专题24解三角形中的最值、范围问题
解三角形中的最值范围、多边形问题-专题课件-高一下学期数学人教A版(2019)必修第二册
![解三角形中的最值范围、多边形问题-专题课件-高一下学期数学人教A版(2019)必修第二册](https://img.taocdn.com/s3/m/eee8ac510a1c59eef8c75fbfc77da26925c596a9.png)
cos B cos c 2sin A .
b
c
3 sin c
(1)求角 B 的大小和边长 b 的值;
3
(2)求 ABC 周长和面积的取值范围.
(∴2)12 cossBinaA
23ssinicnCBs1inb,Bsin23(B1
,)
6
1
,
B
6
2k ,k Z
2
,
B 为锐角, B ,
3
∵ cos B cos c 2sin A ,由2正余弦定理可得 a2 c2 b2 a2 b2 c2 2a ,
解三角形中的最值范围、多边形问题
1:在 ABC 中,角 A , B , C 所对的边分别为 a , b , c , bsin A a cos(B ) .
6
(1)求角 B 的大小;(2)若 b 2 3 ,求 ABC 面积的最大值
【解析】(1)由正弦定理得 sin Bsin A sin Acos(B ) ,由于 0 A , sin A 0 ,
(1)在 ACD 中,设 AD x(x 0) ,由余弦定理得 7=x2 4x2 2x 2x cos 2 ,整理 3
得 7x2 7 ,解得 x 1 .所以 AD 1,CD 2.
(由2正)弦由定已理知得得sSinADBCDCAC4SAsCinAD C23,所,以解12得AsBinADCACsinB721A.C
从而 S 1 casin 3 3 ,所以 ABC 的面积取得最大值3 3 .
2
3
(问:在(2)的基础上面积范围怎么求?周长范围怎么求?中线范围呢?) (问:在(2)的基础上附加一个“锐角三角形”条件,面积和周长范围怎么求?)
2:在锐角 ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 cosB 3 sinB 2,
解三角形的范围与最值问题
![解三角形的范围与最值问题](https://img.taocdn.com/s3/m/96be60782f3f5727a5e9856a561252d380eb20ed.png)
解三角形的范围与最值问题解三角形的范围与最值问题三角形是我们初中数学中常见的几何图形,解决三角形的范围和最值问题是三角函数的重要内容。
本文将从范围和最值两个方面进行探讨。
一、解三角形的范围问题解三角形的范围问题主要是要找到三角函数定义域中的解集,也就是角的取值范围。
1. 正弦函数正弦函数的定义域为全集R,一个完整的正弦函数周期为360度,即sinθ=sin(θ+360°)。
因此,对于任意θ∈R,正弦函数的值总是在[-1,1]之间取值。
2. 余弦函数余弦函数的定义域为全集R,一个完整的余弦函数周期为360度,即cosθ=cos(θ+360°)。
因此,对于任意θ∈R,余弦函数的值总是在[-1,1]之间取值。
3. 正切函数正切函数的定义域由其分母不为零的限定,即tanθ存在当且仅当cosθ≠0,即θ∈R\{nπ+π/2|n∈N}。
对于任意θ∈R,正切函数没有上下界,其取值范围为全集R。
4. 余切函数余切函数的定义域由其分母不为零的限定,即cotθ存在当且仅当sinθ≠0,即θ∈R\{nπ|n∈N}。
对于任意θ∈R,余切函数没有上下界,其取值范围为全集R。
以上是几个常见三角函数的定义域和取值范围,要求掌握它们的基本特征和计算方法。
二、解三角形的最值问题解三角形的最值问题主要是要找到三角函数在定义域中的最大值和最小值,其思路一般是利用极值点或者函数的单调性来进行分析。
1. 正弦函数和余弦函数的最值正弦函数和余弦函数的最值为1和-1,当且仅当θ=nπ(n∈N)时取到。
当θ非整数倍π时,正弦函数和余弦函数的值位于-1和1之间。
2. 正切函数和余切函数的最值正切函数和余切函数都没有最值,但它们在某些点上趋近于无穷或者负无穷,这些点称为函数的特殊点。
正切函数的特殊点为θ=nπ+π/2(n∈Z),此时tanθ趋近于正无穷或负无穷,取决于极限方向。
余切函数的特殊点为θ=nπ(n∈Z),此时cotθ趋近于正无穷或负无穷,取决于极限方向。
解三角形中的最值与取值范围问题课件-高三数学一轮复习
![解三角形中的最值与取值范围问题课件-高三数学一轮复习](https://img.taocdn.com/s3/m/786e21b432d4b14e852458fb770bf78a64293a1c.png)
【解析】 设∠ADB = θ ,由题意可知0 < θ <
π
.
