三角函数计算练习(含详细答案)

合集下载

三角函数计算题 期末复习(含答案)

三角函数计算题 期末复习(含答案)

一、解答题1.sin30°+tan60°−cos45°+tan30°.2.计算:-12016-2tan 60°+(-)0-.3.计算:2sin30°+3cos60°﹣4tan45°.4.计算: ()222sin30-°()0π33--+-. 5.计算: 2sin30tan60cos60tan45︒-︒+︒-︒.6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+(13)﹣1. 7.计算: ()0222cos30tan60 3.14π--︒+︒+-.8.计算: 2212sin458tan 60-+︒-+︒.9.计算: 2sin30°2cos45-°8+.10.计算:(1)22sin 60cos 60︒+︒; (2)()24cos45tan6081︒+︒---. 11.计算: ()()103sin4513cos30tan6012-+-+⋅--. 12.求值:+2sin30°-tan60°- tan 45° 13.计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°. 14.(1)sin 230°+cos 230°+tan30°tan60° (2)o o o o 45cos 30sin 245sin 45tan -15.计算:﹣4﹣tan60°+|﹣2|.16.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.17.(2015秋•合肥期末)计算:tan 260°﹣2sin30°﹣cos45°.18.计算:2cos30°-tan45°-()21tan 60+︒. 19.(本题满分6分) 计算:121292cos603-⎛⎫-+-+ ⎪⎝⎭ 20.(本题5分)计算:3-12+2sin60°+11()321.计算: ()1013tan3023122-⎛⎫︒+--+- ⎪⎝⎭. 22.计算:∣–5∣+3sin30°–(–6)2+(tan45°)–123.(6分)计算: ()()2122sin303tan45--+︒--+︒. 24.计算:()1021cos 603sin 60tan 302π-⎛⎫-︒+--︒︒ ⎪⎝⎭(6分)25.计算:2sin45°-tan60°·cos30°.26.计算:()1012sin 60320152-⎛⎫-+︒---- ⎪⎝⎭. 27.计算:︒+︒⋅︒-45sin 260cos 30tan 8.28.计算: ()()12015011sin30 3.142π-⎛⎫-+--+ ⎪⎝⎭. 29.计算:.30.计算:32sin 453cos602︒︒+︒+-.31.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒32.计算:cos30sin602sin 45tan 45︒︒+︒•︒- .33.计算 :23tan 60sin 453tan 45cos 60︒-︒-︒+︒. 34.计算:27-3sin60°-cos30°+2tan45°.35.计算:()201273tan 3033π-⎛⎫-+-+ ⎪⎝⎭ 36.计算20140+121-⎪⎭⎫ ⎝⎛−2sin45°+tan60°. 37.计算:tan30°cos30°+sin 260°- sin 245°tan45°38.计算:(π﹣3)0+﹣(﹣1)2017﹣2sin30°39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°.40.计算:(1)+|sin60°﹣1|+tan45°(2)tan 260°+4sin30°cos45°41.计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos 245°+sin60°tan45°+sin 230.42.计算:.43..44.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°. 45.计算: ()103116220073tan6033π-⎛⎫⎛⎫+÷-+-- ⎪ ⎪⎝⎭⎝⎭ 46.计算:(-1)2 019-()-3+(cos 68°)0+|3-8sin 60°|47.计算:(1);(2).48.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan245°+tan230°-cos60°. 49.计算:二、填空题5012﹣tan30°+(π﹣4)0112-⎛⎫- ⎪⎝⎭=_____.参考答案1.【解析】【分析】分别代入各特殊角的三角函数值,然后进行计算即可得.【详解】sin30°+tan60°−cos45°+tan30°==×+-+=.【点睛】本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关键.2.-4.【解析】分析:先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行计算,然后再进行实数加减运算.详解: -12016-2tan60°+(-)0-,原式=-1-2×+1-2,=-4.点睛:本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题的关键是要熟练掌握实数相关运算法则.3.﹣1.5.【解析】试题分析:把30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可. 试题解析:2sin30°+3cos60°﹣4tan45° =11234122⨯+⨯-⨯ =1.5.4【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:解:原式=12212-⨯-点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质,熟知以上运算法则是解答此题的关键.5.12【解析】试题分析:将特殊角的三角函数值代入求解即可.试题解析:解:原式= 112122⨯- 12=. 6.6【解析】试题分析:按顺序依次先进行绝对值化简、0次幂计算、特殊角三角函数值、负指数幂计算,然后再按运算顺序进行计算即可.试题解析:原式=3+1-212⨯+3=3+1﹣1+3=6. 7.54【解析】试题分析:原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果. 试题解析:2-2-2cos30°+tan60°+(π-3.14)01214=- =548.2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式123132+-==.9. 1+【解析】试题分析:代入30°角的正弦函数值、45°角的余弦函数值,再按二次根式的相关运算法则计算即可. 试题解析:原式 = 12222⨯-⨯+= 1= 1.10.(1)1;(2).【解析】试题分析:(1)直接利用特殊角的三角函数值代入化简求出答案;(2)直接利用特殊角的三角函数值代入化简求出答案.试题解析:(1)原式=22312+()()=1; (2)原式=24322131⨯+--=-. 11.1.【解析】试题分析:利用三角函数,分母有理化,绝对值性质计算.试题解析:()()103sin4513cos30tan6012-+-+⋅-- =1+13-+3331⨯+-=1+13++32+31-=1. 