能分析复杂混合物:原子吸收光谱法不能用于分析复杂混合物,因为这些混合物可能会干扰原子吸收光谱法。

3. 样品制备:原子吸收光谱法需要样品制备,通常需要将样品转化为原子形式。

4. 仪器成本高:原子吸收光谱法仪器成本高,对于小型实验室来说,可能不太实用。

综上所述,原子吸收光谱法是一种具有高选择性和灵敏度的分析方法,但其缺点包括不能确定化合物结构、不能分析复杂混合物等。

在实际应用中,需要根据实验需要和实验条件选择合适的分析方法。

- 1 -。

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。

2.掌握使用原子吸收光谱法进行测定的方法和步骤。

3.学习如何分析、处理实验数据,得出准确的样品含量。

二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。

在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。

三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。

2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。

3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。

4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。

5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。

6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。

使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

根据实验结果,我们可以得出待测样品中所含物质的浓度。

如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。

五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。

实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。

实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。

在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。

同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。

原子吸收光谱

原子吸收光谱
*A. Walsh, “Application of atomic absorption spectrometry to analytical chemistry”, Spectrochim. Acta, 1955, 7, 108
8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:

原子吸收光谱法课件

原子吸收光谱法课件
原子吸收光谱法课件
欢迎来到原子吸收光谱法课件!本课件将为您介绍原子吸收光谱法的定义和 原理,并探讨其在科学实验室中的常见仪器,以及样品制备和操作步骤。
原子吸收光谱法的定义和原理
原子吸收光谱法是一种分析方法,通过测量样品中特定元素的吸收光谱来定 量分析该元素的浓度。基于原子对特定波长的吸收特性,该方法被广泛应用 分析食品中的微量元素和有害物质,确 保食品安全和质量合规。
3 药物研发
用于药物制剂中活性成分的浓度分析,确保 药品质量和疗效。
4 金属分析
用于金属合金、地质样品等材料中金属元素 的定量分析,检测材料成分。
优缺点分析
优点
高选择性和准确度,能够定量分析微量元素。适用于多种样品类型。
缺点
需要专用设备和经验操作,成本较高。对于某些元素和化合物可干扰。
技术的进展和未来发展趋势
原子吸收光谱法的技术不断发展,提高了灵敏度和分析速度。未来的发展趋 势包括更小型化的仪器、多元素分析和在线监测技术的推广。
总结和要点
• 原子吸收光谱法是一种常用的定量分析方法。 • 不同类型的原子吸收光谱仪器适用于不同的分析需求。 • 样品制备和操作步骤对结果的准确性至关重要。 • 应用领域广泛,包括环境监测、食品安全和药物研发。 • 优点包括高准确度和选择性,缺点包括设备成本和干扰因素。 • 技术的进展将进一步提高分析性能和便捷性。
常见的原子吸收光谱仪器
火焰原子吸收光谱仪
适用于常见金属元素的分析,如 铁、铜和锌。操作简单,常用于 实验室环境。
石墨炉原子吸收光谱仪
适用于痕量金属元素的分析,如 铅和汞。能够提高灵敏度和准确 度,但操作较为复杂。
电感耦合等离子体原子发 射光谱仪
适用于多元素的快速分析,可检 测从微量到痕量的元素含量。具 有高灵敏度和低检测限。

