考研高数笔记

合集下载

考研高数精品笔记

考研高数精品笔记

第一章函數、極限、連續第1 节函數a)反函數和原函數關於y=x 對稱。

b)只有定義域關於原點對稱の函數才能討論奇偶性。

c)多個奇函數之和為奇函數;多個偶函數之和為偶函數。

d)2k 個奇函數の乘積是偶函數;2k+1 個奇函數の乘積是偶函數;任意個偶函數の乘積還是偶函數。

(k=0,1,2 ..... )。

e)如果f(x)是周期函數,周期為T,則f(ax+b)也是周期函數,周期為|T/a|。

f)基本初等函數包括:冪函數、指數函數、對數函數、三角函數、反三角函數。

初等函數即上述五大類函數,以及它們有限次の四則運算與複合而成の函數。

g)一切初等函數在其定義域內都是連續の。

第2 节極限a)左右極限存在且相等極限存在。

b)如果函數在X0極限為A,則可以將函數改寫為f(X)=A+ɑ(x),其中lim ɑ(x) = 0 。

x x 0(等價無窮小)c)極限存在極限唯一。

(極限唯一性)d)lim f (x) A ,且A>0,則在x の鄰域內,f(x)>0。

(保號性)x x 0e)函數f(x)在點x=x0存在極限,則存在該點の一個去心鄰域U,在U 內f(x)有界。

(有界性)f)當limf(x)=A,limg(x)=B,那麼lim(f(x)+g(x))=limf(x)+limg(x)=A+Blim(f(x)-g(x))=limf(x)-limg(x)=A-Blim(f(x)*g(x))=limf(x)*limg(x)=A*Blim(f(x)/g(x))=limf(x)/limg(x)=A/B limg(x)不等於0lim(f(x))^n=(limf(x))^n=A nlim(f(x)^g(x))=A b(極限の四則運算)g)有限個無窮小之和仍然是無窮小。

有限個無窮小之積仍然是無窮小。

無窮小和有界量乘積仍然是無窮小。

h)lim f ( x ) =lg ( x )i. l=0,f(x)=o(g(x)).ii. l=∞,f(x) 是 g(x) 低階 .iii.0<l<∞或-∞<l<0,l≠1,同階.iv. l=1,等價無窮小,記作f(x) g(x).f (x)特別の,如果lim =l(l≠0),則稱f(x)是g(x)のk 階無窮小。

考研数学高数知识点归纳

考研数学高数知识点归纳

考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。

以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。

希望每位考生都能在考研数学的征途上取得优异的成绩。

考研高数精品笔记

考研高数精品笔记

精心整理第一章 函数、极限、连续第1节 函数a)反函数和原函数关于y=x 对称。

b) 只有定义域关于原点对称的函数才能讨论奇偶性。

c) 多个奇函数之和为奇函数;多个偶函数之和为偶函数。

d)2k 个奇函数的乘积是偶函数;2k+1个奇函数的乘积是偶函数;任意个偶函数的乘积还是偶函数。

(k=0,1,2......)。

e) 如果f(x)是周期函数,周期为T ,则f(ax+b)也是周期函数,周期为|T/a|。

f) 基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数。

初等函数即上述五大类函数,以及它们有限次的四则运算与复合而成的函数。

g) 一切初等函数在其定义域内都是连续的。

第2节 极限a) 左右极限存在且相等⇔极限存在。

b) 如果函数在X 0极限为A ,则可以将函数改写为f(X)=A+ɑ(x),其中0=(x)ɑlim 0x x →。

(等价无穷小)c) 极限存在⇔极限唯一。

(极限唯一性) d)A x =→)(f lim 0x x ,且A>0,则在x 的邻域内,f(x)>0。

(保号性)e) 函数f(x)在点x=x 0存在极限,则存在该点的一个去心邻域U ,在U 内f(x)有界。

(有界性) f)当limf(x)=A ,limg(x)=B ,那么 lim(f(x)+g(x))=limf(x)+limg(x)=A+B lim(f(x)-g(x))=limf(x)-limg(x)=A-B lim(f(x)*g(x))=limf(x)*limg(x)=A*B lim(f(x)/g(x))=limf(x)/limg(x)=A/B limg(x)不等于0lim(f(x))^n=(limf(x))^n=A nlim(f(x)^g(x))=A b(极限的四则运算)g) 有限个无穷小之和仍然是无穷小。