12.【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=13.【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°=1﹣×+× =1﹣1+ =【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握有理数的乘方、特殊角的三角函数值的运算.14.(1)2;(2)0.【解析】试题分析:根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案. 试题解析:(1)sin 230°+cos 230°+tan30°tan60° =22133()(3223++ =1+1=2;(2)原式=212 122⨯-⨯⨯=0.考点:特殊角的三角函数值.15.2﹣2.【解析】试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解:原式=2﹣4×﹣+2﹣=2﹣2.考点:实数的运算;特殊角的三角函数值.16.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.1【解析】试题分析:将特殊角的三角函数值代入求解.解:原式=()2﹣2×﹣×=3﹣1﹣1=1.考点:特殊角的三角函数值.18.-2.【解析】试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.试题解析:原式=21|1-+11=-2.考点:实数的混合运算.19.1.【解析】试题分析:按照实数的运算法则依次计算.试题解析:原式=1432311312-+-⨯+=--+=.考点:1.特殊角的三角函数值;2.有理数的乘方;3.零指数幂;4.负指数幂.20.3.【解析】试题分析:本题首先将各式分别进行计算,然后根据实数的计算法则进行计算.试题解析:原式×2-考点:实数、三角函数的计算21.331- 【解析】试题分析:先计算三角函数值,零指数,负指数,开方再按照实数的运算计算即可. 试题解析:原式=331223⨯+-+=3123-+=331-. 考点:三角函数值,零指数,负指数,开方.视频22.32 【解析】试题分析:分别求值再进行加减运算试题解析:原式=5+32-6+1=32考点:1.特殊角的三角函数2.实数的运算233【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可.试题解析: (()2122sin303tan45--+︒-+︒ 33考点:三角函数,实数的运算.24.214. 【解析】试题分析:任何不是零的数的零次幂都是1,1p pa a .试题解析:原式=2-21()2+13=2-14+1-12=214. 考点:实数的计算、三角函数的计算.25.21- 【解析】试题分析:sin45°=2;tan60°cos30°. 试题解析:原式=233222⨯-⨯=123-=21-. 考点:二次根式的计算、锐角三角函数的计算.26.-3.【解析】试题分析:sin60°=2;任何非零的数的零次幂为1,33;11()2=-2.试题解析:原式=--1=-3.考点:实数的计算.27.6323-. 【解析】 试题分析:原式=222213322⨯+⨯-=6323-. 考点:实数的运算.28.12. 【解析】试题分析:原式11122=-+-+ 12=. 考点:实数的运算.视频29.2.【解析】试题分析:原式==2.考点:实数的运算.3021.【解析】 试题分析:原式=23132322++21.考点:实数的运算.31.236【解析】试题分析:此题主要考查了特殊角的三角函数值得代入求值问题,因此把相应的特殊角的三角函数值代入即可.试题解析:解:原式=2322+= 考点:特殊角的三角函数32.【解析】试题分析:原式21== 考点:实数的运算.33.0.【解析】 试题分析:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯=213213+--=0=. 考点:实数的运算. 34.1.【解析】试题分析:将tan45°=1,代入,然后化简合并即可得出答案.试题解析:原式=2×32﹣1+2×32=3﹣1+3=23﹣1. 考点:特殊角的三角函数值.35.2310+【解析】试题分析:根据二次根式、特殊角三角函数值、零次幂、负整数指数幂的意义进行计算即可. 试题解析:21273tan 30(3)()3π--︒+-︒+ 333319=-⨯++ 2310=+考点: 实数的混合运算.36.23+.【解析】试题分析:根据零次幂、负整数指数幂、特殊三角函数值的意义进行计算即可. 试题解析:0112014()2sin 45tan 602-+-︒+︒ 21223=+-⨯+ 23=+考点: 1.零次幂,2.负整数指数幂,3特殊三角函数值.37.【解析】【分析】根据特殊三角函数值即可求解.【详解】原式==【点睛】本题考查了特殊的三角函数值,属于简单题,熟记特殊三角函数值是解题关键.38.3【解析】【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(π﹣3)0+﹣(﹣1)2017﹣2sin30°=1+2﹣(﹣1)﹣2×=3+1﹣1=3【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解题关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简、绝对值等考点的运算.39.﹣2﹣.【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式=﹣1﹣1+﹣2=﹣2﹣.【点睛】本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.40.(1)4-;(2)3+【解析】【分析】(1)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【详解】(1)原式=2+1﹣+1=4﹣;(2)原式=3+4××=3+.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.41.(1)0;(2).【解析】【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin230=()2+×1+()2=++=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.42..【解析】分析:代入45°角的正弦函数值,结合“零指数幂的意义”和“负整数指数幂的意义”进行计算即可.详解:原式===.点睛:熟记45°角的正弦函数值、及(为正整数)是正确解答本题的关键.43.【解析】【分析】根据:分别代入计算.【详解】原式.【点睛】考查了特殊角的三角函数值,解答此类题目的关键是熟记特殊角是三角函数值.44.3-【分析】把60°,30°,45°的正弦,余弦,正切的值代入计算即可.【详解】解:原式=2×-3×1×+4×=1-+2=3-【点睛】 本题主要考查特殊角的三角函数值和零指数幂的知识点,牢记特殊角的三角函数值是解答的关键.45.-1.【解析】分析:代入60°角的正切函数值,结合“负指数幂的意义”、“零指数幂的意义”和实数的相关运算法则计算即可.详解:原式=()3168133+÷-+-⨯=3213-+-=1-。