原子吸收光谱法国标

原子吸收光谱法国标

原子吸收光谱法国标
原子吸收光谱法是一种常用的分析方法,用于测量化合物中某种特定元素的含量。

这种分析方法基于原子在特定波长(或频率)区域吸收光的特性。

法国标准是由法国国家标准化组织(AFNOR)制定的。

在原
子吸收光谱法中,法国标准可能涉及到样品制备、仪器校准、测量方法等方面的规定。

这些标准旨在确保各个实验室在使用原子吸收光谱法时能够得到准确、可靠、可比较的结果。

法国标准可能包括以下内容:
1. 样品制备方法:包括样品的采集、处理、消解等步骤的规定,以确保样品中待测元素的溶解度和稳定性。

2. 仪器校准方法:包括仪器的标定、校准、质量控制等方面的规定,以确保仪器的准确性和可靠性。

3. 测量方法:包括光源的选择、波长选择、测量条件的设定等方面的规定,以确保测量结果的可比性和可重复性。

4. 数据处理方法:包括背景校正、信号平滑、峰面积计算等方面的规定,以确保数据的准确性和可靠性。

法国标准对于原子吸收光谱法的应用具有指导作用,能够帮助实验室进行准确、可靠的分析工作。

同时,法国标准还有助于不同实验室之间进行结果的比较和数据的交流。

原子吸收光谱法的基本原理

原子吸收光谱法的基本原理

第一节 基本原理
∫K d = e2N0ƒ/mc
2,峰值吸收
第一节 基本原理
1
2
3
4
5
在一般原子吸收测量条件下,原子吸收轮廓取决于 Doppler (热变宽)宽度,通过运算可得峰值吸收系数: K0 = 2/△D(ln2/)1/2 e2N0ƒ/mc 可以看出,峰值吸收系数与原子浓度成正比,只要能测出K0 就可得出N0。 3,锐线光源 锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数
Ni / N0 = gi / g0 exp(- Ei / kT) Ni与N0 分别为激发态与基态的原子数; gi / g0为激发态与基态的统计权重,它表示能级的简并度;T为热力学温度; k为Boltzman常数; Ei为激发能。 从上式可知,温度越高, Ni / N0值越大,即激发态原子数随温度升高而增加,而且按指数关系变化;在相同的温度条件下,激发能越小,吸收线波长越长,Ni /N0值越大。尽管如此变化,但是在原子吸收光谱中,原子化温度一般小于3000K,大多数元素的最强共振线都低于 600 nm, Ni / N0值绝大部分在10-3以下,激发态和基态原
第一节 基本原理
第一节 基本原理
01
03
05
02
04
第一节 基本原理
由图可知,在频率 0处透过光强度最小,即吸收最大。若将吸收系数对频率作图,所得曲线为吸收线轮廓。原子吸收线轮廓以原子吸收谱线的中心频率(或中心波长)和半宽度 表征。中心频率由原子能级决定。半宽度是中心频率位置,吸收系数极大值一半处,谱线轮廓上两点之间频率或波长的距离。 谱线具有一定的宽度,主要有两方面的因素:一类是由原子性质所决定的,例如,自然宽度;另一类是外界影响所引起的,例如,热变宽、碰撞变宽等。 1,自然宽度

