3000m3球罐的制造

3000m3球罐的制造
3000m3球罐的制造

3000m3球罐的制造

6.4.1球罐的结构及制造标准

随着我国石油、化工、轻纺、冶金及城市燃气工业的发展,作为存储容器的球罐,得到了广泛的应用和迅速的发展,在石化企业、国防工业、冶金工业及城市燃气中,用于储存液态丙烷、丁烷、丙烯、丁烯及其混合物(LPG)、液化天然气(LNG)、液氧、液氮和液氨、液氢等物料。

球形储罐与其他型式的压力容器比较,有许多突出的优点。如与同等容量,相同工作压力的圆筒形压力容器比较,球罐具有表面积小,所需钢板厚度较薄,因而具有耗钢量少,重量轻的优点。此外,球罐还有制造方便,易于大型化、占地面积小、操作管理和检修方便等特点。由于这些特点,再加上球罐基础简单、受风面小、外形美观,可用于美化工程环境等原因,使球罐的应用得到很大发展。

国内外球罐技术发展的方向都是高参数大型化,进一步体现它的优势,同时便于管理。国外先进工业国家开展石油液化气球罐大型化工作较早,技术水平较高,建造10000-25000m3大型球罐已相当普遍,日本1968年制成了容量20000 m3的大型球罐,1985年日本新日铁公司为日本西部瓦斯用本公司生产的WEL-TEN80C型高强度钢制造一台大型球罐,设计压力0.75MPa、直径为37.07m、容积为26700 m3。而我国由于特大型(10000m3以上)球罐关键技术还没有完全解决,已生产制造的最大石油液化气球罐只有5000m3。因此,为满足我国石油液化气存储需求,迫切需要开发具有我国自主知识产权的特大型球罐核心技术。

⑴球罐的结构

球罐是一个大型、复杂的焊接壳体结构,在制造方面涉及塑性加工技术、焊接技术、热处理技术、无损检测技术多学科和技术领域。

大型球形容器通常是在现场进行组焊。由于施工现场的条件和环境的限制,要求现场组焊应有更可靠的工艺和较高的技术水平,在运输条件许可的情况下,200m3以内的球形容器也可在厂内制造。.

球形容器除了和其他的压力容器有相同的技术要求外,还有一些特有的、比较严格的技术要求。球形容器所用材料要求其强度等级在400~500MPa,在使用温度下,不同强度级别的材料有不同的韧性指标要求;所用材料的焊接性比其他

图6-45 球形容器的结构示意图

类型压力容器用材要求更高,比如500 MPa 钢碳当量Ce 值不大于0.4%;冷裂纹敏感指望Pe 不大于0.3%。

此外,钢板在使用前必须经过更严格的检查,对材料应进行必要的化学成分和力学性能复验,表面伤痕及局部凸凹深度不得超过板厚的7%,且不得大于3mm 。制造精度要求也较高。球瓣曲率及尺寸必须十分精确,才可能使组对成的球壳误差较小符合制造要求,组对时焊缝间惊应均匀,坡口形状准确,以保证焊接质量。

该实例3000m3球形容器的结构如图

6-45所示,图中未画出扶梯、平台、接管等

附件。

该球罐设计压力0.8MPa ; 设计温度,

常温;公称容积 3000m3 ;储存物料 ,丁

烯;冲装系数0.9; 地震设防烈度7级;

壁厚54mm ;材料:低温低合金钢

07MnNiCrMoVDR ,屈服极限

σs ≥490(MPa ,碳当量Ce≤0.40%。 球型容器的球壳结构按照球壳的分瓣方式分类,主要有足球瓣式、桔瓣式和混合式3种形式如图6-46。

足球瓣式球罐球壳用均分法划分,每块球壳板尺寸相同,下料成型规格化,材料利用率高且互换性好,组装焊接接头较短,焊接检验工作量小,但焊接接头布置复杂,施工组装困难,对球壳板的制造精度要求高。 图6-46 球罐分瓣形

a )足球

b )桔瓣

c )足球桔瓣混合

桔瓣式球壳像桔子瓣(或西瓜瓣),焊接接头布置简单,组装容易,球壳板制造简单,但材料利用率低,对接焊缝总长度长,检验工作量大。

混合式球罐的球壳组成是:赤道带和温带采用桔瓣式,极板采用足球瓣式。它集中了桔瓣式和足球瓣式两种结构的优点,在国外已被广泛采用,从国外引进的球罐大量采用了该结构。

常用的球壳结构为桔瓣式和混合式。一台球罐结构形式的先进与否不能简单看是用混合式还是桔瓣式,而要从焊缝的总长、钢材利用率和制造安装难度来考虑,它同时受钢厂供货尺寸和运输条件的限制。对于小型球罐如400m3或650m3的球罐往往采用桔瓣式结构更合理。而大中型球罐采用混合式优势更为明显,材料利用率高,焊缝长度缩短,球壳板数量少。本实例属于大型设备,球壳采用混合式结构。

混合式又分为三带球罐、四带球罐、五带球罐,图6-45(a)是混合式三带球罐结构,包括上极带、赤道带和下极带。

⑵制造标准及法规

球罐设计执行的国家标准及法规主要有《固定式压力容器安全技术监察规程》2009版、《锅炉压力容器安全监察暂行条例》及其《实施细则》2009版、GB150-1998《钢制压力容器》、GB12337-1998《钢制球形储罐》及相关标准。在制造、检验、验收中还应执行GB50094-1998《球形储罐施工及验收规范》、GB6654-1996《压力容器用碳素钢和低合金钢厚钢板》、JB4726-2000《压力容器用碳素钢和低合金钢锻件》、JB4730-2005《压力容器无损检测》、JB4708-2000《钢制压力容器焊接工艺评定》、HG/ZQ1.7—87《球形储罐质量等级评定及检查细则》,球罐安装质量要达到SHJ-514《石油化工设备安装工程质量检验评定标准》中第八章“球型储罐安装工程”中优良工程要求[10]。