三角函数计算题期末复习(含答案)

三角函数计算题期末复习(含答案)

三角函数计算题期末复习(含答案)1.解答题1.计算:sin30°+tan60°-cos45°+tan30°。

2.计算:--2tan60°-(-)-。

3.计算:2sin30°+3cos60°-4tan45°。

4.计算:-2sin30°-(π-3)-(-3)。

5.计算:2sin30°-tan60°+cos60°-tan45°。

6.计算:|-3|+(π-2017)-2sin30°+(1-1)/3.7.计算:2-2-2cos30°+tan60°+(π-3.14)。

8.计算:2-1+2sin45°-8+tan260°。

9.计算:2sin30°-2cos45°+8.10.计算:(1)sin260°+cos260°;(2)4cos45°+tan60°-8-(-1)。

11.计算:sin45°+(1-3)-1+cos30°tan60°-3-1/2.12.求值:2+2sin30°-tan60°-tan45°。

13.计算:(sin30°-1)×sin45°+tan60°×cos30°。

14.(1)sin30°+cos30°+tan30°tan60°;(2)tan45°sin45°-2sin30°cos45°/2.15.计算:-4-tan60°+|-2|。

16.计算:-2sin30°-(-3)tan60°+(1-1)/2.17.计算:tan60°-2sin30°-cos45°。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

三角函数公式练习题及答案详解

三角函数公式练习题及答案详解

三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=___________ sin(π+α)= ___________cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(π2 -α)=____________ sin(π2+α)=____________ cos(π2 -α)=____________ cos(π2+α)=_____________ tan(π2 -α)=____________ tan(π2+α)=_____________ sin(3π2 -α)=____________ sin(3π2+α)=____________ cos(3π2 -α)=____________ cos(3π2+α)=____________ tan(3π2 -α)=____________ tan(3π2+α)=____________ sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________ cos(11π-α)=__________ sin(9π2+α)=____________ 3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)tan α-tan β=tan(α-β)(1+tan αtan β)(4) 万能公式(用tan α表示其他三角函数值)sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α6. 插入辅助角公式asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a) 特殊地:sinx ±cosx = 2 sin(x ±π4) 7. 熟悉形式的变形(如何变形)1±sinx ±cosx 1±sinx 1±cosx tanx +cotx1-tan α1+tan α 1+tan α1-tan α若A 、B 是锐角,A+B =π4 ,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α8. 在三角形中的结论(如何证明)若:A +B +C=π A+B+C 2 =π2tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513, 又π4 <α<3π4 ,0<β<π4,求sin(α+β)。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

三角函数计算问题(试题含答案)

三角函数计算问题(试题含答案)