原子吸收光谱法和原子吸收分光光度法

原子吸收光谱法和原子吸收分光光度法

原子吸收光谱法和原子吸收分光光度法原子吸收光谱法和原子吸收分光光度法是分析化学中常用的技术手段,用于测定物质中金属元素的含量。

本文将介绍这两种方法的原理、应用以及比较。

一、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长的吸收能力进行分析的方法。

它利用原子在吸收特定波长的光线时会发生能量跃迁的特性,通过测量样品对特定波长的光线吸收的强度来确定其中金属元素的含量。

原子吸收光谱法的原理是基于原子的量子力学原理,当金属元素处于基态时,外层电子具有特定的能级跃迁能量,吸收特定波长的光线。

通过测量光线透过样品之前和之后的强度差,可以计算得到金属元素的浓度。

原子吸收光谱法的应用广泛,尤其在环境监测、食品安全、药物分析等领域具有重要意义。

例如,通过原子吸收光谱法可以测定水中重金属元素的含量,用于评估水质的安全性;还可以用于监测土壤中的污染物含量,从而保护农作物的品质。

二、原子吸收分光光度法原子吸收分光光度法是一种基于原子吸收光谱技术的定量分析方法。

它利用物质对特定波长的光线吸收的强度与其浓度呈线性关系的特点,通过测量样品对特定波长光线吸收的强度来确定其中金属元素的含量。

原子吸收分光光度法与原子吸收光谱法相比,其最大的区别在于前者是定量分析方法。

通过建立标准曲线,测定样品吸光度与浓度的线性关系,可以准确计算得到金属元素的含量。

原子吸收分光光度法具有高灵敏度、准确度高以及分析速度快的优点,广泛应用于食品、化妆品、医药等行业中。

例如,原子吸收分光光度法可以用于检测食品中的微量元素,如铜、锌等,帮助评估食品的质量和安全性。

三、原子吸收光谱法与原子吸收分光光度法的比较原子吸收光谱法和原子吸收分光光度法在金属元素的定量分析方面都有重要的应用,但在一些方面存在差异。

1. 灵敏度:原子吸收光谱法的灵敏度更高,可以检测到更低浓度的金属元素,而原子吸收分光光度法的灵敏度相对较低。

2. 准确度:原子吸收分光光度法的准确度更高,可以通过建立标准曲线进行定量分析,而原子吸收光谱法的准确度相对较低。

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点
原子吸收光谱法是一种常用的分析技术,具有许多优点和缺点。

其中,其优点包括:
1. 灵敏度高:原子吸收光谱法可以检测到非常低的浓度,通常在ppm(百万分之一)或ppb(十亿分之一)级别。

2. 准确性高:原子吸收光谱法的测量结果很准确,尤其是在标准样品的比对下。

3. 可靠性高:原子吸收光谱法的结果稳定可靠,因为它是一种物理性质的测量方法。

4. 适用范围广:原子吸收光谱法可以分析许多元素,包括常见的金属元素、非金属元素和稀有元素。

但是,原子吸收光谱法也存在一些缺点:
1. 处理样品的要求高:原子吸收光谱法需要对样品进行预处理,以确保分析的准确性和可靠性。

2. 仪器成本高:与其他分析技术相比,原子吸收光谱法的仪器成本较高。

3. 仪器维护费用高:原子吸收光谱法的仪器需要定期维护和校准,维护费用较高。

4. 矩阵干扰:在某些情况下,样品中的其他元素可能会干扰分析结果,这需要对矩阵进行修正或处理。

综上所述,原子吸收光谱法是一种灵敏、准确、可靠、适用范围广的分析技术,但也需要对样品进行预处理,仪器成本和维护费用较
高,并且可能受到矩阵干扰。

原子吸收光谱法

原子吸收光谱法

原子吸收光谱法原子吸收光谱法是一种常见的分析化学技术,用于定量分析样品中金属元素的含量。

这种方法利用了原子在特定波长的光线照射下吸收特定能量的特性。

本文将介绍原子吸收光谱法的原理、应用及其在分析化学领域的重要性。

## 一、原理介绍原子吸收光谱法的原理基于原子在吸收特定波长的光线后,电子从基态跃迁到激发态的过程。

当样品中的金属元素被蒸发成原子并通过火焰或电热等方法激发后,特定波长的光被通过样品,吸收特定能量的光线被原子,其吸收量与原子浓度成正比。

利用测量被吸收的光的强度,可以推断出样品中金属元素的含量。

## 二、仪器构成原子吸收光谱法的仪器通常包括光源、样品室、单色器、检测器等部分。

光源产生特定波长的光线,样品室用于蒸发样品中的金属元素成原子,单色器用于选择特定波长的光线,检测器用于测量被吸收的光线的强度。

这些部件共同作用,构成了原子吸收光谱仪,可用于样品中金属元素含量的定量分析。

## 三、应用领域原子吸收光谱法在环境监测、食品安全、医学诊断等领域有着广泛的应用。

例如,它可以用于检测饮用水中的重金属污染物,监测环境中的有害元素含量,确保环境质量安全。

在食品安全方面,原子吸收光谱法可用于检测食品中的微量元素,如铁、锌等,确保食品质量符合标准。

此外,在医学诊断中,原子吸收光谱法可以用于分析生物样本中微量元素的含量,为疾病诊断提供重要依据。

## 四、优势与局限性原子吸收光谱法具有高灵敏度、高精确度和宽线性范围的优势,能够准确测定样品中微量金属元素的含量。

然而,它也有局限性,例如不能同时测定多种元素,需要事先了解样品中金属元素的成分,且对样品制备要求较高。

## 五、发展趋势随着科学技术的不断发展,原子吸收光谱法也在不断完善和发展。

近年来,原子吸收光谱法与其他分析技术相结合,如原子荧光光谱法、电感耦合等离子体质谱法等,提高了分析的灵敏度和准确性。

此外,随着纳米技术的发展,原子吸收光谱法在纳米材料分析方面也有了广阔的应用前景。

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点

原子吸收光谱法的优缺点
原子吸收光谱法是一种广泛应用于化学分析领域的分析技术,它的
优缺点如下:
优点:
1. 灵敏度高:原子吸收光谱法对于很少的元素含量具有很高的敏感度,可以检测到非常微小的浓度变化。