2
在△ ABD中,由余弦定理得
AB2 = 22 + ( 3)2 −2 × 2 × 3cos θ = 7 − 4
在△ ACD中,∠ADC = θ +
2
2
2
3cos θ .
π
,由余弦定理得
2
AC = 2 + 1 − 2 × 2 × 1 × cos(θ +
2
0<A<
sin A+sin B
.又sin C
sin C
=
3
1
a+b
cos A + sin A,所以
2
2
c
= 3sin A + cos A =
2π
,所以当A
3
=
=
2 3
3
(sin A + cos
3
2
π
2sin(A + ),又
6
π
a+b
时, 取得最大值,为2.
3
c
由余弦定理得16 = a2 + b2 − ab ≥
=
4 3
.
3
16 = a2 + b2 − ab ≥ 2ab − ab = ab,当且仅当a = b = 4时,等
号成立,即ab ≤ 16,所以△ ABC面积的最大值
1
π
Smax = × 16sin = 4 3.
2
3
a+b
由正弦定理得
c
C
√
sin B =
浅谈解三角形中的最值与取值范围的解题方法
![浅谈解三角形中的最值与取值范围的解题方法](https://img.taocdn.com/s3/m/cef20c3fb5daa58da0116c175f0e7cd1842518b0.png)
浅谈解三角形中的最值与取值范围的解题方法摘要:解三角形是高考重点考查内容,其中涉及到最值与取值范围问题,对基础一般的学生来说难度相对大点,学生比较害怕,所以本文整理了解三角形中最值与取值范围的基本解题思路,即一般情况下除了求面积最大值是用基本不等式之外,其他求最值与取值范围,化简成角的的范围去控制,转化为某一变量的函数求解基本能把问题解决.关键词:基本不等式;最值;取值范围一、化成角,转化为某一变量的函数求解(一)用正弦定理化边为角,用正弦和差角公式求解.例1.角A,B,C所对的边分别为a,b,c,且△ABC的面积 ,a=2,且A [ ],则边c的取值范围为:______________.解:由正弦定理整理得:c=A+B+C= , B= , 又a=2,∴C=﹣A,故c=== +1,又,∴1≤tan A≤,∴ 1≤≤∴c∈[2, +1].,由题得,求边的范围,化成角的范围去控制,用正弦定理,正弦的和差角公式化简,结合三角函数的图像与性质即有界性可求得结果.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若A=2B,求的取值范围.解:由正弦定理,A=2B, A+B+C= ,得:=====,A∈(0,π),∴2B∈(0,π),且A+B=3B∈(0,π),所以B∈(0,),令t=cos B,则,则f(t)=,求导得:在恒成立,故f(t)在上单调递减,所以f(1)<f(t)<f(),即,故的取值范围为.求边的范围,还是先考虑用角去控制,用正弦定理把边化为角之后,用正弦的和差角公式化简,用换元法整理后,求导化简,判断函数单调性从而求得取值范围.(二)用三角关系及正弦和差角公式求解.例3.角A,B,C所对的边分别为a,b,c且△ABC为锐角三角形,B=,则cos A+cos B+cos C的取值范围为________.解:B=,A+B+C= ,∴C=﹣A,∴cos A+cos B+cos C=cos A+cos(﹣A)+cos=cos A﹣ cos A+sin A+= cos A+ sin A+=sin(A+)+,△ABC为锐角三角形,∴<A<,∴<A+<,∴<sin(A+)≤1,∴ +<sin(A+)+≤,故所求的取值范围为(, ].例4.(2019•新课标Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解:(1)略;(2)∴△ABC面积S=a•1sinB=a,由正弦定理:,因为△ABC为锐角三角形,所以,∴,,所以<a<2.故△ABC面积S=a的取值范围为(,).本道题求面积的取值范围,通过整理转化求边的取值范围,然后转化为角的范围来控制.(三)用三角形的三角关系及二倍角,辅助角公式化简.例5.已知△ABC中,内角A,B,C的对边分别为a,b,c,满足,,求△ABC周长l的取值范围.解:由正弦定理得,因为所以,,, .又,所以,.所以所求△ABC周长l=a+b+c的取值范围为.求三角形周长取值范围,已知一组对边对角,用正弦定理求出2R,结合正弦的和差角公式,辅助角公式,利用三角函数的有界性控制范围,这道题可以变为求周长的最值,思路一样,此处略.二、用基本不等式求解例6.在△ABC中,A=,△ABC的面积为2,则的最小值为()A. B. C. D.==bc=2,∴bc=8,解:由题得S△ABC∴=,令t=则t>0,上式==≥2﹣=,当且仅当2t+1=2,即t=,可得b=2c,又bc=8,解得c=4,b=2时,等号成立;∴的最小值为:.故选:C.求与角有关的范围,直接用角来控制,换元后用基本不等式求解,难在需要配凑能约去的分母部分.本题也可以把角化为边,用边求解,同样用换元方法也可以,此处略.例7.△ABC的内角A,B,C的对边分别为a,b,c,已知且B为锐角,b=1,则△ABC面积的最大值为_______.,解: A+B+C= , ,,, 0 故B= .又b=1,由余弦定理b2=a2+c2﹣2ac•cos B得,当且仅当a=c时,等号成立.最值与取值范围的解题方法有多种,但是对于基础比较比较差的学生来说,方法多不一定就是好的,特别对于普通历史班中,学生基础较弱,方法多了学生还难以选择,我们可以总结最适合学生解题的一种(或者两种)方法,让学生多练习一类方法,提高解题速度,所以解三角形中很多都是化成角,变为某一变量的函数去求解,需要注意定义域范围,求面积最大值就用基本不等式即可.参考文献:1.高磊.运用一题多变探究三角形中的最值与范围问题[J].数学通讯,2020年(12);49-52.2.罗礼明.解三角形中的最值与范围问题求解策略[J].数学通讯,2020年(7);50-56.第4页(共4页)。