三角函数计算问题1.sin 15°cos 75°+cos 15°sin 105°等于( )A .0B .12C .32D .1D [原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.] 2.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( )A .17B .7C .-17D .-7A [∵α∈(π2,π),sin α=35,∴cos α=-45,tan α=sin αcos α=-34.∴tan(α+π4)=1+tan α1-tan α=1-341+34=17.]3.化简:sin (60°+θ)+cos 120°sin θcos θ的结果为( )A .1B .32C . 3D .tan θB [原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32.] 4.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于( )A .-75B .75C .-35D .35B [∵3sin θ=cos θ,∴tan θ=13.cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ =cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ=1+2tan θ-tan 2θ1+tan 2θ=1+2×13-191+19=75.] 5.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为( )A .±4B .4C .-4D .1 C [3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0, ∴2sin(α+β)sin α=-8cos(α+β)cos α,∴tan(α+β)tan α=-4.]6.若cos θ2=35,sin θ2=-45,则角θ的终边一定落在直线( )上.A .7x +24y =0B .7x -24y =0C .24x +7y =0D .24x -7y =0D [cos θ2=35,sin θ2=-45,tan θ2=-43,∴tan θ=2tanθ21-tan 2θ2=-831-169=247.∴角θ的终边在直线24x -7y =0上.] 7.tan 15°+1tan 15°等于( )A .2B .2+3C .4D .433C8.若3sin α+cos α=0,则1cos 2α+sin 2α的值为( )A .103B .53C .23D .-2A [∵3sin α+cos α=0,∴tan α=-13,∴1cos 2α+sin 2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=(-13)2+11+2×(-13)=103.]9.已知θ是第三象限角,若sin 4θ+cos 4θ=59,那么sin 2θ等于( )A .223B .-223C .23D .-23A [∵sin 4θ+cos 4 θ=(sin 2 θ+cos 2 θ)2-2sin 2 θcos 2 θ=1-12sin 2 2θ=59,∴sin 2 2θ=89.∵θ是第三象限角,∴sin θ<0,cos θ<0,∴sin 2θ>0.∴sin 2θ=223.]10.计算sin 89°cos 14°-sin 1°cos 76°= ( ).A.2+64 B.2-64 C.6-24D.24解析 sin 89°cos 14°-sin 1°cos 76° =sin 89°cos 14°-cos 89°sin 14° =sin 75°=sin(45°+30°)=2+64. 答案 A11.若1tan θ=3,则cos 2θ+12sin 2θ的值是( ). A .-65B .-45C.45D.65解析 ∵tan θ=13,∴原式=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θ1+tan 2θ=1+131+19=1210=65. 答案 D12.已知cos(α-β)=35,sin β=-513,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,则sin α= ( ). A.3365 B.6365 C .-3365D .-6365解析 ∵α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,∴α-β∈(0,π), 由cos(α-β)=35得sin(α-β)=45,由sin β=-513得cos β=1213,∴sin α=sin[(α-β)+β]=45×1213+35×⎝⎛⎭⎫-513=3365. 答案 A13.设a =sin 17°cos 45°+cos 17°sin 45°,b =2cos 213°-1,c =32,则有( ). A .c <a <b B .b <c <a C .a <b <cD .b <a <c解析 a =sin(17°+45°)=sin 62°, b =2cos 213°-1=cos 26°=sin 64°, c =32=sin 60°,∴c <a <b .答案 A14.若x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan 2x 等于 ( ).A.724 B .-724C.247D .-247解析 ∵x ∈⎝⎛⎭⎫-π2,0,cos x =45,∴sin x =-35,∴tan x =-34,∴tan 2x =2tan x 1-tan 2x =-247. 答案 D15.已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值为( ). A.1925 B.1625 C.1425D.725解析 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos 2⎝⎛⎭⎫π4-x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫352=725. 答案 D16.cos 43°cos 77°+sin 43°cos 167°的值是( )A .-32B.12C.32D .-12【解析】 原式=cos 43°sin 13°-sin 43°cos 13°=sin(13°-43°)=sin(-30°)=-12.【答案】 D17.已知tan(π-α)=2,则1sin αcos α等于( )A.52 B.75 C .-52D .-75【解析】 由tan(π-α)=2,得tan α=-2, ∴1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=-52. 【答案】 C18.tan(α+β)=25,tan(α+π4)=322,那么tan(β-π4)=( )A.15B.1318C.14D.1322【解析】 tan(β-π4)=tan[(α+β)-(α+π4)]=tan (α+β)-tan (α+π4)1+tan (α+β)tan (α+π4)=25-3221+25×322=14.【答案】 C19.若sin α2=33,则cos α=( )A .-23B .-13C.13D.23【解析】 cos α=1-2sin 2α2=1-2×⎝⎛⎭⎫332=1-23=13.【答案】 C20.已知sin(π4-θ)+cos(π4-θ)=15,则cos 2θ的值为( )A .-725B.725 C .-2425D.2425【解析】 将sin(π4-θ)+cos(π4-θ)=15两边平方得,1+2sin(π4-θ)cos(π4-θ)=125,即1+sin(π2-2θ)=125,cos 2θ=-2425.【答案】 C21.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12 C .2D .-2【解析】 α是第三象限的角且cos α=-45,∴sin α=-35.tan α2=sin α1+cos α=-3515=-3,∴1+tanα21-tanα2=-24=-12.【答案】 A22.cos67°cos7°+sin67°sin7°等于( )A .12B .22C .32D .1[答案] A[解析] cos67°cos7°+sin67°sin7° =cos(67°-7°)=cos60°=12.23.已知α为第二象限角,sin α=35,则sin2α=( )A .-2425B .-1225C .1225D .2425[答案] A[解析] ∵α是第二象限角,sin α=35,∴cos α=-45.∴sin2α=2sin αcos α=2×35×(-45)=-2425.24.下列各式中值为22的是( ) A .sin45°cos15°+cos45°sin15° B .sin45°cos15°-cos45°sin15° C .cos75°cos30°+sin75°sin30° D .tan60°-tan30°1+tan60°tan30°[答案] C[解析] cos75°cos30°+sin75°sin30°=cos(75°-30°)=cos45°=22. 25.已知cos α=23,270°<α<360°,那么cos α2的值为( )A .66B .-66C .306D .-306[答案] D[解析] ∵270°<α<360°,∴135°<α2<180°,∴cos α2=-1+cos α2=-1+232=-306. 26.已知cos(x +π6)=35,x ∈(0,π),则sin x 的值为( )A .-43-310B .43-310C .12D .32[答案] B[解析] ∵x ∈(0,π),∴x +π6∈(π6,7π6),又∵cos(x +π6)=35,∴x +π6∈(π6,π2).∴sin(x +π6)=45.sin x =sin[(x +π6)-π6]=sin(x +π6)cos π6-cos(x +π6)sin π6=32×45-12×35=43-310. 27.已知sin αcos β=1,则sin(α-β)=________. 1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1, ∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1.28.