2. 精度高:原子吸收光谱法通常比其他分析技术具有更高的精确度和
准确度。

3. 特异性好:原子吸收光谱法具有很好的特异性,可以在复杂的样品
基质中准确地识别所需元素。

4. 不需要昂贵的设备:与其他分析技术相比,原子吸收光谱法需要的
仪器设备相对简单且较为便宜,易于使用和维护。

缺点:
1. 只能检测单个元素:原子吸收光谱法只能检测单个元素,不能同时
检测多个元素,因此对多元素分析需求的应用有所局限。

2. 预处理复杂:原子吸收光谱法对需要分析的样品进行预处理,这些
过程可能会导致一些不确定性和误差。

3. 只能分析可挥发的元素:原子吸收光谱法只适用于可挥发元素的分析,如钠、铜、铁等元素。

4. 容易受到干扰:在复杂的样品基质中,可能存在其他元素或化合物
的干扰,从而对分析结果产生影响或误差。

综上所述,原子吸收光谱法是一种具有很高灵敏度、精度和特异性的分析技术,但它也存在一些局限性和缺点,需要根据具体分析任务和样品情况进行选择使用。

原子吸收光谱法ppt课件

原子吸收光谱法ppt课件
7
定量分析的依据
基态原子对共振线的吸收程度 与蒸气中基态原子的数目和原子蒸气 厚度的关系,在一定的条件下,服从 朗伯-比耳定律:
8
定量分析的依据
由于原子化过程中激发态原子数目和离子 数很少,因此蒸气中的基态原子数目实际上接近 于被测元素的总原子数目,而总原子数目与溶液 中被测元素的浓度c成正比。在L一定条件下:
9
原子吸收分光度计
10
原子吸收分光度计
光源 原子化器 单色器 检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
11
➢光 源
提供待测元素的特征光谱。获得较 高的灵敏度和准确度。
光源应满足如下要求; 1 能发射待测元素的共振线; 2 能发射锐线; 3 辐射光强度大,稳定性好。
12
注意:在高浓度时,标准曲线易发生弯曲。 27
➢标准加入法
计算法:
设容量瓶A,待测元素浓度Cx,吸光度Ax; 容量瓶B,待测元素浓度为(Cx+Cs),吸光 度为Ax+s,可求得被测试液元素的浓度为:
28
➢标准加入法
作图法:
设同体积容量瓶编号 A B C D
试液+标准溶液浓度 cx cx+ cs cx+ 2cs cx+ 4cs
原子化过程分为干燥、灰化(去除基体)、 原子化、净化( 去除残渣)四个阶段,待测元 素在高温下生成基态原子。
21
石墨炉原子化装置
优点:原子化程度高,试样用量少(1100μL),可测固体及粘稠试样,灵敏度 高,检测极限10-12 g/L。
缺点:精密度差,测定速度慢,操 作不够简便,装置复杂。
22
➢单色器
质和内充惰性气体的光谱; 14

原子吸收光谱法(共73张课件)

原子吸收光谱法(共73张课件)