解三角形中范围与最值问题教学设计
![解三角形中范围与最值问题教学设计](https://img.taocdn.com/s3/m/947aaaea4431b90d6d85c75e.png)
《解三角形中范围与最值问题》教学设计【课题名称】解三角形中范围与最值问题 【课型】微专题复习课 【授课班级】高三(15)班【教学目标】1.通过剖析高考题,利用正弦定理、余弦定理解决一类解三角形范围与最值问题,减少对解三角形最值的畏难情绪.2.通过递进式学习,体验解三角最值的过程,感悟不同方法的要领. 【教学重难点】解三角形范围与最值问题的方法归纳和选择.【考情分析】通过全国卷考点可以发现,解三角形有关的最值与范围问题是高考的重要考点,2011~2021年的高考题考查了9次,以在解答题的第一题或填空题压轴题的形式呈现,值得剖析此类问题. 【教学过程】1.分析思路,提炼方法 例题 (2014年全国Ⅰ卷16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为【学习导问】条件如何化简?角化边还是边化角?面积如何表示?二.灵动探究,变式演练2.类比迁移,“固化”思维变式探究1:变式探究1 在问题1的基础上,ABC∆周长的取值范围为【学习导问】求ABC∆周长,本质是求什么?周长问题是常见问题,学生思考后说思路由例题的二元函数bc,类比到b+c,思维难度不大,让学生都容易入手变式探究2:ABC∆中,3,60==BCA ,则ACAB2+的最大值为_______.【学习导问】与探究1对比,有何差异?选择什么解题方法更方便?尝试解题,遇到障碍,调整策略由探究1的b+c到探究2的2b+c,让学生体会系数的不同,优选的方法会不同,总结解题经验. 学生可以课后进一步阅读第4页.变式探究3:ABC∆中,3,30==BCA ,点 D满足DCBD2=,则线段 AD 的最大值为______.【学习导问】分析条件,从数入手?还是从形入手?学生尝试借助已有经验,从代数或几何直观的角度求AD的最大值从数的角度,可以建立AD与a,b,c的关系,进而转化222cb+;从形的角度,可以转化为圆弧上的动点到定点D的距离问题,体会数与形之美.三.互动评说,灵活应用3.小组合作,共同提升在中,CBCAAB2,2==,则S△ABC的最大值为( )A.22 B.23C.32D.23【学习任务】1.结合条件,将动态问题具体化2.小组合作,选择合适的方法加以解决.小组合作,相互交流,展示方法例题和变式探究解决了已知对边对角的一类最值与范围问题,如果将问题变为已知一边,另两边成倍数关系ABC∆的问题,考验学生的灵活应用能力. 同时渗透数学文化——阿波罗尼奥斯圆.四.课堂小结 总结解题方法与技巧学生总结学到的知识 归纳整理,提炼解题方法 五.作业布置 (一)课堂反馈练习1.在例题中,若ABC ∆是锐角三角形,则ABC ∆的面积的取值范围为_______;若b ≥a ,则2b ﹣c 的取值范围为_______. 2. ABC ∆中, 30=A ,点 D 满足DA CD 2= ,,则ABC ∆面积的最大值为______.3.ABC ∆中,2=AB ,622=-CB CA ,当角C 最大时,C tan 等于_______. (二)小组合作尝试每个小组利用一个条件和问题编拟一个题目,并解答,再和其它小组交流.条件:在ABC ∆中,,,a b c 分别为ABC ∆的三个内角,,A B C 的对边, 1. 3,3==c C π2.3,3=+=b a C π3.b a c 2,3==4.3,3=+=b a c问题:1.求△ABC 周长的取值范围2.求△ABC 面积的取值范围3.求△ABC 的AB 边的中线长的取值范围独立完成与小组合作完成二轮复习,教师多指导学生解题思路,规范书写,同时学生课后定量练习,解题方法归纳整理也必不可少3=BD【课后反思】___________________________________________________________________ _______________________________________________________________________________。
三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)
![三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)](https://img.taocdn.com/s3/m/0fa918e9c67da26925c52cc58bd63186bceb9294.png)
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
三角函数与解三角形中的最值(范围)问题
![三角函数与解三角形中的最值(范围)问题](https://img.taocdn.com/s3/m/6749e357ba68a98271fe910ef12d2af90342a842.png)
sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
解三角形中的最值与范围问题4大题型
