广义线性模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义线性模型
———————————————————————————————— 作者: ———————————————————————————————— 日期:
广义线性模型
1.概述
广义线性模型是传统的线性模型的延伸,它是总体均值通过一个非线性连接 函数依赖于线性预测值,有许多广泛应用的统计模型都属于广义线性模型,其中包 括正态误差的经典性模型,二元数据的对数和概率单位模型以及多项数据的对数 线性模型,还有其它许多有用的统计模型,如果选择合适的连接函数和响应概率 分布,也可以表示为广义线性模型。
2.线性模型
线性模型也称经典线性模型或一般线性模型,其模型的形式为:
Y XT
其中, yi Y {y1, y2, , yn} 是因变量的第i次观测, xi X {x1, x2, , xn} 是自 变量,它是一个列向量,表示第 i 次观测数据。未知系数向量 可以通过对Y 的最 小二乘拟合估计, 是均值为零,方差为常数的随机变量。
模型的几个基本假设: 因变量是连续随机变量 自变量相互独立 每一个数值型自变量与因变量呈线性关系 每一个数值型自变量与随机误差相互独立 观察个体的随机误差之间相互独立 随机误差{i} ~ N(0, ) 。
然而,实践中常不满足此假设
3.广义线性模型
广义线性模型,是为了克服一般线性模型的缺点出现的,是一般线性模型的 推广。
广义线性模型在两个方面对一般线性模型进行了推广: 一般线性模型中要求因变量是连续的且服从正态分布,在广义线性模型
中,因变量的分布可扩展到非连续的资料,如二项分布、Poisson 分布、 负二项分布等。
一般线性模型中,自变量的线性预测值 就是因变量的估计值 ,而广义
线性模型中,自变量的线性预测值 是因变量的函数估计值 g() 。
广义线性模型包括一下组成部分: 线性部分正好是一般线性模型所定义的:
i 0 1x1i 2 x2i m xmi
连接函数( link function):
i g(i )
连接函数为一单调可微(连续且充分光滑)的函数。连接函数起了关联“Y 的
估计值 ”与“自变量的线性预测值 ”的作用 。在经典的线性模型中,“Y
的估计值”与“自变量的线性预测”是一回事。 广义线性模型建立 通过对数据选定因变量和自变量,以及选择合适的连接函数和响应概率分布,
既可以建立一个广义线性模型。例如: 一般线性模型
因变量:连续变量 分布:正态分布
连接函数:
Logistic回归模型 因变量:(0,1) 分布:二项分布 连接函数: log( )
1 Poisson 回归模型 因变量:计数和个数 分布:Poisson 分布
连接函数: log()
参数估计 一般线性模型:参数估计采用极大似然法和最小二乘法 广义线性模型:参数估计采用极大似然法和加权最小二乘
4. 因变量常见分布及其常用的连接函数
分布
因变量常见分布及其常用的连接函数
概率密度(概率函数)及其主要参数
连接函数
正态分布
Identity
(恒等函数)
逆高斯分布
Inverse squared (平方的倒数)
2
伽玛分布 二项分布 Poisson 分布 负二项分布 多项分布
Inverse (倒数)
1
①Logit:
ln
1
②probit: 1()
Log(对数)
log()
Log(对数)
log()