有限个无穷小之积仍然是无穷小。

无穷小和有界量乘积仍然是无穷小。

h) )()(lim x g x f =li. l=0,f(x)=o(g(x)). ii. l=∞,f(x)是g(x)低阶. iii.0<l<∞或-∞<l<0,l ≠1,同阶. iv. l=1,等价无穷小,记作f(x)~g(x). 特别的,如果kx g x f )]([)(lim=l(l ≠0),则称f(x)是g(x)的k 阶无穷小。

考研高数二全部知识点总结

考研高数二全部知识点总结

考研高数二全部知识点总结一、多元函数微分学1. 多元函数的概念多元函数是指自变量有两个以上的函数。

在多元函数微分学中,需要掌握多元函数的定义、取值范围、图像等知识。

2. 偏导数偏导数是多元函数微分学的基础,偏导数的概念、性质、计算方法是高数二中的重点内容。

在复习过程中,需要重点掌握偏导数的计算方法,包括利用定义求偏导数、隐函数求导、高阶偏导数等内容。

3. 方向导数和梯度方向导数是用来表示函数在某一点沿着某一方向的变化率,梯度是方向导数的一种特殊情况,是多元函数在某一点的变化率最大的方向。

复习时需要掌握方向导数和梯度的定义、性质、计算方法等知识点。

4. 隐函数与参数方程在高数二中,隐函数与参数方程是重要的内容,需要掌握隐函数的存在性与偏导数求法、参数方程的导数、相关方程的结论等知识点。

5. 全微分全微分是多元函数微分学中的重要概念,包括全微分的定义、性质、计算方法等内容,需要在复习过程中重点掌握。

6. 泰勒公式泰勒公式是多元函数微分学中的重要内容,需要掌握泰勒公式的一阶、二阶、多元泰勒公式等内容。

二、多元函数积分学1. 重积分重积分是多元函数积分学的重要内容,包括重积分的定义、性质、计算方法等内容。

复习时需要重点掌握二重积分、三重积分的计算方法,包括直角坐标系下的积分、极坐标系下的积分、柱坐标系下的积分等内容。

2. 曲线、曲面积分曲线积分和曲面积分是高数二中的难点内容,需要复习时掌握曲线积分和曲面积分的定义、性质、计算方法等知识。

3. 格林公式格林公式是多元函数积分学中的重要内容,复习时需要掌握格林公式的定义、性质、应用等知识点。

4. 散度和旋度在多元函数积分学中,散度和旋度是重要的内容,需要掌握散度和旋度的定义、性质、计算方法等知识。

5. 曲线积分公式和斯托克斯定理曲线积分公式和斯托克斯定理是多元函数积分学中的重要内容,需要复习时掌握曲线积分公式和斯托克斯定理的定义、性质、应用等知识点。

总结:多元函数微分学和多元函数积分学是高数二的重要内容,在复习高数二的过程中,需要掌握多元函数微分学和多元函数积分学的全部知识点,包括偏导数、方向导数、梯度、全微分、泰勒公式、重积分、曲线、曲面积分、格林公式、散度和旋度、曲线积分公式和斯托克斯定理等内容。

2024考研数学满分笔记pdf

2024考研数学满分笔记pdf

2024考研数学满分笔记pdf一、数学分析1.极限与连续性极限的定义:对于数列的极限,若对于任意的ε>0,存在正整数N,当n>N时,|an - a| < ε,则称数列{an}收敛于a,记作lim(an) = a。

连续性的定义:若函数f在点x0处连续,则对于任意ε>0,存在δ>0,使得当|x - x0| < δ时,有|f(x) - f(x0)| < ε成立。

2.微分与积分微分的定义:函数f在点x0处可导,则存在常数A,使得当x→x0时,有Δf = f(x) - f(x0) ≈ A(x - x0)成立。

积分的定义:对于定积分∫[a,b]f(x)dx,若存在分点ξk∈[xk-1,xk],使得S = ∑(i=1)^n f(ξi)Δxi = limn→∞ Σ(i=1)^nf(ξi)Δxi成立,则称f在[a,b]上可积。