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.429解析 cos β=-13,sin β=223,sin(α+β)=13,cos(α+β)=-223,故cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =(-223)×(-13)+223×13=429.29.设α∈(0,π2),若sin α=35,则2cos(α+π4)等于________.[答案] 15[解析] ∵α∈(0,π2),sin α=35,∴cos α=45,∴2cos(α+π4)=2cos αcos π4-2sin αsin π4=2×45×22-2×35×22=45-35=15. 30.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________. 4780解析 ∵(8sin α+5cos β)2+(8cos α+5sin β)2 =64+25+80(sin αcos β+cos αsin β) =89+80sin(α+β)=62+102=136. ∴80sin(α+β)=47,∴sin(α+β)=4780.31.已知α为第三象限的角,cos 2α=-35,则tan ⎝⎛⎭⎫π4+2α=________. -17解析 由题意,得2k π+π<α<2k π+3π2(k ∈Z ),∴4k π+2π<2α<4k π+3π.∴sin 2α>0.∴sin 2α=1-cos 22α=45.∴tan 2α=sin 2αcos 2α=-43.∴tan ⎝⎛⎭⎫π4+2α=tan π4+tan 2α1-tan π4 tan 2α=1-431+43=-17. 32.设α为第四象限的角,若sin 3αsin α=135,则tan 2α=________.-34解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135,∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π,(k ∈Z )∴4k π+3π<2α<4k π+4π,(k ∈Z ) 故2α可能在第三、四象限,又∵cos 2α=45,∴sin 2α=-35,tan 2α=-34.33.求值:tan10°+tan50°+3tan10°tan50°=________. [答案]3[解析] tan10°+tan50°+3tan10°tan50° =tan60°(1-tan10°tan50°)+3tan10°tan50° =3-3tan10°tan50°+3tan10°tan50°= 3. 34.化简:1+2sin610°cos430°sin250°+cos790°=________.[答案] -1 [解析] 1+2sin610°cos430°sin250°+cos790°=1+2sin (3×180°+70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin70°cos70°-sin70°+cos70°=(sin70°-cos70°)2-sin70°+cos70° =sin70°-cos70°-sin70°+cos70°=-1.35.若cos α=45,α∈(0,π2),则cos(α-π3)=________.【解析】 由题意知sin α=35,cos(α-π3)=cos α·cos π3+sin α·sin π3.=45·12+35·32=4+3310.【答案】4+331036.tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是________.【解析】 ∵tan π3=tan(π6-θ+π6+θ)=tan (π6-θ)+tan (π6+θ)1-tan (π6-θ)tan (π6+θ)=3,∴3=tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).【答案】337.已知sin(α+β)=12,sin(α-β)=13,那么log5tan αtan β=________. 【解析】 由题意有sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,两式相加得sin αcos β=512,两式相减得cos αsin β=112.则tan αtan β=5,故log 5tan αtan β=2. 【答案】 238.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 【解析】 ∵sin 2α=-sin α,∴2sin αcos α=-sin α. ∵α∈⎝⎛⎭⎫π2,π,sin α≠0, ∴cos α=-12.又∵α∈⎝⎛⎭⎫π2,π,∴α=23π, ∴tan 2α=tan 43π=tan ⎝⎛⎭⎫π+π3=tan π3= 3. 【答案】339.已知sin x -cos x =sin x cos x ,则sin 2x =________. 解析 ∵sin x -cos x =sin x cos x , ∴(sin x -cos x )2=(sin x cos x )2 1-2sin x cos x =(sin x cos x )2, ∴令t =sin x cos x ,则1-2t =t 2.即t 2+2t -1=0,∴t =-2±222=-1±2. 又∵t =sin x cos x =12sin 2x ∈⎣⎡⎦⎤-12,12, ∴t =2-1,∴sin 2x =22-2.答案 22-240.已知sin(α+π2)=-55,α∈(0,π). (1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值; (2)求cos(2α-3π4)的值. 解 (1)sin(α+π2)=-55,α∈(0,π) ⇒cos α=-55,α∈(0,π)⇒sin α=255. sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)=-cos α-sin αsin α-cos α=-13. (2)∵cos α=-55,sin α=255⇒sin 2α=-45,cos 2α=-35. cos(2α-3π4)=-22cos 2α+22sin 2α=-210. 41.已知|cos θ|=35,且5π2<θ<3π,求sin θ2、cos θ2、tan θ2的值. 解 ∵|cos θ|=35,5π2<θ<3π, ∴cos θ=-35,5π4<θ2<3π2. 由cos θ=1-2sin 2θ2, 有sin θ2=-1-cos θ2=-1+352=-255. 又cos θ=2cos 2θ2-1, 有cos θ2=-1+cos θ2=-55,tan θ2=sinθ2cos θ2=2. 42.已知sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =24,x ∈⎝⎛⎭⎫π2,π,求sin 4x 的值.解 因为⎝⎛⎭⎫π4+x +⎝⎛⎭⎫π4-x =π2,所以sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x=sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=12⎣⎡⎦⎤2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =12sin ⎝⎛⎭⎫π2+2x =12cos 2x =24,所以cos 2x =22. 又x ∈⎝⎛⎭⎫π2,π,所以2x ∈(π,2π),所以sin 2x <0,所以sin 2x =-22. 所以sin 4x =2sin 2x cos 2x =2×⎝⎛⎭⎫-22×22=-1. 43.已知sin α=13,cos β=-23,α、β均在第二象限,求sin(α+β)和sin(α-β)的值. 解 因为sin α=13,cos β=-23,α、β均为第二象限角,所以cos α=-1-sin 2α=-223,sin β=1-cos 2β=53. 故sin(α+β)=sin αcos β+cos αsin β=13×⎝⎛⎭⎫-23+⎝⎛⎭⎫-223×53=-2-2109,sin(α-β)=sin αcos β-cos αsin β=13×⎝⎛⎭⎫-23-⎝⎛⎭⎫-223×53=-2+2109. 44.化简:3tan 12°-3sin 12°(4cos 212°-2). 【解】 原式=3(sin 12°cos 12°-3)sin 12°×2(2cos 212°-1) =3(sin 12°-3cos 12°)2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =2×23sin (12°-60°)2sin 24°cos 24° =-43sin 48°sin 48°=-4 3. 45.若cos(π4+x )=35,17π12<x <7π4,求:(1)cos x +sin x 的值;(2)sin2x +2sin 2x 1-tan x的值. [解析] (1)由17π12<x <7π4,得5π3<x +π4<2π, 又∵cos(π4+x )=35, ∴sin(π4+x )=-45, ∴cos x +sin x =2sin(x +π4)=-425. (2)cos x =cos[(π4+x )-π4] =cos(π4+x )cos π4+sin(π4+x )sin π4=35×22-45×22=-210. 又由17π12<x <7π4, ∴sin x =-1-cos 2x =-7210, ∴tan x =7,∴原式=2sin x cos x +2sin 2x 1-tan x=-2875. 46.已知sin α=210,cos β=31010,且α、β为锐角,求α+2β的值. [解析] ∵sin α=210,α为锐角, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫2102=7210. ∵cos β=31010,β为锐角, ∴sin β=1-⎝⎛⎭⎫310102=1010. ∴sin2β=2sin βcos β=2×1010×31010=35, cos2β=1-2sin 2β=1-2×⎝⎛⎭⎫10102=45. 又β∈⎝⎛⎭⎫0,π2,∴2β∈(0,π).而cos2β>0,∴2β∈⎝⎛⎭⎫0,π2.∴α+2β∈(0,π). 又cos(α+2β)=cos α·cos2β-sin α·sin2β=7210×45-210×35=22,∴α+2β=π4.。