⑶球罐的制造工序流程

球罐的总的制造工序流程是:钢板复验——划线下料——球瓣成型——二次划线——精切割、开坡口——组装——焊接——焊缝检验——人孔、梯子、平台等附件组装一热处理——水压试验——检验——防腐和保温。

其中关键工序为球瓣的展开、划线、下料、球瓣的成型、组装焊接等。

6.4.2.2 瓣片的成型

瓣片制造流程是:钢板复验——划线下料——球瓣成型——二次划线——精切割、开坡口。即球瓣的放样下料,一般是分两次进行。一次放样下料是在成型前对板坯进行平面划线,即用样板划出球瓣展开图,切割后成型;第二次放样下料是在成型后用立体球瓣样板进行二次划线,然后精切割。两次划线下料能得到尺寸较精确的球瓣,但工序多,需要切割余量大,浪费材料多,下面将具体介绍瓣片成型的操作过程。

球瓣成型分为冷压和热压两种。冷压是在常温下采用逐点连续加压的冲压成型加工方法。压制可以采用小模具点压成型,即将板坯料放在模具上,往复移动板料,每一行程冲压工件的一部分,连续两次冲压之间要有一定重叠面积,一般压制两到三遍才可完成,应该注意的是第一遍不能压到底。

球罐焊接工艺守则

球罐焊接工艺守则 1 主题内容与适用范围 1.1 主题内容 本守则规定了碳素钢、普通低合金钢钢性储罐的手工电弧焊、气体保护自动焊、自动保护焊的焊接操作工艺要求。 1.2 适用范围 本守则适用碳素钢、普通低合金钢钢性储罐的手工电弧焊、气体保护自动焊、自动保护焊的焊接。 本守则若与图纸及专用焊接工艺相抵触时,则应以图纸及专用焊接工艺文件的规定执行。 2 焊接材料 2.1 焊条应符合下列标准 手工焊焊条应符合《碳钢焊条》GB/T5117和《低合金钢焊条》GB/T5118的规定;药芯焊丝应符合《碳钢药芯焊丝》GB10045的规定;埋弧焊使用的焊丝应符合《熔化焊用钢丝》GB/T14957和《二氧化碳气体保护焊用焊丝》GB/T8110的规定。 2.2焊接材料应具有出厂质量证明书和复验报告。进口焊条或焊丝符合出产国的相应 标准。 2.3焊接材料的烘干 2.3.1 焊接材料的存储库应保持干燥,相对湿度不得大于60%。焊条使用前,应按产品 说明书或下表规定的温度和时间进行烘干。 焊条、焊剂的烘干温度和时间 2.3.2 烘干后的焊条应保存在100~150℃的恒温箱中,药皮应无脱落和明显裂纹。 2.3.3焊条在保温筒内不宜超过4小时。超过后应按原烘干制度重新烘干,重复烘干次 数不得超过二次。 3 焊接工艺评定与焊工 3.1 焊接工艺评定 3.1.1 球罐焊接工艺评定应按JB4708《钢制压力容器焊接工艺评定》规定进行。 3.1.2 必要时,焊接工艺评定前,应针对钢板的钢号、厚度、焊接方法及焊接材料, 对 试样进行裂纹试验,以确定预热温度。 3.1.3裂纹试验应包括下列内容: a) 斜Y型坡口焊接裂纹按GB4675.1进行,裂纹率应为零。 b) Y型坡口焊接裂纹试验可参照GB4675.1进行,裂纹率应为零。试验坡口应采用图1所示的型式。

2000m球罐制造方案

2000m3球罐制造方案 1.编制说明: 本方案依据设计图纸及图纸明确的国标、部标,结合我公司的实际情况进行编制。 2.球罐制造及检验标准、规范: 1)《压力容器安全技术监察规程》国家质量技术监督局 2)《钢制压力容器》 GB150-98 3)《压力容器用钢板》 GB6654-1996 4)《压力容器用碳素钢和低合金钢锻件钢板》 JB4726-1994 5)《钢制球形储罐》 GB12337-98 6)《压力容器无损检测》 JB4730-94 7)《钢制压力容器焊接工艺评定》 JB4708-2000 8)《球形储罐施工及验收规范》 GB50094-98 以及相关国家标准和部颁标准。 3.球罐技术参数 公称容积:2000m3数量:1台 设计压力:1.8Mpa 设计温度:45℃ 介质:液氨 规格:Sφ15700×50/52mm 主材: 16MnR 球罐质量:346100Kg/台 结构型式:四带混合式10支柱

4.球罐制造主要技术措施 (1)按设计图纸要求采购球壳板、人孔及接管毛坯、支柱、拉杆等材料及焊接材料,并对到货材料按图纸、标准要求进行检验和复验。 (2)对球罐壳体、人孔及接管等材料做焊接工艺评定。选定需具有相应材质及位置合格证的优秀焊工参与施焊,严格执行焊接工艺。 (3)球壳板投料前采用全自动抛丸机对钢板双面抛丸处理,清除钢板表面氧化皮,从而提高球壳板制造表面质量。 (4)球壳板采用冷压成型工艺,压制采用800t悬臂油压机(喉深2200mm,可压制板宽4500mm)、2200t框架油压机(跨度4200mm)和2000m3球罐冲压模具进行。成型后的球片用弦长2000mm样板检查,曲率误差≯2mm。 (5)球片净料及坡口切割采用切割轨道及多嘴头自动火焰切割机进行,球片净料及坡口切割一次成型,并清除氧化皮。 (6)净料后的球片各部分几何尺寸满足设计图纸及标准、规范的要求,保证同规格球片任意互换。 (7)对球片坡口按设计图纸及标准要求进行100%渗透探伤检查,球片周边100mm范围内进行100%超声波探伤检查。 (8)几何尺寸检验合格的球片进行内外表面清理,并按合同要求涂防锈漆,坡口周边50mm范围内涂可焊性涂料。在每一片球片板凸面上喷涂标识,标明材质名称、规格、炉批号、球罐编号及球片设计尺寸和实测尺寸等。 (9)支柱与底板、耳板、筋板等配件在制造厂组焊成部件,支柱直线度偏差≯L/1000(L