二、线性代数1.向量空间向量空间的定义:对于域F上的n维数组空间Vn(F),若满足以下条件,则称Vn(F)为F上的n维向量空间:(1)对于任意u、v∈Vn(F),有u+v∈Vn(F);(2)对于任意k∈F、u∈Vn(F),有ku∈Vn(F);(3)存在零向量0∈Vn(F)使得对于任意u∈Vn(F),有u+0=u;(4)对于任意u∈Vn(F),存在-u∈Vn(F),使得u+(-u)=0。

2.矩阵与行列式矩阵的定义:对于m×n矩阵A=(aij),其中aij∈F,则称A为m×n矩阵。

对于n×n矩阵A,若存在n阶单位矩阵En,使得EA=AE=A 成立,则称A为可逆矩阵。

行列式的定义:对于n阶行列式Det(A),其定义为Det(A)=Σα(i1i2...in)Ai1i1Ai2i2...Ainin,其中α(i1i2...in)为排列的符号,Ai1i1Ai2i2...Ainin为n个元素所组成的乘积。

三、概率论与数理统计1.随机变量与概率分布随机变量的定义:对于样本空间Ω上的实函数X(ω),若X(ω)是Ω上的一个实数值函数,则称X(ω)为随机变量。

考研高数每章总结知识点

考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。

二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。

三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。

四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。

五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。

总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。

在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。

函数的定义域和值域是函数的两个重要属性。

2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。

极限的运算法则包括加减乘除和复合函数的极限运算法则。

3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。

无穷小和无穷大是研究函数的重要工具。

二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。

导数的运算法则包括求导法则和复合函数的导数法则。

2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。

微分的运算法则包括微分的基本公式和微分的链式法则。

3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。

三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。

定积分和不定积分的计算方法包括基本公式法和凑微分法等等。

2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。

级数的分类包括几何级数、调和级数、幂级数等等。

3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、导数与微分导数是研究函数局部性质的重要工具,是高数中一个极其重要的概念。

导数的定义是函数的变化率,它反映了函数在某一点的局部性质。

导数的大小表示函数在某一点的斜率,而导数的正负则表示函数在某一点的单调性。

导数的计算包括求导公式、复合函数的导数、隐函数的导数等。

微分是导数的线性近似,它在近似计算中有重要作用。

微分的定义是函数改变量的线性部分,它反映了函数在某一点的局部变化率。

微分的大小表示函数在某一点的斜率的变化率,而微分的正负则表示函数在某一点的单调性的变化。

微分的计算也包括求微分公式、复合函数的微分、隐函数的微分等。

二、中值定理与不定积分中值定理是微分学中的基本定理,它表明在闭区间上的连续函数至少有一个值等于其最大值和最小值之间的某个值。

这个定理有许多重要的推论,例如拉格朗日中值定理和柯西中值定理。

不定积分是微积分的一个重要部分,它是求一个函数的原函数或反导数的过程。

不定积分的结果是一个函数族,这些函数的导数等于被积函数。

不定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。

三、定积分与定积分的几何意义定积分是微积分的一个重要部分,它是求一个函数在某个区间上的总值的过程。

定积分的几何意义是求一个曲线与坐标轴围成的图形的面积。

定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。

四、级数与反常积分级数是无穷序列的和,它可以分为收敛级数和发散级数。

收敛级数的和是一个有限的数,而发散级数的和是无穷大。

级数的计算包括求和公式、幂级数展开等。

反常积分是瑕积分和反常积分的总称,它们是处理不连续函数或具有奇点的函数的重要工具。

反常积分的计算包括运用积分公式、换元积分法等方法。

以上是考研高数知识点的大致总结。

高数是一门非常深奥的学科,需要我们在学习的过程中不断深入理解并多加练习。

希望这篇文章能对大家的学习有所帮助。

高数知识点总结高等数学是大学数学教育的基础课程,对于很多理工科专业来说,它的重要性不言而喻。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。

考研数学高数知识点:排列组合核心

考研数学高数知识点:排列组合核心

考研数学高数知识点:排列组合核心考研数学里,高数的排列组合可是个相当重要的知识点,咱们今天就来好好唠唠。

想当年我读大学的时候,有一次参加数学竞赛,其中就有一道关于排列组合的难题。

题目大概是这样的:有 5 本不同的书,要分给 3 个同学,每人至少一本,有多少种分法?当时我看到这道题,脑子一下子就懵了,完全不知道从哪儿下手。

咱先来说说排列组合的基本概念。

排列呢,就是从 n 个不同元素中取出 m 个元素,按照一定的顺序排成一列。

组合呢,则是从 n 个不同元素中取出m 个元素,不管顺序。

这两者的区别就在于顺序重不重要。

比如说,从 3 个不同的球中选 2 个排成一排,这就是排列;要是只选 2 个,不考虑顺序,那就是组合。

排列的公式是:A(n,m) = n! /(n m)!组合的公式是:C(n,m)= n! / m! (n m)!这里的“!”表示阶乘,比如 5! = 5×4×3×2×1 。