三角函数专题练习(含答案)

三角函数专题练习(含答案)

三角函数1.已知函数()2sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2)考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 2.已知. 求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.3.已知函数 (1)求最小正周期;(2)求在区间上的最大值和最小值.【答案】(1) ;(2)最大值为2()(sin cos )cos 2f x x x x =++()f x ()f x [0,]2ππ1+考点:1.三角函数的性质;2.三角函数的最值. 4.(15年福建文科)若,且为第四象限角,则的值等于( ) A .B .C .D . 【答案】D 【解析】试题分析:由,且为第四象限角,则,则,故选D . 考点:同角三角函数基本关系式.5sin 13α=-αtan α125125-512512-5sin 13α=-α12cos 13α==sin tan cos ααα=512=-5.已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)将函数的图象向右平移个单位长度,再向下平移()个单位长度后得到函数的图象,且函数的最大值为2. (ⅰ)求函数的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数,使得. 【答案】(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将化为,然后利用求周期;(Ⅱ)由函数的解析式中给减,再将所得解析式整体减去得的解析式为,当取1的时,取最大值,列方程求得,从而的解析式可求;欲证明存在无穷多个互不相同的正整数,使得,可解不等式,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数.试题解析:(I )因为.所以函数的最小正周期.()2cos 10cos 222x x x f x =+()f x ()f x 6πa 0a >()g x ()g x ()g x 0x ()00g x >2π()10sin 8g x x =-()f x ()10sin 56f x x π⎛⎫=++ ⎪⎝⎭2T πω=()f x x6πa ()g x ()10sin 5g x x a =+-sin x ()g x 105a +-13a =()g x 0x ()00g x >()00g x >0x ()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭()f x 2πT =(II )(i )将的图象向右平移个单位长度后得到的图象,再向下平移()个单位长度后得到的图象. 又已知函数的最大值为,所以,解得. 所以.(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数,使得. 亦即存在无穷多个互不相同的正整数,使得. 考点:1、三角函数的图像与性质;2、三角不等式.6.如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.()f x 6π10sin 5y x =+a 0a >()10sin 5g x x a =+-()g x 21052a +-=13a =()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x>45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k ()002,2k x k k παππα∈++-4sin 5k x >0x ()00g x >6π【答案】8 【解析】试题分析:由图像得,当时,求得,当时,,故答案为8.考点:三角函数的图像和性质. 7.已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【解析】试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 考点:三角函数的性质.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9.在ABC ∆中,已知60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值. 【答案】(12【解析】考点:余弦定理,二倍角公式。

三角函数习题及答案

三角函数习题及答案

三角函数习题及答案(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sincos22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角。

7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

§4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A )0 (B )1- (C )2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5. 的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C )一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)题目1:已知三角形ABC,角A的补角是30度,角B的补角是60度,求角C的度数。