某2000M3乙烯球罐安装施工组织设计5063

***********化工有限责任公司2000M3乙烯球罐施工组织设计 编制: ******* 审核:******* 审批: ******** ***********工程建设公司 安装工程处 *******年*月***日

目录 第一章工程概况 第二章施工运行计划及人员安排 第三章施工技术措施 第四章健康、安全、环境(HSE)管理措施第五章施工暂设计计划及施工平面布置方案

第一章工程概况 1、基本概况 本次工程位于***********市****新区****工业园区,为一台2000M3乙烯球罐,该工程*************有限责任公司设计,由***********工程建设公司安装工程处负责现场安装。 2、编制依据 本施工组织设计依据下列技术文件编制: 球罐施工蓝图 《压力容器安全技术监察规程》 GB12337-1998《钢制球形储罐》 GB150—1998 《钢制压力容器》 GB50094-1998《球形储罐施工及验收规范》 JB4730-2005《承压设备无损检测》 JB/T4709-2000《钢制压力容器焊接规程》 JB/T4708-2000《钢制压力容器焊接工艺评定》 JB4744-2000《钢制压力容器产品焊接试板的力学性能检验》 《球罐现场组焊质量保证手册》

《球形储罐现场安装通用工艺规程》 3、球罐基本技术参数 本工程共1台球罐,规格为2000M3。结构形式为10个支柱三带混合式,赤道带20块,上下级各7块,共计34块球壳板。基本参数见下表: 探伤要求:A类焊缝100﹪RT+≥20﹪UT,A、D焊缝表面100﹪MT或PT。 4、主要工作量 球罐的现场组对、焊接、热处理、水压试验和气密性试验。

球罐设计

第一章 确定设计参数、选择材料 一、确定设计参数 (一) 设计温度 储罐放在室外,罐的外表面用150mm 的保温层保温。在吉林地区,夏季可能达到的最高气温为40℃。最低气温(月平均)为-20℃。 (二) 设计压力 罐内储存的是被压缩且被冷却水冷凝的液氨。氨蒸汽被压缩到0.9~1.4MPa ,被冷却水冷凝。液氨40℃时的饱和蒸汽压由[1]查得为:P 汽=1.55MPa(绝对压力)。为保证安全,在罐顶装有安全阀,故球罐设计压力为安全阀的启动压力,即: P=(1.05-1.1)P 汽=(1.05-1.1)×1.45=1.523~1.595MPa 取设计压力P=1.6MPa (三) 焊缝系数φ 球罐采用X 坡口,双面对接焊,并进行100%的无损探伤,由[2]知φ=1.0 (四) 水压试验压力 由[4]知水压试验压力为: T P =1.25P [] []t σσ 球壳材料为16MnDR ,初选板厚为36mm,由[3]表3查得[]σ=157MPa, []t σ =157MPa 则 T P =1.25P ×157/157=1.25×1.6×1=2.06 MPa 试验时水温不得低于5℃。 (五) 球罐的基本参数 球罐盛装量为170吨/台。液氨-20℃的密度为0.664吨/M 3,,40℃时0.58吨/M 3。 球罐所需容积(按40℃计)为:V= 58 .0170=293.1M 3 已给盛装系数为0.5,即不得装满,故实际所需容积为:V=5 .0170=340M 3,其小于400M 3, 余容较大,足够用,相差17.6%,符合标准要求。 按公称容积4003设计,由[2]附录一P41查得球罐基本参数如表 一 1-1

2000立方米大型球罐设计说明书

课程设计资料标签 资料编号: 题目球形储罐设计 姓名学号专业材料成型 指导教师成绩 资料清单 注意事项: 1、存档内容请在相应位置填上件数、份数,保存在档案盒内。每盒放3-5名学生资料,每份按序号归档, 如果其中某项已装订于论文正本内,则不按以上顺序归档。各专业可依据实际情况适当调整保存内容。 2、所有资料必须保存三年。课程设计论文(说明书)装订格式可参照毕业设计论文装订规范要求。 3、资料由学院资料室统一编号。编号规则是:年度—资料类别代码·学院代码·学期代码—顺序号,顺 序号由四位数字组成(参照《西安理工大学实践教学资料整理归档要求》)。 4、各院、系应在课程设计结束后一个月内按照规范进行资料归档。 5、特殊情况请在备注中注明,并把相关资料归档,应有当事人和负责人签名。

课程与生产设计(焊) 设计说明书 设计题目球形储罐设计 专业材料成型及控制工程 班级 学生 指导教师 2016年秋学期

目录 一、设计说明 课程设计任务书-------------------------------------------------------------------------------1 1.1 选材-----------------------------------------------------------------------------------------------2 1.2 球壳计算----------------------------------------------------------------------------------------2 1.3 球壳薄膜应力校核---------------------------------------------------- --------------------3 1.4 球壳许用外力----------------------------------------------------------------------- ----------4 1.5 球壳分瓣计算----------------------------------------------------------------------------------5 二、支柱拉杆计算 2.1计算数据---------------------------------------------------------------------------------------9 2.2 支柱载荷计算---------------------------------------------------------------------------------10 2.3支柱稳定性校核-----------------------------------------------------------------------------13 2.4拉杆计算---------------------------------------------------------------------------------------14 三、连接部位强度计算 3.1销钉直径计算-----------------------------------------------------------------------------------15 3.2耳板和翼板厚度计算-------------------------------------------------------------------------15 3.3焊缝剪应力校核-------------------------------------------------------------------------------15 3.4支柱底板的直径和厚度计算---------------------------------------------------------------16 3.5支柱与球壳连接处的应力验算------------------------------------------------------------16 3.6支柱与球壳连接焊缝强度计算------------------------------------------------------------18 四、附件设计 4.1人孔结构-----------------------------------------------------------------------------------------19 4.2 接管结构-----------------------------------------------------------------------------------------19 4.3梯子平台---------------------------------------------------------------------------------------19 4.4液面计--------------------------------------------------------------------------------------------20 五、工厂制造及现场组装 5.1 工厂制造----------------------------------------------------------------------------------------21