![解三角形中的最值与范围问题4大题型](https://img.taocdn.com/s3/m/14bb1b5730b765ce0508763231126edb6f1a7689.png)
解三角形中的最值与范围问题4大题型解三角形中的最值与范围问题是近几年高考数学的热点,这类试题主要考查学生数形结合、等价转化、数学运算和逻辑推理的能力。
一般为中等难度,但题目相对综合,涉及知识较多,可通过三角恒等变换、构造函数或构造基本不等式等方法加以解决。
一、三角形中的最值范围问题处理方法1、利用基本不等式求最值-化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值-化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B .()1C .(]1,3D .(]2,3【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【变式2-1】(2023·云南昆明·已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x x ωωω=-,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC周长的取值范围.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos 2cos f x x x x x =-⋅-∈R .(1)求函数()f x 的值域;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =-,a =求△ABC 的面积S 的最大值.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,AD =,2CD =,BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a b c+的取值范围.6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.参考答案【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B.()1C .(]1,3D .(]2,3【答案】B【解析】∵cos cos 1b A B -=,即:cos cos 1b A B =+,1a =,∴cos (cos 1)b A B a =+,∴由正弦定理得:sin cos (cos 1)sin B A B A =+,即:sin cos sin cos sin B A A B A =+,∴sin()sin B A A -=,∴B A A -=或πB A A -+=,解得:2B A =或B π=(舍),又∵△ABC 为锐角三角形,则ππ3C A B A =--=-,∴ππ0022ππ00222ππ00π322A A B A C ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇒<<⎨⎨⎪⎪⎪⎪<<<-<⎪⎪⎩⎩,解得:ππ64A <<,2π2sin 21cos 22sin(2)16B A A A A +=+-=-+,又∵ππ64A <<,∴πππ2663A <-<,∴1πsin(2262A <-<,∴π22sin(2)116A <-+<,22sin B A +的取值范围1).故选:B.【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【答案】43【解析】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系,可知22x x +>且22x x -<,解得223x <<,在ABD △中,由余弦定理,得()2212cos 2AD x ADB AD +-∠=,在ACD 中,由余弦定理,得221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以()222212122AD x AD x AD AD+-+-=-,解得22512AD x =-,则2242251132cos 54512122x x x ADC x x -+-∠=⨯-⨯-223x <<,令2512x t -=,则1,99t ⎛⎫∈ ⎪⎝⎭,()2215x t =+,()4242125x t t =++,则232131313cos 2221010105t t ADC t t t t t ++∠==⨯++≥⨯⋅+=,当且仅当1t t =,即1t =时,等号成立,此时25112x -=,解得25x =因为3cos 05ADC ∠≥>,所以π0,2ADC ⎛⎫∠∈ ⎪⎝⎭.因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,tan y x =在π0,2⎛⎫ ⎪⎝⎭单调递增,所以当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时24sin 1cos 5ADC ADC ∠-∠=,则4tan 3ADC ∠=,所以tan ADC ∠的最大值为43.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【答案】(1)tan 3tan B A=-;(2)π6【解析】(1)由余弦定理可得2222cos b c a ac B =+-,代入2222b a c -=,得到()22222cos 2c a ac B a c +--=,化简得22cos 0c ac B +=,即2cos 0c a B +=.