咱们再来说说一些常见的题型。

比如分配问题,就像前面提到的分书的那个例子。

还有插空法,比如说 7 个人排成一排,甲乙不相邻,那咱们就先把其他人排好,然后在他们之间的空位中插入甲乙。

还有捆绑法,要是有几个元素必须在一起,那就把它们先捆起来看成一个整体。

还有分组问题,比如把 6 个人分成 3 组,每组人数分别为 1、2、3 ,那咱们就得先选 1 个人,再从剩下的选 2 个人,最后剩下的 3 个人一组。

这里面要注意有没有平均分组的情况,如果有平均分组,还得除以平均分组的组数的阶乘。

在做排列组合的题时,一定要仔细分析题目条件,搞清楚是排列还是组合,有没有特殊要求。

有时候一不小心就会出错。

就像我那次竞赛,后来仔细一想,那道分书的题可以先把 5 本书分成 3 堆,有两种分法,1、1、3 或者 1、2、2 。

然后再把这 3 堆分给 3 个同学,用全排列。

哎呀,当时就是没分析清楚,结果丢了分。

总之,排列组合这个知识点虽然有点复杂,但只要多做题,多总结,掌握了方法和技巧,就一定能拿下。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。

以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。

证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。

因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。

因此,f(x)>g(x)在N(x0)内恒成立。

2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。

证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。

由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。

因此,极限,h(x),=0。

3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。

证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。

根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。

我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。

因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。

考研高数高频知识点汇总

考研高数高频知识点汇总

考研高数高频知识点汇总一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。

难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。

三、一元函数积分学1、理解原函数和不定积分和定积分的概念。

2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。

考研高数必背公式

考研高数必背公式

对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。

在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。

不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。

同时,还要注重理解概念和原理,培养灵活的思维和解题能力。

高数学公式和知识点笔记

高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。

以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。

一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。

函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。

2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。

(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。

极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。

2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。

二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

大一高数考研知识点汇总

大一高数考研知识点汇总

大一高数考研知识点汇总一、函数与极限1. 函数的概念函数是一个集合关系,表示自变量与因变量之间的对应关系。

可以通过图像、表格或方程式来表示。

2. 极限的概念极限是函数在某一点附近的变化趋势。

可以通过趋近法、代数运算法等方法求得。

3. 极限的性质(1)唯一性:函数在一点的极限唯一存在。

(2)有界性:如果函数在某一点的极限存在,则函数在该点附近有界。

(3)局部性:函数的极限存在与否只与函数在该点附近的情况有关,与其它点无关。

(4)保号性:在函数极限存在的情况下,如果极限大于0,则函数在该点附近恒大于0;如果极限小于0,则函数在该点附近恒小于0。

4. 极限的计算极限的计算方法有:代数运算法、夹逼法、无穷小量法、洛必达法则等。

二、导数与微分1. 导数的概念导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。

可以用极限来定义导数。

2. 导数的计算(1)基本导数:常数函数的导数为0,幂函数的导数为幂次减1,指数函数的导数为自身乘以常数因子,对数函数的导数为自变量的导数的倒数。

(2)四则运算法则:两个函数的和(差)的导数等于它们各自的导数之和(差),函数的常数倍的导数等于函数的导数乘以该常数。