球罐焊接工艺

球罐焊接工艺 第1章焊前准备: 第1节16MnR钢的焊接性分析 16MnR钢属低合金钢,供货状态为正火,Pcm>0.25%,具有一定的冷裂倾向,根据16MnR的焊接CCT图可以看出,不产生马氏体的临界冷却时间t p′=26s,根据板厚34mm 16MnR钢的线能量范围12~50kJ/cm,结合CO2气体保护电弧焊t8/5冷却时间线算图,初步确定预热温度范围为80~150℃时,t8/5> tp′。 第2节焊接工艺评定 根据GB4708-92《钢制压力容器焊接工艺评定》的要求,分别对平仰焊、立焊和横焊三种位置进行评定。 评定项目如下: 射线检验、拉伸试验、弯曲试验、冲击试验(-12℃)。 焊接工艺评定报告编号为Q-40 (平仰焊) Q-41 (立焊) Q-42 (横焊) 第3节焊工的培训与考核 从事球罐焊接的焊工,必须经过严格的培训与考核,并取得劳动部门

颁发的锅炉压力容器焊工考试合格证书(证书应在有效期内),施焊的钢材种类、焊接方法和焊接位置均与焊工本人考试合格的项目相符。 第4节施工现场准备 为了保证自动焊焊接工艺的正常进行,确保自动焊焊接质量,在施工现场必须采取以下措施: 1.焊接设备及附件的检查施焊前,应仔细检查焊接电源、送丝机构是否完好,CO2气体压力是否符合规定,气体预热器、气压表、气流表是否正常,输气软管、焊接电缆有无破损泄漏,控制电缆接头是否接触良好。一旦发现问题应及时修复后再进行焊接,不得带故障运行。 2.焊接电源摆放 焊接电源应放在通风、干燥、洁净的环境中,三台焊接电源配备一个焊机房。焊接电源的供电应单独配给,不得与其它载荷并网合用,防止电压波动和偏相而影响焊接质量。为提高对焊接参数控制的准确性,减少电流损失和电压降,焊接电源应尽量靠近球罐。 3. 对球罐脚手架搭设的要求 脚手架的搭设应考虑送丝机的放置、焊工焊接时的摆动及预热器的架设方便,为使焊工上下操作方便脚手架每层间距为1.7m左右,脚手架立杆距离纵缝焊道左侧不小于800mm宽,距离纵缝焊道右侧不小于250mm宽,脚手架横杆应在环焊缝下侧500mm左右,脚手架内侧横、立杆应距离焊缝30 0mm以上。脚手架应牢固、安全、可靠。 4. 防风措施

毕业设计指导过程记录表

安徽理工大学本科毕业设计(论文)指导过程记录表题目3000m3液化气球罐的优化设计 学生姓名学号专业班 级 指导教师董美英职称讲师教研室过控教研室 指导内容记录(一) 首次小组指导,课题下达,指导老师根据实际情况安排毕业设计课题的分配,并详细介绍了设计中的注意事项,布置了开题报告。 时间:2016年3 月15 日 指导内容记录(二) 指导老师检查每个同学的开题报告,指出各个同学的不足之处,提出修改意见。 时间:2016年3月21日 指导内容记录(三) 指导老师再此检查开题报告,确定没有错误以后,开始讲解设计章节安排,布置下一阶段的任务。 时间:2016年3月30日 指导内容记录(四) 听取各个同学对自己课题设计思路的阐述,指导老师指出其中的不足之处并对每个同学的课题的重点进行详细解释,推荐了几本重要的参考文献。 时间:2016年4月6日 指导内容记录(五) 对各个同学说明书的摘要及摘要翻译部分进行检查,指出其中的格式排版错误,并强调摘要的简洁性,要突出设计的重点。 时间:2016年4月11日 指导内容记录(六) 检查第一章绪论部分,敦促向未完成第一章的同学,指导老师对每个同学遇到的问题进行耐心的回答,并对下一章的结构设计计算提出了一些建议。 时间:2016年4月18日 指导内容记录(七) 本次指导过程主要针对的是各个设计中的结构设计,强调要严格按照国家标准进行计算,对计算结果要严格检查,不能出现差错,否则无法进行下一步的工作。 时间:2016年4月26日 指导内容记录(八) 本次主要检查结构设计的计算部分,对说明书中的插图和表格进行了格式的说明,检查无误后,指导老师让我们进行下一步的强度校核。 时间:2016年5月5日 指导内容记录(九) 指导老师本次对同学设计中的材料选择进行了检查,指出了我们的不足之处,强调说明在选材过程中不仅只能考虑强度要求,也要考虑经济型。 时间:2016年5月9日 指导内容记录(十) 检查校核的最终结果,要求部分同学在计算的同时要画出弯矩图和受力示意图,不能只是单纯的计算。 时间:2016年5月13日 指导内容本次检查指导时,基本都已经完成了设计说明书,老师对其中的格

1000m3球罐的焊接结构和工艺设计

1000m3球罐的焊接结构和工艺设计毕业论文

摘要 本次设计以《GB12337-2010钢制球形储罐》和《GB150-2011钢制压力容器》为设计依据,综合国内外现有的制造技术设计了3000m3液氨储罐。在以安全为原则的基础上综合考虑产品质量、施工建造可行性、国内现有的建造技术等方面的因素,设计出公称直径为18000mm、壁厚为44mm的大型球罐。本设计在选材方面考虑了多种材料的特性,最后确定Q345R为本球罐的材料。同样,本设计在球罐选型及支撑方式的选择上也应用多种形式作比较最终确定混合式结构、可调式拉杆支撑最合理。最后进行强度及稳定性校核,校核结果显示本设计的结构既安全又经济。 本文通过对球罐的材质的焊接性分析,确定焊接材料和焊接方法。根据每条焊缝有不同的特点,制定了各条焊缝的具体焊接顺序和坡口形式,并选择了焊接工艺参数。 球罐组装、焊接之后,需要进行焊后处理,包括无损检测,焊后热处理,以及耐压试验等,本文也都进行了简要的分析和说明,并介绍了相应的处理方法和注意事项。 关键词:球罐;安全;经济;焊接