由正弦定理可得sin 2sin cos 0C A B +=,即()sin 2sin cos 0A B A B ++=,展开得sin cos cos sin 2sin cos 0A B A B A B ++=,即3sin cos cos sin A B A B =-,所以tan 3tan BA=-.(2)由2222b a c -=得2222b ac -=,故222cos 2a b c C ab +-=222222b a a b ab-+-=2233444a b a b ab b a +==+≥=当且仅当223b a =,即b =时等号成立.因为()0,πC ∈,所以π6C ≤,所以C 的最大值为π6.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【答案】(1)证明见解析;(2)98【解析】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【答案】(1)证明见解析;(2),46⎛⎫⎪ ⎪⎝⎭【解析】(1)由22c b ab =+及余弦定理2222cos c a b ab C =+-,得()2cos 1a b C =+,由正弦定理得:()sin sin 2cos 1A B C =+,又πA B C ++=,()sin sin sin cos cos sin 2sin cos sin A B C B C B C B C B ∴=+=+⋅=+,cos sin sin cos sin B C B C B ∴-=,()sin sin C B B ∴-=,,,A B C 都是锐角,C B B ∴-=,即2C B =.(2)令113sin tan tan y C B C =-+cos cos 3sin sin sin B C C B C =-+sin cos cos sin 3sin sin sin C B C BC B C -⋅=+⋅()sin 3sin sin sin C B C B C-=+⋅,由(1)2C B =得13sin sin y C C=+,在锐角三角形ABC 中,π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,即()π02π022π02B C C B C π⎧<-+<⎪⎪⎪<=<⎨⎪⎪<<⎪⎩,解得ππ32<<C,sin C ⎫∴∈⎪⎪⎝⎭,令sin ,12t C ⎛⎫=∈ ⎪ ⎪⎝⎭,()13,2y f t t t t ⎛⎫∴==+∈ ⎪ ⎪⎝⎭,又函数()13y f t t t ==+在2⎛⎫ ⎪ ⎪⎝⎭上单调递增,()4y f t ⎫∴=∈⎪⎪⎝⎭,故113sin tan tan C B C -+的取值范围是46⎛⎫ ⎪ ⎪⎝⎭.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【答案】(1)π3C =;(2)9【解析】(1)因为sin cos c B C =,所以由正弦定理得sin sin cos C B B C =,又因为()0,πB ∈,sin 0B ≠,所以sin C C =,即有tan C =又因为()0,πC ∈,所以π3C =.(2)因为π3C =,6a b +=,所以由余弦定理可得222222cos ()236336392a b c a b ab C a b ab ab ab +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当3a b ==时,等号成立,所以3c ≥,故ABC 周长的最小值9.【变式2-1】(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【答案】(1)π3;(2)(+【解析】(1)根据余弦定理可知,222cos 2a c b B ac+-=,所以2cos sin 2ac B A bc =,即cos sin cos sin sin sin B A BA A b B=⇔,则tan B =()0,πB ∈,所以π3B =;(2)设π2π,23A ⎛⎫∠∈ ⎪⎝⎭,根据正弦定理可知2πsin sin sin sin 3a cb A C B ====,所以2sin a A =,2π2sin 2sin 3c C A ⎛⎫==- ⎪⎝⎭,所以周长2π2sin 2sin 3a b c A A ⎛⎫++=+-+ ⎪⎝⎭12sin 2sin 2A A A ⎫=++⎪⎪⎝⎭3sin A A =++π6A ⎛⎫=+ ⎪⎝⎭,因为π2π,23A ⎛⎫∈ ⎪⎝⎭,,πππ25636A ⎛⎫+∈ ⎪⎝⎭,所以1sin 622πA ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以π36A ⎛⎫<+++ ⎪⎝⎭,所以ABC的周长为(+.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x ωωω=,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC 周长的取值范围.【答案】(1)1ω=,对称轴方程为:()ππ26k x k =+∈Z ;;(2)2.