答案:90度。

题目2:已知sin(60°)的值等于√3/2,求cos(30°)的值。

答案:√3/2。

题目3:已知cos(30°)的值等于0.866,求sin(60°)的值。

答案:0.866。

题目4:已知tan(45°)的值等于1,求cot(45°)的值。

答案:1。

题目5:已知cot(60°)的值等于√3/3,求tan(30°)的值。

答案:√3。

题目6:已知cos(45°)的值等于0.707,求sin(45°)的值。

答案:0.707。

题目7:已知sin(45°)的值等于0.707,求cot(45°)的值。

答案:1.题目8:已知sin(30°)的值等于0.5,求cos(60°)的值。

答案:0.5.题目9:已知cot(30°)的值等于√3,求tan(60°)的值。

答案:√3.题目10:已知cos(60°)的值等于0.5,求sin(30°)的值。

答案:0.5.题目11:已知sin(90°)的值等于1,求cos(0°)的值。

答案:1.题目12:已知sin(0°)的值等于0,求cos(90°)的值。

答案:0.题目13:已知cos(90°)的值等于0,求sin(0°)的值。

答案:1.题目14:已知cos(0°)的值等于1,求sin(90°)的值。

答案:0.题目15:已知cot(45°)的值等于1,求tan(45°)的值。

答案:1.题目16:已知tan(60°)的值等于√3,求cot(60°)的值。

答案:√3.题目17:已知cot(30°)的值等于√3/3,求tan(30°)的值。

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。

答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。

根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。

设斜边长度为5,对边长度为3,则邻边长度为4。

因此,cosA = 4/5。

2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。

答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。

由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。

设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。

因此,sinB = 2/根号13。

3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。

答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。

根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。

设斜边长度为2,邻边长度为1,则对边长度为根号3。

因此,tanC = 根号3/1。

4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。

答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。

由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。

设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。

因此,cosD = 根号3/2。

5. 题目:已知tanE = 1,且E为锐角,求sinE的值。

答案解析:由tanE = 1可知,对边与邻边的比值为1。

根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。

设邻边长度为1,对边长度为1,则斜边长度为根号2。

因此,sinE = 1/根号2。

6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。

答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。

初中三角函数计算题及答案

初中三角函数计算题及答案

初中三角函数计算题及答案三角函数是初中数学中的一个重要部分,掌握三角函数的计算方法对于解决相关问题非常重要。

下面将给出一些关于三角函数的计算题目及答案,希望能够帮助同学们更好地理解和掌握这一知识点。

1. 计算题题目一已知角A的余弦值为0.6,求角A的正弦值。

题目二已知sinθ = 0.8,且θ是第一象限的角,求cosθ。

题目三已知tanα = 2,且α是第二象限的角,求sinα。

2. 答案解析题目一根据余弦和正弦的关系,我们知道cosA = adjacent / hypotenuse,即cosA = x / r。

已知cosA = 0.6,假设半径r = 1,则x = cosA * r = 0.6 * 1 = 0.6。

根据勾股定理,我们可以得到sinA = sqrt(r^2 - x^2) = sqrt(1 - 0.6^2) = sqrt(0.64) = 0.8。

因此,角A的正弦值为0.8。

题目二我们知道sin^2θ + cos^2θ = 1,已知sinθ = 0.8,代入得0.8^2 + cos^2θ = 1,即0.64 + cos^2θ = 1,cos^2θ = 1 - 0.64 = 0.36,从而cosθ = ±√0.36 = ±0.6。

由于θ是第一象限的角,cosθ为正数,所以cosθ = 0.6。

题目三根据正切和正弦的关系,我们知道tanα = sinα / cosα。

已知tanα = 2,sinα = 2k,cosα = k(k为常数)。

根据sin²α + cos²α = 1,可得到(2k)² + k² = 1,即4k² + k² = 1,5k² = 1,k²= 1 / 5,k = ±√(1 / 5) = ±(1 / sqrt(5))。

由于α是第二象限的角,所以sinα = 2k = -2 / sqrt(5)。

(完整)三角函数习题及答案

(完整)三角函数习题及答案

第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

(完整版)三角函数练习题(含答案)

(完整版)三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

三角函数50题精选题附答案

三角函数50题精选题附答案

1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。

解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。

三角函数练习题及答案百度文库

三角函数练习题及答案百度文库

三角函数练习题及答案百度文库精心选一选山岳得分1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都A、缩小2倍B、扩大2倍C、不变D、不能确定4,BC=4,sinA=52、在Rt△ABC中,∠C=90,则AC=A、3B、C、D、61sinA=3,则3、若∠A是锐角,且A、00 13sinA?tanA4、若cosA=3,则4sinA?2tanA=411A、 B、 C、D、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=2A、1:1:B、1:1:C、1:1:3D、1:1:26、在Rt△ABC中,∠C=900,则下列式子成立的是A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB.已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是2223A.sinB=B.cosB=C.tanB=D.tanB=28.点关于y轴对称的点的坐标是11113A.B.C.D.9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60o方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地503m100 m150m m11、如图1,在高楼前D点测得楼顶的仰角为30?,向高楼前进60米到C点,又测得仰角为45?,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40o的方向行驶40海里到达B 地,再由B地向北偏西10o的方向行驶40海里到达C地,则A、C两地相距.30海里0海里 0海里 0海里细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____..在△ABC中,若AC=3,则cosA=________.3.在△ABC中,AB=,B=30°,则∠BAC的度数是______.图14.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第4题图第5题图第6题图6.如图,机器人从A点,沿着西南方向,行了个2单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号)..求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=90,BC=13,AB=12,则tanB?_________..根据图中所给的数据,求得避雷针CD的长约为_______m..11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,?这时测得大树在地面上的影子约为10米,则大树的高约为________米。

三角函数练习题(含答案)

三角函数练习题(含答案)

点后观察到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为 ___________结果保留根号). 7.求值:sin260°+cos260°=___________. 8.在直角三角形 ABC 中,∠A= 900 ,BC=13,AB=12,那么
tan B ___________.
9.根据图中所给的数据,求得避雷针 CD 的长约为_______m(结果精 确的到 0.01m).(可用计算器求,也可用下列参考数据 求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈ 0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°
地,此时王英同学离 A 地 ( )
(A) 50 3 m (B)100 m (C)150m (D)100 3 m
11、如图 1,在高楼前 D 点测得楼顶的仰角为 300,向高楼前进 60 米到 C 点,又测得仰角
为 450,则该高楼的高度大约为(