Abstract The design Of 3000m3liquid ammonia spherical tank is basis on both the GB12337-2010 《steel spherical tanks 》and GB150-2011 《design of steel pressure vessel》, considering the existing manufacturing technology of tanks both at home and abroad. In the principles of safety ,consideration of product quality and construction feasibility, the existing building technology and other factors, at last the spherical tank is designed for nominal diameter 18000mm、wall thickness 44mm. The selection of materials in this design is in consideration, compared with some different properties of materials,finally the Q345R has be choosen.Also, the design and selection of the spherical support is in consideration,finally hybrid strucure and adjustable tension support seems to be the most reasonable. Finally the strength and stability test, the result shows this design of structure is safe and economic. Based on the spherical tank welding materials analysis to determine the welding materials and welding methods. According to different characteristics of each weld, developed a specific welding seam of each sequence and groove type, and selected welding parameters. After the installation and welding of the spherical container, there need to conduct process when the welding finished, which include non-destructive testing, postweld heat treatment, and the pressure test, and so on. In the paper, they were conducted a brief analysis and exposition, and were introduced the corresponding resolve methods and attention matters. Keywords: spherical tank;safety;welding

乙烯球罐储运系统的工艺安全设计

乙烯球罐储运系统的工艺安全设计 乙烯的用途广泛,由于其具有容易聚合和爆炸的危险性,在工程设计中必须严格遵守国家标准及规范的有关规定,以本质安全设计的理念,全面考虑,精心设计,为企业安全生产打下坚实的基础。本文介绍了某大型煤化工项目中乙烯球罐储运系统的工艺流程,对乙烯球罐储运系统的工艺安全设计进行了分析。 标签:乙烯;球罐储运系统;安全设计 1 工艺概述 乙烯工业发展水平已成为衡量一个国家经济实力的重要标志之一,在国民经济发展中占有重要地位。聚乙烯得到了广泛应用,如粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)。 MTO技术生产出来的产品气与传统石脑油裂解制取得裂解气相比具有以下特点:①气体组成中,氢气和甲烷的含量较少,有利于产品的分离;②气体组成成分中,烯烃的含量较高;③含碳量高的气体成分(重组分)非常少;④气体组成成分中炔烃的含量少;⑤气体组成中氧化物(主要是:醛、酮、醚)的含量较高,但不含硫化氢气体。由此可见,MTO技术下的烯烃分离工艺应该针对产物的特点进行具有针对性的技术开发,才能更好的进行工艺设计,得到合格的各项产品。 MTO工艺采用优点很多的流化床反应器。部分待生催化剂经过用空气烧焦的连续再生,可以保持催化剂活性和产品组成不同。工业规模生产的催化剂已经通过示范试验,选择性、长期稳定性和抗磨性都符合要求。流化床反应器还具有调节操作条件和较好回收反应热的灵活性。这种反应器早已广泛用于炼油厂的催化裂化装置特别是催化剂再生。反应器的操作条件可以根据目的产品的需要进行调节。压力通常决定于机械设计的考虑,较低的甲醇分压有利于得到较高的轻烯烃特别是乙烯的选择性。因此,采用粗甲醇(通常可以含有20%左右水)作原料,可以得到某些产率优势。温度是一个重要的控制参数,较高的温度有利于得到较高的乙烯收率。如果温度太高,由于生焦过量,会降低轻烯烃的总收率。第一代MTO工艺甲醇或二甲醚转化为乙烯碳的选择性约为75%~80%,乙烯产出比在0.5~1.5之间。在得到最高的总收率、乙烯和丙烯产品差不多等量的情况下,轻烯烃(乙烯+丙烯)的总收率的变化稍高于上述范围。乙烯产出比在0.75~1.25之间。因此,可以用最少的甲醇得到最高收率的轻烯烃,但乙烯产出比可以根据市场需求和乙烯的价格进行调节。已经证实,用传统的处理方法可以除去副产品,使乙烯达到烯烃聚合工艺要求的规格。事实上,工业验证试验已经表明,MTO 中试装置生产的乙烯,生产聚烯烃是适用的。 在我国煤炭资源丰富的地区,发展煤基MTO技术,实现以乙烯为代表的低碳烯烃生产原料多元化,对我国的工业发展具有重大意义。未来的烯烃分离技术