【解析】(1)211cos(2))1()cos ())cos()2222x x f x x x x ωωωωω+=-=+-,()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的两个相邻零点间的距离为π2,所以函数()f x 的最小正周期为2ππ2⨯=,因为0ω>,所以2ππ12ωω=⇒=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令()()ππππ2πZ Z 6226k x k k x k +=+∈⇒=+∈,所以对称轴为()ππ26k x k =+∈Z ;(2)由πsin 6(12)1A f A ⎛⎫+=- ⇒⎪⎝⎭=-,因为(0,π)A ∈,所以ππ13ππ3π2π2(,)2666623A A A +∈⇒+=⇒=,因为a22sin ,2sin sin sin sin a b c b B c CA B C ===⇒==,π2sin 2sin 2sin 2sin 3B C B B ⎛⎫+=+- ⎪⎝⎭,1π2sin sin 2sin 223B B B B B B ⎛⎫⎛⎫+-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为π(0,)3B ∈,所以ππ2π(,)333B +∈,因此ππsin ,1]2sin (2323B B ⎛⎫⎛⎫+∈⇒+++ ⎪ ⎪⎝⎭⎝⎭,所以ABC周长的取值范围为2.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【答案】(1)3π;(2)()∞+.【解析】(1)在ABC 中,由三角形面积公式得:1sin 2S bc A =,由正弦定理得:()2212sin sin 2cabc A a b A b c⎛⎫⨯+=+ ⎪⎝⎭,整理得:222a b c ab +-=,由余弦定理得:2221cos 22a b c C ab +-==,又0C π<<,故3C π=.(2)因为a 3C π=,由正弦定理得32sin c A=,23cos 3sin 2sin A A b A A π⎛⎫- ⎪⎝⎭===即ABC的周长()31cos 33cos 2sin 2sin 2sin A A l a b c A A A +=++=+=26cos 32224sincos 2tan222AA AA =++,因为203A π⎛⎫∈ ⎪⎝⎭,,则023Aπ⎛⎫∈ ⎪⎝⎭,,故0tan 2A<所以322tan2A +>ABC的周长的取值范围是∞).【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【答案】(1(2)8+【解析】(1)因为,,,A B C D 四点共圆,所以πABC ADC ∠+∠=,因为3cos 5ABC ∠=-,所以3cos cos 5ADC ABC ∠=-∠=,因为()0,πADC ∠∈,故sin 54ADC ∠==,在ABC 中,由余弦定理得:22232cos 25930525AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =在ADC △中,由正弦定理得:sin sin AD ACACD ADC=∠∠,5=,解得:AD(2)由(1)知:AC=3cos5ADC∠=,在ADC△中,由余弦定理得:22222523cos225AD CD AC AD CDADCAD CD AD CD+-+-∠===⋅⋅,整理得:226525AD CD AD CD+=⋅+,故()216525AD CD AD CD+-=⋅,其中22AD CDAD CD+⎛⎫⋅≤ ⎪⎝⎭,故()()221645255AD CD AD CD AD CD+-=⋅≤+,解得:AD CD+≤AD CD=故四边形ABCD周长的最大值为8AB BC AD CD+++≤+【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos2cosf x x x x x=-⋅-∈R.(1)求函数()f x的值域;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若()2f A=-,a=求△ABC的面积S的最大值.【答案】(1)[]3,1-;(2【解析】(1)()1cos2πcos2sin2cos212sin2126xf x x x x x x+⎛⎫=⋅-⋅--=--⎪⎝⎭,∴()f x的值域为[]3,1-.(2)()π2sin2126f A A⎛⎫=--=-⎝⎭,即π1sin262A⎛⎫-=-⎪⎝⎭,由()0,πA∈,得ππ11π2<666A-<-∴π7π2=66A-,即2π3A=,又222222π32cos33a b c bc b c bc bc==+-=++≥,即1bc≤,∴11sin 12224ABC S bc A =≤⨯ ,∴()max 4ABC S =,当且仅当1b c ==时取得.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【答案】(1)π4;(2)4【解析】(1)法一:左边2sin 22sin cos sin 1cos 22cos cos B B B BB B B===+,右边sin 1tan 1sin cos cos sin tan 1sin cos 1cos CC C CC C C C CC+++===---,由题意得sin sin cos sin sin sin cos cos sin cos cos cos sin cos B C CB C B C B C B C B C C+=⇒-=+-()()()sin cos 0tan 1B C B C B C ⇒+++=⇒+=-,即tan 1A =,又因为0πA <<,所以π4A =.