A.82 米 B.163 米
C.52 米 D.70 米
≈0.8391)
10.如图,自动扶梯 AB 段的长度为 20 米,倾斜 角 A 为α,高度 BC 为___________米(结果用含 α的三角比表示).
11.如图 2 所示,太阳光线与地面成 60°角,一 棵倾斜的大树与地面成 30°角,这时测得大树在 地面上的影子约为 10 米,则大树的高约为________米.(保
6 2
据供解题使用:sin15°=,cos15°= 4 )
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的 走向是北偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接 通,则乙地所修公路的走向是南偏西___________度.

(完整版)三角函数公式练习(答案)

(完整版)三角函数公式练习(答案)

三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数计算练习
1.已知x∈(﹣,0),cosx=,则tan2x=( )
A.B.C.D.
2.cos240°=( )
A.B.C.D.
3.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( )
A.﹣B.C.±D.﹣k
4.已知角α的终边经过点(﹣4,3),则cosα=
5.cos480°的值为
6.已知,那么cosα=
7.已知sin(+α)=,则cos2α等于( )
8.已知α是第二象限角,P(x,)为其终边上一点,且cosα=x,则x=
9.已知sinα=,则cos2α=.
10.若cos(α+)=,则cos(2α+)=.
11.已知θ∈(0,π),且sin(θ﹣)=,则tan2θ=.
试卷答案
1.D
考点:二倍角的正切.
专题:计算题.
分析:由cosx的值及x的范围,利用同角三角函数间的基本关系求出sinx的值,进而求出tanx的值,然后把所求的式子利用二倍角的正切函数公式变形后,将tanx的值代入即可求出值.
解答:解:由cosx=,x∈(﹣,0),
得到sinx=﹣,所以tanx=﹣,
则tan2x===﹣.
故选D
点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx 和tanx时注意利用x的范围判定其符合.
2.B
考点:运用诱导公式化简求值.
专题:计算题;三角函数的求值.
分析:运用诱导公式及特殊角的三角函数值即可化简求值.
解答:解:cos240°=cos(180°+60°)=﹣cos60°=﹣,
故选:B.
点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.
3.A
考点:同角三角函数基本关系的运用;运用诱导公式化简求值.
专题:三角函数的求值.
分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.
解答:解:∵cosα=k,k∈R,α∈(,π),
∴sinα==,
∴sin(π+α)=﹣sinα=﹣.
故选:A.
点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.
4.D
考点:任意角的三角函数的定义.
专题:三角函数的求值.
分析:由条件直接利用任意角的三角函数的定义求得cosα的值.
解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.
∴cosα===﹣,
故选:D.
点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D
考点:运用诱导公式化简求值.
专题:三角函数的求值.
分析:运用诱导公式即可化简求值.
解答:解:cos480°=cos(360°+120°)=cos120°=﹣cos60°=﹣.
故选:D.
点评:本题主要考查了运用诱导公式化简求值,属于基础题.
6.C
考点:诱导公式的作用.
专题:三角函数的求值.
分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.
解答:解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.
故选C.
点评:此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.
7.C
考点:二倍角的余弦.
专题:计算题;三角函数的求值.
分析:由sin(+α)=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的值.
解答:解:∵sin(+α)=,
∴cosα=,
∴cos2α=2cos2α﹣1=2×=﹣,
故选:C.
点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基础题.
8.D
考点:任意角的三角函数的定义.
专题:三角函数的求值.
分析:根据三角函数的定义有cosα=,条件cosα=x都可以用点P的坐标来表达,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.
解答:解:∵cosα===x,
∴x=0(∵α是第二象限角,舍去)或x=(舍去)或x=﹣.
故选:D.
点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法.
9.
考点:二倍角的余弦.
专题:三角函数的求值.
分析:由二倍角的余弦公式化简所求后代入已知即可求值.
解答:解:∵sinα=,
∴cos2α=1﹣2sin2α=1﹣2×=.
故答案为:.
点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查.
10.
考点:二倍角的余弦;两角和与差的余弦函数.
专题:计算题;三角函数的求值.
分析:由二倍角的余弦函数公式根据已知即可求值.
解答:解:cos(2α+)=2cos2(α+)﹣1=2×﹣1=.
故答案为:.
点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.
11.﹣
考点:二倍角的正切;两角和与差的正弦函数.
专题:三角函数的求值.
分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.
解答:解:∵sin(θ﹣)=(sinθ﹣cosθ)=,
∴sinθ﹣cosθ=,①
∴1﹣2sinθcosθ=,2sinθcosθ=>0,
依题意知,θ∈(0,),
又(sinθ+cosθ)2=1+sin2θ=,
∴sinθ+cosθ=,②
联立①②得:sinθ=,cosθ=,
∴cos2θ=2cos2θ﹣1=﹣,
∴tan2θ==﹣.
故答案为:﹣.
点评:本题考查两角和与差的正弦函数,考查同角三角函数间的关系式的应用,考查二倍角的正弦、余弦与正切,属于中档题.。

相关文档
最新文档