比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置

处吸收轮廓上两点间的距离

(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

原子吸收光谱法PPT课件

原子吸收光谱法PPT课件

消除电离干扰的方法
加入消电离剂 利用富燃火焰也可抑制电离干扰 利用温度较低的火焰 提高溶液的吸喷速率 标准加入法
化学干扰
是指试样溶液转化为自由基态原子的过程中,待 测元素和其他组分之间发生化学作用而引起的干 扰效应.它主要影响待测元素化合物的熔融,蒸发 和解离过程.这种效应可以是正效应,增强原子吸 收信号;也可以是负效应,降低原子吸收信号.化学 干扰是一种选择性干扰,它不仅取决于待测元素与 共存元素的性质,还与火焰类型,火焰温度,火焰状 态,观察部位等因素有关.化学干扰是火焰原子吸 收分析中干扰的主要来源,其产生的原因是多方面 的.
物理干扰
吸喷速率
喷雾量和雾化效率
毛细管形状
物理干扰一般都是负干扰,最终影响火焰分 析体积中原子的密度.
消除物理干扰的方法
配制与待测试液基体相一致的标准溶液; 当前者困难时,可采用标准加入法; 当被测元素在试液中浓度较高时,可以稀释溶液来降低
或消除物理干扰; 在试液中加入有机溶剂,改变试液的粘度和表面张力,
A.
A lg
I0 I
KC
原子吸收光谱仪的构成
光源:提供特征锐线光谱 原子化器:产生原子蒸汽,使被测元素
原子化 分光系统:将被测分析线与光源其他谱
线分开,并阻止其他谱线进入检测器 检测系统:光电倍增管 数据处理系统器
测量条件的选择
吸收线的选择 灯电流的选择 火焰种类的选择 燃烧气和助燃气的流量 火焰高度 石墨炉原子化条件的选择
内标法:分别在标准试样和被测试样中加入已知量的第
三种元素作为内标元素,测定分析线和内标线的吸光度比
D (工D作,曲D线x .)然并后以在D对标应准标曲准线溶上液根中据被测元计素算含出量试或样浓中度待绘测制

原子荧光光谱法和原子吸收光谱法的异同点

原子荧光光谱法和原子吸收光谱法的异同点

原子荧光光光谱(AFS)和原子吸收光谱(AAS)是用于确定各种样品中的痕量金属离子的两种重要分析技术。

尽管两者在基于原子过渡原理和使用原子蒸汽作为样本方面有相似之处,但两种方法之间还是有一些不同之处。

AFS和AAS的主要区别之一是检测原则。

在AFS中,分析原子通过一级辐射源被激发到更高的能量水平,然后在返回地面状态时释放出特性荧光辐射。

然后测量这种辐射,以确定分析仪的浓度。

另在AAS 中,analyte原子吸收了光的特征波长,然后通过量测来测定analyte 的浓度。

另一个关键区别在于这两种技术的敏感性。

AFS一般比AAS更敏感,因此它是在复杂矩阵中确定痕量金属离子的首选方法。

这是因为与AAS的吸收信号相比,AFS的排放量受到背景干扰的强度更大,影响较小。

当分析物的浓度非常低或当样品基质的干扰引起关注时,常使用AFS。

美国战地服务团和澳大利亚战地服务团的样本编制可能有所不同。

在AFS中,样本一般被原子化,并被引入到石英细胞中使用火焰,等离子体或其他原子化源的兴奋状态。

这一过程导致特异性荧光辐射的排放,然后加以测量。

相比之下,AAS往往涉及在加热的石墨炉或火焰内对样品进行原子化,然后测量光的吸收。

美国战地服务团和澳大利亚战地服务团所使用的仪器也可能有所不同。

美国战地服务团通常使用荧光光谱仪和单色仪进行波长选择和光倍数管检测。

相比之下,AAS使用火焰或石墨炉的原子分解系统加上光源、单色器和光检测器来测量吸收。

尽管有这些差异,美国战地服务团和澳大利亚战地服务团都有各自的优势和应用。

AAS由于其简便和坚固性,在环境,临床和工业样品中广泛用于金属的常规分析。

另美国战地服务团在分析水和生物样品等高度敏感和选择性金属的痕量分析方面特别有用。

虽然美国战地服务团和AAS共同的原则是利用原子过渡来确定痕量金属离子,但它们在探测原则,灵敏度,样品制备和仪器化方面却有所不同。

了解这些差异对于选择具体分析任务的最适当技术至关重要。

简述原子吸收光谱法和紫外吸收光谱法的异同

简述原子吸收光谱法和紫外吸收光谱法的异同

简述原子吸收光谱法和紫外吸收光谱法的异同
原子吸收光谱法和紫外吸收光谱法是一种常用的分析方法,用于分析化合物中的元素或化合物的浓度。

它们存在一些异同之处。

异同之处:
1. 原理不同:原子吸收光谱法是通过原子的电子跃迁吸收特定波长的光来测定物质中某种金属元素的含量,而紫外吸收光谱法是利用分子中的共轭体系吸收紫外光来测定物质的浓度。