丙烯球罐的本质安全设计分析

设计技术石油化工设计 Petrochemical Design2012,29(1)1 3丙烯球罐的本质安全设计分析 王子宗,孙成龙 (中国石化工程建设公司,北京100101) 摘要:介绍了本质安全设计的基本概念。运用本质安全设计的概念对球罐的安全设计进行了分析,特别是对于丙烯球罐在安全阀泄放过程中的温压变化进行了动态模拟;对处于低温状态下球罐的温升进行了模拟,探讨了球罐的材质选择及安全防护策略。通过对丙烯球罐的各种工况进行深入的研究,选择合适的设备材料,对于保证本质安全是至关重要的,并且往往可以去掉冗余的联锁系统或降低其复杂性。 关键词:丙烯球罐本质安全设计泄压动态模拟 丙烯球罐在石油化工行业得到了广泛的使用,它往往作为上下游工艺装置之间工艺物料或最终产品的临时储存设施。因为球罐储存大量危险性很高的丙烯,操作压力比较高,一旦发生泄漏或破裂有可能造成重大的人身伤亡和财产损失。本文结合本质安全设计的一些理念,对丙烯球罐的本质安全设计进行分析研究。 1本质安全设计的基本概念 本质安全的设计主要是依靠基本的物理和化学特征,即化学品的数量、性质和操作条件等来预防人员伤害、环境破坏和财产损失,而不是单纯依靠控制系统、联锁系统、报警和操作程序来阻止事故的发生[1]。本质安全设计的基本理念包括:(1)强化/最小化:如尽量使用最少的危险物质。 (2)替代:用本质安全性更高的物质代替危险的物质,如在循环水系统中用次氯酸钠而不是氯气。 (3)减弱:如在更温和的操作条件下使用危险物质;改变危险物质的状态,尽量降低物料能量释放的影响。 (4)限制影响:如围堤、围堵性质的建筑物;增大安全距离。 (5)简化或容错:如提高设备的设计压力而取消联锁系统等附加设施。2丙烯球罐的本质安全设计分析 2.1强化/最小化 如果工艺装置没有易燃易爆物质,那我们就不用担心泄漏后发生火灾爆炸事故。在很多情况下无法消除危险物质,但可以尽量减少系统中物料的储量。因此在方案设计时,可以考虑是否取消球罐,而使用低温储存系统。很多时候必须采用球罐,此时可以考虑能否在不影响工艺操作的前提下,使球罐和管道的储存量是否可以大大减少?同样体积的球罐,装填系数为50%时,其储存的物料量要远远低于80%、90%等,结果是安全性大大提高。 2.2减弱 在丙烯出装置前或进入球罐前如果能够对物料进行闪蒸降温降压,然后使之储存在一个较低的压力下,则可以增强系统的安全性。 2.3限制影响 对于丙烯球罐,在总平面布置时,应该尽量使之远离有人的建筑物、社区及装置的常压罐区等敏感性地点,使之有足够的安全间距,这样一旦发生爆炸、火灾事故,最大限制事故的影响。图1是用安全计算软件模拟的蒸气云爆炸产生的爆炸冲 收稿日期:2011-12-26。 作者简介:王子宗,男,1988年毕业于天津大学化学工 程专业,硕士,现任中国石化工程建设公司副总经理、总工程师,一直从事技术管理工作。E-mail:Wangzz. sei@sinopec.com

球罐施工工艺标准1

1 总则 1.0.1 编制本标准是为了使球形储罐(以下简称“球罐”)施工工艺标准化,用合理的施工工艺和严格的过程控制来达到保证工程质量的目的,以利于下列技术法规的贯彻实施: 1.《锅炉压力容器安全监察暂行条例》及其实施细则; 2.《压力容器安全技术监察规程》; 3.《球形储罐施工及验收规范》GB 50094; 4.《钢制球形储罐》GB 12337; 5.《钢制球形储罐型式与基本参数》GB/T 17261。 1.0.2 本标准适用于设计压力大于或等于0.1MPa且不大于4MPa、公称容积大于或等于50m3的桔瓣式或混合式以支柱支撑的碳素钢和低合金钢制焊接球罐和低温球罐的现场组焊、施工。但不适用于下列球罐: 1.受核辐射作用的球罐; 2.非固定(如车载或船载)的球罐; 3.双层结构的球罐; 4.膨胀成形的球罐。 1.0.3 球罐的施工及验收应包括下列范围: 1.球壳及与其连接的受压零部件应划定在下列范围内: a.球壳接管与外管道焊接连接的第一道环向焊缝; b.球壳接管与外管道螺纹连接的第一个螺纹接头; c.球壳接管与外管道法兰连接的第一个法兰密封面; 2.球罐开孔的承压封头、平盖及紧固件。 3.与球壳连接的支柱、拉杆、垫板和底板等非受压元件。 1.0.4 本标准所规定的施工程序及质量要求是必须遵守的指令性规定。本标准中规定的施工方法及中间控制质量指标是指导性的,施工单位可根据实际条件和具体工程要求加以选择和补充。1.0.5 球罐施工工艺的修改应提出书面申请,并经专业责任工程师审查认可。 1.0.6 国外供货的球罐,可根据合同规定执行制造厂家提供的工程标准。 1.0.7 球罐施工单位应有完整的质量保证体系并取得国家质量技术监督部门颁发的“AR3级压力容器制造许可证”。 1.0.8 球罐施工必须接受质量技术监督部门锅炉压力容器安全监察机构的监察。 1.0.9 球罐施工的安全技术,劳动保护应执行《石油化工施工安全技术规程》SH 3505及其它现行有关标准的规定。

液化天然气气化站的安全设计

安全管理编号:LX-FS-A81432 液化天然气气化站的安全设计 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

液化天然气气化站的安全设计 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 概述 液化天然气气化站(以下称LNG气化站),作为中小城市或大型工商业用户的燃气供应气源站,或者作为城镇燃气的调峰气源站,近年来在国内得到了快速发展。 LNG气化站是一种小型LNG接收、储存、气化场所,LNG来自天然气液化工厂或LNG终端接收基地,一般通过专用汽车槽车运来。本文仅就LNG气化站内储罐、气化器、管道系统、消防系统等装置的安全设计进行探讨。 2 LNG储罐

球罐的焊接流程及工艺分析

信阳涉外职业技术学院毕业论文(设计) 开题报告书 论文(设计)题目:球罐的焊接流程及工艺分析 学院:信阳涉外职业技术学院 专业:焊接技术及自动化 专业:2011级焊接 姓名:孙海洋 学号:110301005 指导教师:胡巍巍 二O一三年七月十五日