(3)复合函数的导数:复合函数的导数等于外函数的导数乘以内函数的导数。

3. 微分的概念微分是函数在某一点的局部线性近似,表示函数值的变化量与自变量的变化量的比值。

4. 微分的计算微分可以通过导数来计算,微分等于导数乘以自变量的微小增量。

三、微积分基本定理1. 第一类导数第一类导数是函数的反函数的导数,表示函数曲线与x轴之间的面积。

2. 第二类导数第二类导数是函数的导函数,表示函数曲线的斜率。

3. 基本定理(1)定积分:定积分是求曲线下面积的方法,可以通过定积分求函数在一定区间内的值。

(2)不定积分:不定积分是求函数的原函数,即导函数的逆运算。

(3)牛顿-莱布尼茨公式:定积分与不定积分之间的关系由牛顿-莱布尼茨公式给出。

考研数学高数知识点:排列组合核心

考研数学高数知识点:排列组合核心

考研数学高数知识点:排列组合核心一、协议关键信息1、排列组合的定义与基本概念排列的定义:____________________________组合的定义:____________________________排列数公式:____________________________组合数公式:____________________________2、排列组合的基本性质排列的性质:____________________________组合的性质:____________________________3、常见的排列组合题型无限制条件的排列组合问题:____________________________有限制条件的排列组合问题:____________________________分组分配问题:____________________________可重复排列组合问题:____________________________4、解题方法与技巧分类加法计数原理与分步乘法计数原理的应用:____________________________捆绑法:____________________________插空法:____________________________隔板法:____________________________排除法:____________________________二、协议内容11 排列组合的定义111 排列排列是指从 n 个不同元素中取出 m(m≤n)个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

用符号 A(n,m) 表示。

112 组合组合是指从 n 个不同元素中取出 m(m≤n)个元素组成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。

用符号 C(n,m) 表示。

12 排列数公式A(n,m) = n! /(n m)!13 组合数公式C(n,m) = n! / m! (n m)!21 排列组合的基本性质211 排列的性质A(n,n) = n!A(n,m) = A(n,n m)212 组合的性质C(n,m) = C(n,n m)C(n,m) + C(n,m 1) = C(n + 1,m)31 常见的排列组合题型311 无限制条件的排列组合问题这类问题通常直接使用排列数或组合数公式进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研高数笔记文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]第一章 函数、极限、连续第1节 函数a) 反函数和原函数关于y=x 对称。

b) 只有定义域关于原点对称的函数才能讨论奇偶性。

c) 多个奇函数之和为奇函数;多个偶函数之和为偶函数。

d) 2k 个奇函数的乘积是偶函数;2k+1个奇函数的乘积是偶函数;任意个偶函数的乘积还是偶函数。

(k=0,1,2......)。

e) 如果f(x)是周期函数,周期为T ,则f(ax+b)也是周期函数,周期为|T/a|。

f) 基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数。

初等函数即上述五大类函数,以及它们有限次的四则运算与复合而成的函数。

g) 一切初等函数在其定义域内都是连续的。

第2节 极限a) 左右极限存在且相等⇔极限存在。

b) 如果函数在X 0极限为A ,则可以将函数改写为f(X)=A+ɑ(x),其中0=(x)ɑlim 0x x →。

(等价无穷小)c) 极限存在⇔极限唯一。

(极限唯一性)d) A x =→)(f lim 0x x ,且A>0,则在x 的邻域内,f(x)>0。

(保号性)e) 函数f(x)在点x=x 0存在极限,则存在该点的一个去心邻域U ,在U 内f(x)有界。

(有界性)f) 当limf(x)=A ,limg(x)=B ,那么lim(f(x)+g(x))=limf(x)+limg(x)=A+B lim(f(x)-g(x))=limf(x)-limg(x)=A-B lim(f(x)*g(x))=limf(x)*limg(x)=A*Blim(f(x)/g(x))=limf(x)/limg(x)=A/B limg(x)不等于0 lim(f(x))^n=(limf(x))^n=A n lim(f(x)^g(x))=A b (极限的四则运算)g) 有限个无穷小之和仍然是无穷小。

有限个无穷小之积仍然是无穷小。

无穷小和有界量乘积仍然是无穷小。

h) )()(lim x g x f =li. l=0,f(x)=o(g(x)). ii. l=∞,f(x)是g(x)低阶.iii. 0<l<∞或-∞<l<0,l ≠1,同阶. iv. l=1,等价无穷小,记作f(x)~g(x).特别的,如果kx g x f )]([)(lim =l(l ≠0),则称f(x)是g(x)的k 阶无穷小。

i) 等价无穷小代换:x →0时,x ~sinx ~tanx ~arcsinx ~arctanx ~e x -1~ln(1+x)1-cosx ~21x 2 =》1-cos αx ~2αx 2x1+-1~21x=》α)x 1(+-1~αxtanx-x ~313xx-sinx ~613x特殊的,x →0时a x -1~xlnaj) 只有因子才能进行等价无穷小的代换。