2. 适用范围不同:原子吸收光谱法适用于分析金属元素,而紫外吸收光谱法适用于分析有机物、无机物和生物分子等。

原子吸收光谱法对于不同元素有较高的选择性,而紫外吸收光谱法对于含有特定官能团的化合物有较高的灵敏度。

3. 检测方式不同:原子吸收光谱法通常使用火焰或电感耦合等离子体进行样品原子化,然后通过特定波长的光源照射样品,测量样品吸收的光强度来确定金属元素的浓度;而紫外吸收光谱法使用可见光或紫外光照射样品,测量样品吸收光的强度来反映所分析物质的浓度。

4. 分析速度和灵敏度差异:原子吸收光谱法通常具有较高的分析速度,并且对于金属元素具有较高的灵敏度和选择性;而紫外吸收光谱法对于浓度较低的化合物具有较高的灵敏度。

总结来说,原子吸收光谱法和紫外吸收光谱法在原理、适用范围、检测方式、分析速度和灵敏度等方面存在差异,适用于不同类型的化合物和元素的分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 灰化:目的是蒸发除去有机物以减少原子化阶段可能产 生的烟雾,蒸发除去低沸点的基体元素以减少原子化阶 段可能产生的基体干扰效应。在灰化过程中待测元素的 含氧酸盐会转变为氧化物。灰化温度要用足够高的温度 和足够长的时间。
③ 原子化:待测元素在高温下解离为气态原子,产生原子 吸收信号。原子化温度应该选择能测定最大吸收值的最 低温度。原子化温度越低,石墨管的寿命越长。
北京普析,TAS-990F 原子吸收分光光度计
日本岛津,AA-6300CF原子吸收光谱仪
二、原子吸收光谱法的特点
⒈ 灵敏度高,检出限低; 火焰原子吸收法的检出限可达10 -6~10-9 g; 石墨炉原子吸收法的检出限可达到10-9~10-12 g;
⒉ 干扰少,分析精度好; ⒊ 分析速度快; ⒋ 应用范围广; ⒌ 仪器比较简单,操作方便。
积分吸收系数在实验上很难测量,1955年Walsh——空 心阴极灯。此锐线光源的提出,从实验上解决了A测定 的问题。
8.2 原子吸收光谱仪
原子吸收光谱仪主要部件:
一、 光源
光源能提供待测元素的特征光谱。获得较高的灵 敏度。
⒈ 光源应满足如下要求;
⑴ 能发射待测元素的共振线; ⑵ 能发射锐线 ⑶ 光谱纯度高 ⑷ 辐射光强度大, ⑸ 稳定性好。
第八章 原子吸收与原子荧光光谱法
Atomic Absorption Spectrometry (AAS) Atomic Fluorescence Spectrometry (AFS)
8.1 原子吸收光谱法 一、概述
上世纪50年代中期出现。根据气相中被测元素的基态原 子对其原子共振辐射的吸收强度测定被测元素含量。
三、原子吸收的测量
比耳定律 A =εb c dI k Idl k :吸收系数
积分:
It dI I I0
t
0 k dl
It
I 0 e kl
积分吸收系数:
k d
e2
mec
fn0
积分吸收与单位体积火焰介质中的基态原子数成正比。
因此火焰中的基态原子总数可看作是原子总数,故积分
吸收与单位体积火焰中待测元素的原子数成正比。
8.3 定量分析
1. 标准曲线法
对样品比较了解、方便。标准曲线最好为直线过原点,但 也可不过原点,不是直线。
2. 标准加入法
标准曲线必须过原点,且为直线,共存成分复杂,基体效 应大可用此法。
a. 加一次标准加入法
A A
x = kcx = k Vxcx
Vx
+ Vs cs
③ 贫燃火焰: 燃气小于助燃器的比例(1:6),燃烧完全,氧化性 强,温度低。适宜于易解离、易电离的元素测定。