一、阅读的参考文献 参考文献: [1]GB12337—1998《钢制球形储罐》[M].国家技术监督局. [2] GB150—1998《钢制压力容器》[M].国家技术监督局. [3] 徐英等.化工设备设计全书—球罐和大型储罐[M].北京:化学工业出 版社, 2005. [4] 董大擒袁凤隐.压力容器设计手册[M]. 化学工业出版社,2006. [5] 栾春远编. AutoCAD2005压力容器设计[M]. 北京:化学工业出版社, 2006. [6] 郑津洋,董其伍,桑芝富.过程设备设计[M].化学工业出版社, 2007. [7] 俞逢英.球形储罐焊接工程技术[M].机械工业出版社,2000. [8] 国家质量技术监督局.压力容器安全技术监察规程[M].中国劳动社会保 障出版社,1999. [9] 球型储罐整体补强凸缘SH/T3138—2003 [M].中华人民共和国国家发展 和改革委员会, 2004. [10] 崔忠圻.金属学与热处理[M].哈尔滨工业大学出版社,1989. [11] ANSYS User’s Manual, theo ry reference. Canonsburg, USA:ANSYS Inc.; 2003 [12]王嘉麟,侯贤忠主编.球形储罐焊接工程技术[M].北京:机械工业出版 社,1999 [13] 王宽福编.压力容器焊接结构工程分析[M].北京:化学工业出版社, 1998 [14]古大田,黎廷新.球形容器.国外大型炼油与化工装置关键设备技术水平资 料之二[M].兰州石油机械研究所,1978. [15]韩伟基.引进球罐采用的有关结构形式的比较[J].化工炼油机械通讯.1979 [16] 马秉骞. 实用压力容器知识[M].第一版.北京:中国石油出版社.2000. 1

球罐焊接方案

球罐焊接方案 1.概述 本方案是为新疆库车塔河稠油技改工程石油液化气罐区三台1000m3液化石油气罐编制的。该球罐容积为1000 m3,公称直径为12300mm,板材为20R,壁厚为48mm,结构型式为混合三带式。 1.1:工程地点:新疆库车 1.2球罐结构型式及参数: 结构型式见图1:设计技术参数见表1: 球罐设计技术参数:表1 球罐主要实物构成(单台)表2

球罐本体焊缝分布及焊接工作量:表3 2.编制依据 2.1技术文件; 2.2球罐建筑施工合同; 2.3行业有关标准规范: GB12337-98《钢制球形储罐》 GB50094-98《球形储罐施工及验收规范》 GB150-98《钢制压力容器》 1999年版《压力容器安全技术监察规程》 3.材质分析 3.1母材:该三台球罐壳体材料为国产优质低碳钢20R。该材料综合机械性能良好,含碳量与碳当量低,具有良好的加工性能和焊接性能。 球壳用20R钢板化学成分及机械性能:表4

3.2.1球罐本体平、立、横焊缝使用台湾广泰生产的KFX-712C,仰脸焊缝采用手工电弧焊,焊材采用四川自贡产的大西洋J427焊条。KFX-712C是以纯CO2作为保护气体的钛型微合金的全位置药芯焊丝,该焊丝用于低碳钢及低合金的焊接,主要应用于造船、桥梁、建筑、机械、车辆、石油化工、压力容器等金属结构的焊接。焊接时焊丝成型美观,电弧柔和稳定,飞溅少,脱渣性好,焊接熔敷率高,烟雾少。具有出色的冲击韧性和优良的综合性能(见表5): KFX-712C熔敷金属化学成分及机械性能:表5 条。该焊条为低氢钠型药皮焊条,具有良好的塑性、冲击韧性和抗裂性能,并具有良好的工艺性能,但药皮易吸水,对工种要求严,焊接前必须清洁焊件焊接区并将焊条按规定烘焙干燥。 J427焊条熔敷金属化学成分及机械性能:表6 4.焊接工艺评定 4.1球罐焊接前应按国家现行标准《钢制压力容器焊接工艺评定》JB4708-2000和设计图纸的要求进行焊接工艺评定,并做-19℃低温冲击试验,以确定合适

1500m3乙烯球罐的建造

1500m3乙烯球罐的建造 张建军1,张毅军2 (1.兰州化学丁业公司,甘肃兰卅l730060;2甘肃省机械科学研究院,甘肃兰卅l73()0Bo) 摘要:介绍某公司15000乙烯球罐技术指标要求,与我国现行的有关标准规范相比有一定程度的提高,并在其建造过程中进行了严格的质量控制,各项实物指标均达到了较高的水准,对国产大型乙烯球罐的建造有一定的指导作用。 关键词:技术指标;一400cAKv;几何尺寸 中图分类号:1Q)532文献标识码:B文章编号:1(m1—4837(2003)08一∞35—04 Fabricati伽of1500m3Ethyle耻SphericalT釉k ZH^NGJi柚一j岫1,ZHANGYi—j衄2 (I.I舢zh)uCkmicalIndus时C㈣paHy,Lanzhou730060,China; 2GansuPruvinceM龃hinervScie上llmuReaserchInstitute,I娜lzIlou730030,China) Abstran:’Ihe眦hnicindex0f1500m3ethylenesphedcaltankwhi讣w船discllssedwnsma(1eimpmvementofacenajnextentonchinese standanl.PIoductindexes0fthe协nkreachhi曲1eveI,1)州ause旭qLla】i‘ywas(。o『l_tmlledst五ctlyjnf曲Ijcati呷pIDcesshhadgLlidaIlcefunctiontot}Ief8¨calionoflarge—sjzeethylenesphed—caltank Keywords:technicindex;一40℃』Kv;g洲etrysiz。 l概况 低温乙烯球罐由于设计温度低、压力高,介质又属于易燃易爆,是目前建造技术难度最大的球罐之一。20世纪90年代初,首台国产07MnNicrMovDR钢制1500一乙烯球罐建成,到目前为止我国国产乙烯球罐已达十多台,这标志我国建造低温球罐水平已达到了较高水平。某公司于2002年建造的一台07MnNnMovDR钢制1500m3乙烯球罐由某工程公司设计院设计,主体材料由合肥通用机械研究所采购,球罐位号为R1叭一A。 2球罐主要技术参数及结构型式 球罐设计的主要技术参数见表1。 浚乙烯球罐采用10支柱4带混合式结构,它与首台国产大庆石化总厂1500nP乙烯球罐结构参数£E较见表2。 表l球罐设计的主要技术参数 项岜参数项目参数 昂高工作压力(MPa)l32基木风压(10m高处)(Pa)300设汁蚯力(MPa)220地震裂度(。、8设计温度(℃)一40腐蚀裕量(删u)l5贮存介质乙烯焊缝系数10几何容1{【{(m3)1531容器类别二类 该球罐与大庆球罐相比,其材料利用率高、球壳板数量减少、球壳板互换性好、焊缝总长缩短,减少了制造和安装过程中的工作量,并町有效地改善球罐的受力状况。据国内外有关爆破试验统计,插人式接管与球壳连接部位的对接接头易形成应力集 ?35  万方数据万方数据