k) 要注重推广形式。

例如【x →0时,x ~sinx 】,如果当x →x 0时,f(x)→0,那么将原式中x 换成f(x)也成立。

l) 求极限的方法:i. 利用函数的连续性(极限值等于函数值)。

利用极限的四则运算性质。

ii. 抓头公式(处理多项式比值的极限)。

1. 抓小头公式。

(x →0)2. 抓大头公式。

(x →∞)(分子分母同除最高次项)(极限为【最高次项的系数比】) iii. 两个准则:1. 夹逼准则2. 单调有界必有极限 iv. 两个重要极限:1.xsinx limx →=1 (利用单位圆和夹逼准则进行证明)2.e xx=+∞→)11(lim xe =+→x10x )x 1(lim (利用单调有界准则进行证明) 口诀:倒倒抄。

(结合抓头公式)v. 无穷小的运算性质、等价无穷小的代换1. 有限个无穷小之和为无穷小。

有限个无穷小之积为无穷小。

无穷小与有界量乘积为无穷小。

2. 12种等价无穷小的代换。

vi. 左右极限:求分段函数分段点的极限值。

vii. 利用导数的定义求极限。

导数定义:增量比,取极限。

构造出“增量比”的形式,则极限就是导数。

viii. 定积分的定义求极限。

(处理多项求和的形式) ix. 泰勒公式1. 泰勒公式中系数表达式:f (f )(f 0)f !(f −f 0)f2.当f0=0的时候,泰勒公式则称为麦克劳林公式。

常用的麦克劳林公式:e x sinx cosx ln(x+1)(1+x)mx.洛必达法则使用前提:(1)分子分母都趋向于0。

(2)分子分母的极限都存在。

(3)分子分母导数的比值为一个定值或为无穷。

第一层次0 0∞∞第二层次0*∞:转换成00或∞∞∞-∞:通分化为0(常用换元的方法求解)第三层次1∞∞000使用f ff进行转化。

第3节连续与间断a)连续某点:极限值=函数值 函数在该点连续开区间:在该区间中每个点都是连续的,则在开区间连续。

闭区间:开区间连续切在端点连续b)间断第一类间断点(左右极限都存在)可去间断点:左右极限相等跳跃间断点:左右极限不相等第二类间断点(左右极限至少有一个不存在)无穷间断点:因趋于无穷而造成的不存在。

振荡间断点:因振荡而不存在。

c)初等函数的连续性i.基本初等函数在相应的定义域内连续。

ii.区间I上的连续函数做四则运算形成的新函数在I上仍然是连续函数。

iii.连续函数经过有限次的复合仍为连续函数。

iv.原函数连续且单调,反函数必为连续且单调。

v.一切初等函数在相应定义区间内连续。

d)闭区间连续函数的性质如果f(x)在[a,b]连续,则:1.f(x)在[a,b]有界。

2.有最大最小值3.介值定理4.零点定理:f(a)*f(b)<0,a、b之间必有零点。

第二章一元函数微分学第1节导数与微分1导数a)导数定义:增量比,取极限。

b)左导数和右导数存在且相等 导数存在c)函数在某点的导数值即函数在该点的切线的斜率。

d)导数的物理意义:对路程函数中的t求导为瞬时速度.etce)导数的经济意义:边际成本、边际收益、边际利润。

f)函数的相对变化率(弹性):ff∗f′(f)g)可导与连续的关系:可导必连续,连续不一定可导。

h)偶函数的导数是奇函数。

2微分微分定义:自变量?x沿着切线方向的增量?y。

3求导法则a)导数微分表(4组16个)。

b)导数的四则运算。

c)反函数的导数:原函数导数的倒数。

d)复合函数求导法则。

e)参数方程求导:dydx =dydt/fffff)隐函数求导:左右两侧同时求导,y当作x的函数处理。

g)对数求导法i.幂指函数:先将等式两边同时化为ln的真数,再运用隐函数求导法则。

ii. 连乘函数:先将等式两边同事化为ln 的真数,变成连加,再运用隐函数求导法则。

4 高阶导数a) 莱布尼茨公式:[u (x )v (x )](f )=∑f f f f f =0f(f )(f )f (f −f )(f ) b) 反函数的二阶导数:−f ′′(f )[f ′(f )]3c)参数方程的二阶导数:f ′′f ′−f ′f ′′(f ′)3第2节微分中值定理1 罗尔中值定理条件:(1)f(x)在[a,b]连续。