2. பைடு நூலகம்热原子化器
在电热原子化法中,石墨炉原子吸收分析已成为 痕量元素分析的一种重要手段。电热原子化法是将固 定体积的试样注入可被加热的石墨管中,在惰性气体的 保护下通电加热后(10V,300A;2000~3000℃), 试样迅速加热原子化,得到峰形吸收信号。信号的峰 高和峰面积与待测元素的浓度成正比。
② 雾室:除去大雾滴,并使燃气和助燃气充分混合, 以便在燃烧时得到稳定的火焰。
③ 燃烧器:试液的细雾滴进入燃烧器,在火焰中经 干燥、融熔、蒸发 、解离后,产生大量基态原子。
⑵ 火焰的类型
按照燃气和助燃器的比例不同,可分为三类: ① 中性火焰: 燃气和助燃器比例与化学反应计量关系相近(乙
炔-空气火焰为1:4),具有温度高,干扰小,背景低等特点, 多数元素在此测定。 ② 富燃火焰: 燃气大于助燃器的比例(1:3),火焰呈黄色,燃 烧不完全,温度略低,干扰较多,背景高。
④ 净化:在结束一个样品的测定后,用比原子化稍高的温 度加热石墨管除去样品残渣。净化温度一般在2700℃~ 3000℃,净化时间约3~5s。
三、分光系统
常用的分光元件是单色器。单色器由入射狭缝、出 射狭缝和色散元件(光栅)组成。作用将待测元素 的共振线与邻近吸收线分开。
四、检测系统
检测器、放大器、对数转换、显示记录装置 检测器:光电倍增管、光电二极管阵列
⑵ 结构: 如图所示
石墨管形状: 标准型 (长28 mm,内径6.5 mm,外 径8 mm) 外气路中Ar气体沿石墨管外壁流动,冷却 保护石墨管;内气路中Ar气体由管两端流向管中心, 从中心孔流出,用来保护原子不被氧化,同时排除 干燥和灰化过程中产生的蒸汽。
⑶ 石墨炉原子化的升温程序:
石墨炉工作时,经过干燥、灰化、原子化和净化 四个阶段。 ① 干燥:主要作用是脱溶剂,目的是防止试液在原子 化过程中发生飞溅或在石墨炉流散面积大,干燥温度 应稍高于溶剂沸点,干燥时间与样品体积而定,一般 是样品体积乘1.5-2秒(20~60s)。
⑴ 电热原子化法与火焰原子化器法的比较:
① 灵敏度高 基态原子在吸收区停留时间长 (1~10-1 s),比火焰法高1000倍。
② 绝对检出限低 (10-9~10-12)。 ③ 试样用量少,一般在10~100μL之间。 ④ 能分析粘度大的样品及固体试样。 ⑤ 精密度较差;背景吸收较高;操作过程比火
焰法慢,采用自动进样装置可以提高仪器的 精密度。
2.空心阴极灯
⑴ 结构:
阴极: 可由待测元素的纯金属或合金制成 阳极: 为钨棒上面装有钛丝或钽片作为吸气剂吸收杂 质气体。 管内充气:0.1~0.7 kPa压力的氩或氖气。
⑵ 空心阴极灯的原理
在两极加100~400V的直流电压,即可产生放电。阴极发 射出电子在电场的作用下向阳极运动,并与惰性气体碰撞使 之电离,产生正离子,在电场作用下,向阴极内壁猛烈撞击, 使阴极表面的金属原子溅射出来,溅射出来的金属原子再与 电子、惰性气体原子及离子发生撞碰而被激发,发射出特征 元素的线光谱。
用不同待测元素作阴极材料,可制成相应的空心阴极灯。
⑶ 光源的调制
光源的调制的目的是将光源发射的共振线与火焰的干扰辐 射区别开来。
二、原子化系统
将试样中待测元素转变气态原子蒸气的过程。
原子化方法包括:火焰法、无火焰法-电热原子化 器、氢化法和冷原子化法
1.火焰原子化装置
⑴ 雾化系统:
① 喷雾器:火焰原子化器中的重要部件,将试液变 成细雾,雾滴越细,产生基态原子数越多。采用 同心圆喷雾器和玻璃雾化器,雾化效率为5~15%。
相关文档
最新文档