燃气项目 技术设计方案

技术设计方案 一、LNG气化站工艺流程 1、工艺流程简述 LNG采用集装箱式储罐贮存,通过公路运至LNG气化站,在卸车台处由专用的卸车增压器对集装箱式储罐进行增压,利用压差将LNG卸入低温储罐内。非工作条件下,储罐内LNG贮存温度为-162℃,压力为常压;工作条件下,储罐增压器将储罐内压力增高到0.6Mpa(以下文中如未加说明,压力均为表压)。增压后的低温LNG自流进入空温式气化器,与空气换热后发生相变转化为气态NG并升高温度,气化器出口温度比环境温度约低10℃,当空温式气化器出口的天然气温度在-5℃以下时,须使用水浴式加热器升温,最后经调压(调压器出口压力为0.40MPa)、计量、加臭后进入输配管网送至终端用户。 工LNG气化站工艺流程简图 2、卸车 (1)卸车工艺及其参数确定 卸车工艺通常采用的方式有:槽车自增压方式、压缩机辅助增压方式、设置

专用卸车增压器方式、LNG低温泵卸车方式等等。 根据本站的设计规模以及LNG运输的实际情况,设计采用设置专用卸车增压器方式。利用卸车增压器给集装箱式储罐增压至0.6MPa,利用压差将LNG通过液相管线送入LNG低温储罐。当卸车进入结束阶段,集装箱式储罐内的低温NG气体,利用BOG气相管线进行回收。 卸车工艺管线系统包括LNG液相管线、NG气相管线、气液相连通管线、安全泄放管线和氮气吹扫管线以及若干低温阀门。 (2)卸车口数量确定 本LNG气化站日供气量为8.5×104Nm3,折算LNG约142m3。考虑将来汽化站供气规模进一步扩大,设计布置2个装卸口,可使2台槽车同时进行装卸作业。 3、贮存增压 (1)贮存增压工艺及参数确定 LNG在-162℃贮存时为常压,运行时需要对LNG储罐进行增压,以维持其向外供液所必须的压力(0.55~0.60Mpa)。 当LNG储罐压力低于升压调节阀设定的开启压力时,升压调节阀自动开启,LNG进入储罐增压器,气化为NG后通过储罐顶部的气相管返回到储罐内,使储罐气相压力上升;当LNG储罐压力高于设定压力时,升压调节阀自动关闭,储罐增压器停止工作,随着罐内LNG的排出,储罐压力又逐渐下降。通过升压调节阀的开启和关闭,从而使得LNG储罐压力维持在设定的压力范围内。 (2)储罐增压系统组成 储罐增压系统由储罐增压器(空温式气化器)及若干控制阀门组成,系统主要包括: ●储罐增压器(空温式气化器)400Nm3/h共4台,每2台储罐共用一台储罐 增压器; ●自力式升压调节阀共4只(DN40); ●其他低温阀门和仪表。

3000立方米LPG球罐设计说明书

毕业设计(论文)任务书 题目3000立方米LPG球罐设计 学生姓名学号专业班级 设计(论文)内容及基本要求基本参数 公称容积:3000立方米 储存介质:LPG 设计压力:1.8MP 设计温度:-20℃—50℃ 建设地点:西安 场地类别:Ⅱ类场地土 设计要求 1.撰写设计说明书一份,内容包括: <1>结构设计 <2>强度设计 <3>附件设计等 2.绘零号图三张(总装图机画两张,零件图一张) 3.翻译外文资料一篇(不少于15000字符). 设计(论文)起止时间20xx 年x 月x 日至20xx 年x月x 日设计(论文)地点 指导教师签名年月日 系(教研室)主任签名年月日学生签名年月日

3000立方米LPG球罐设计 摘要:本设计以《GB12337-89钢制球形储罐》和《GB150-89钢制压力容器》为设计依据,综合国内外现有的制造技术设计了3000m3LPG储罐。在以安全为原则的基础上综合考虑经济适用性、产品质量、施工建造可行性、国内现有的建造技术等方面的因素,设计出公称直径为18000mm、壁厚为44mm的大型球罐。本设计在选材方面考虑了多种材料的特性,最后确定07CrMnMoVR为本球罐的材料。同样,本设计在球罐选型及支撑方式的选择上也应用多种形式作比较最终确定混合式结构、可调式拉杆支撑最合理。最后进行强度及稳定性校核,校核结果显示本设计的结构既安全又经济。 关键词:球罐,安全,经济

The Design Of 3000m3 LPG Spherical Tank Abstract: the design Of 3000m3 LPG spherical tank is basis on both the GB12337-89 《steel spherical tanks 》and GB150-89 《design of steel pressure vessel》, considering the existing manufacturing technology of tanks both at home and abroad. In the principles of safety ,consideration of the economic applicability, product quality and construction feasibility, the existing building technology and other factors, at last the spherical tank is designed for nominal diameter 18000mm、wall thickness 44mm. The selection of materials in this design is in consideration, compared with some different properties of materials,finally the 07MnCrMoVR has be choosen.Also, the design and selection of the spherical support is in consideration,finally hybrid strucure and adjustable tension support seems to be the most reasonable. Finally the strength and stability test, the result shows this design of structure is safe and economic. Keywords: spherical tank, safety, economy 目录

相关文档
最新文档