(2)f(x)在(a,b)可导。

(3)f(a)=f(b)。

结论:在a 和b 之间必有一个值f 使得f ’(f )=0。

几何意义:在该条件下的函数,必可在在其区间内找到一点使得切线斜率为0。

引申---费马引理y=f(x),若x 0为y=f(x)的极值点,则f ’(x 0)=0。

2 拉格朗日中值定理条件:(1)f(x)在[a,b]连续。

(2)f(x)在(a,b)可导。

结论:在a 和b 之间必有一个值f 使得f ’(f )=f (f )−f (f )f −f。

几何意义:在该条件下的函数,必可在其区间内找到一点使得切线斜率与端点连线斜率相等。

拉格朗日中值定理是罗尔中值定理的推广。

证明:使用曲线减去两端点连线得出一个函数,再对该函数应用罗尔中值定理。

使用该定理的信号:要求证的式子中有一个端点处函数值之差。

3柯西中值定理条件:(1)f(x)、g(x)在[a,b]连续。

(2)f(x)、g(x)在(a,b)可导。

且g’(x)≠0结论:在a和b之间必有一个值f使得f′(f)f′(f)=f(f)−f(f)f(f)−f(f)。

柯西中值定理是拉格朗日中值定理推广。

证明:使用参数方程,将f(x)和g(x)作为参数表示。

证明过程与拉格朗日中值定理相同。

使用该定理的信号:要求证的式子中有两个端点处函数值之差。

4泰勒中值定理泰勒中值定理即带有拉格朗日余项的泰勒公式。

f(f)=∑f(f)(f0)f!(f−f0)f+f(f+1)(f)(f+1)!(f−f0)f+1∞f=0拉格朗日中值定理是带有拉格朗日余项的泰勒中值定理的特例。

使用该定理的信号:高阶导数。

使用方法:(1)确认n的取值,一般根据高阶导数的阶数选取。

(2)确认x0的取值,一般选取题中已知导数值的点。

(3)确认x 的取值,一般为题中所给已知值的点或端点和极值点。

第3节微分学的应用1单调性、极值单调性:f’(x)>0的区间,f(x)单调增的区间;f’(x)<0的区间,f(x)单调减的区间。

极值:极值点和导数为零的点没有充要条件关系。

可导函数的极值点,对应的导数值为0。

(费马引理)驻点(导数为0的点)不一定是极值点。

第一判定法:若在f0的邻域内,f0左右导数异号,则f0是一个极值点。

第二判定法:f0为驻点,且在f0处,f(x)的二阶导数存在。

通过二阶导数的符号进行判定。

2最值(闭区间)最值可能出现在(1)极值点(2)区间端点。

3凹凸、拐点凹凸:视觉定位:俯视 凹函数:f (f 1+f 22)≤f (f 1)+f (f 2)2凸函数:f (f 1+f 22)≥f (f 1)+f (f 2)2凹函数:f ’’(x)>0 凸函数:f ’’(x)<0拐点:可能出现在f ’’(x)=0或f ’’(x)不存在的点,但不一定是。

4 渐近线水平渐近线:当f(x)趋向于∞时,极限存在,则该极限为水平渐近线。

铅直渐近线:当f(x)趋向于f 0时,极限趋向于∞,则f 0为该函数的铅直渐近线。

斜渐近线:当f(x)趋向于∞时,f(x)-(kx+b)=0,则(kx+b)为该函数的斜渐近线。

其中,k=f (f )f ,b=lim f →∞[f (f )−ff ]。

5 函数图像的描绘利用极值点、拐点、与坐标轴交点、单调性、凹凸性、渐近线进行描绘。

6 曲率弧微分:ds=√1+[f ′(f )]2ff 曲率即:角度在单位弧长的变化。

曲率:K=ffff =ff/ffff/ff=|f′′|[(1+(y′)2]32曲率半径:ρ=1f曲率圆:从弧上某点出发,向凹侧沿法线方向移动ρ的长度,即得到曲率圆的圆心。

第三章一元函数积分学第1节不定积分(一)定义’(x)=f(x),称F(x)为f(x)的原函数。

相关文档
最新文档