法二:左边2sin 22sin cos tan 1cos 22cos B B BB B B===+,右边πtan tantan 1ππ4tan tan πtan 1441tan tan4C C C C C C ++⎛⎫⎛⎫==--+=-- ⎪ ⎪-⎝⎭⎝⎭-,由题意得ππππ44B C k B C k =--+⇒+=-+,又因为0πB C <+<,所以3ππ44B C A +=⇒=.(2)由11π2sin 2244ABC S a bc a bc =⨯=⇒=△,由余弦定理得222222π2cos 4a b c bc a b c =+-⇒=+,2222222211288b c b c b c b c bc ⇒=+⇒+=+≥,(82bc ⇒≥,当且仅当b c =时取“等号”,而1πsin24ABC S bc ==△,故()(min 824ABC S =-=△【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【答案】(1)π3C =;(2).【解析】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =,所以π3C =.(2)在ABC 中,由余弦定理2222cos c a b ab C =+-得:221a b ab =+-,因此12ab ab ≥-,即01ab <≤,当且仅当a b =时取等号,又11sin (0,22ABC S ab C ===∈△,所以ABC 面积的取值范围是4.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【答案】(1)π3或2π3;(2【解析】(1)()sin sin 4sin C B a C =-,4sin s sin sin in C B a B C =,)sin sin sin sin 4sin sin sin B C C B A B C +=,sin 2sin sin sin B C A B C =,因为sin sin 0B C ≠,所以sin2A =,因为()0,πA ∈,所以π3A =或2π3A =(2)因为2a =,且224b c +>,所以由余弦定理得222224cos 022b c a b c A bc bc+-+-==>,所以A 为锐角,由(1)知π3A =.因为O 是ABC 的内心,所以()()112ππππ223BOC ABC ACB A ∠=-∠+∠=--=,在OBC △中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅∠,所以2222242cos3OB OC OB OC OB OC OB OC π=+-⋅=++⋅23OB OC OB OC OB OC ≥⋅+⋅=⋅,当且仅当33OB OC ==时等号成立,所以43OB OC ⋅≤,所以1142π3sin sin 2233OBC S OB OC BOC =⋅∠≤⨯=△所以OBC △33【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,3AD =,2CD =,2BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【答案】(163;(2)218【解析】(1)∵BC CD ⊥,∴426BD =+=22cos 326362ADB ∠=⋅⋅,1in 3s ADB ∠=,3sin 3BDC ∠=,6cos 36BDC ∠==∴sin sin()sin cos cos sin ADC BDC ADB BDC ADB BDC ADB∠∠∠=+=∠∠+∠∠13===;(2)设BAD ∠=α,BCD β∠=,∴23142BD αβ=+-=+-,∴2βα-=,∴1βα=,①22222212131sin 1sin sin 2sin 24S S αβαβ⎫⎛⎫+=⨯+⋅⨯=+⎪ ⎪⎭⎝⎭()222233sin 21cos sin 2144αβα⎡⎤⎢⎥=+-=+-⎢⎥⎣⎦2223535321cos cos cos 222228ααααα⎛⎫⎛=--+=-++=-++ ⎪ ⎪ ⎝⎭⎝⎭,当且仅当cos 6α=-,cos 8β=时取最大值218;综上,sin 3ADC ∠=,2212S S +的最大值是218.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【答案】2⎛ ⎝【解析】在ABC 中,由正弦定理得sin sin sin a b cA B C ==,所以1sin sin 60b A = ,即2sin b A=,因为锐角ABC ,所以090,090A C <<<< ,即090,012090A A <<<-<,解得3090A <<,所以1sin 12A <<,所以112sin A<<,<2b ⎛∈ ⎝.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【答案】(1)3π;(2)⎡⎣【解析】(1)因为()()cos sin cos a B C B a A -=-,可得()cos cos sin cos a B C a A B A -+=,则()()cos cos sin cos a B C a B C B A --+=,所以()cos cos sin sin cos cos sin sin 2cos a B C a B C a B C B C B A +--=,即sin sin sin cos a B C B A =,由正弦定理得sin sin sin sin sin cos A B C C B A =,显然sin 0C >,sin 0B >,所以sin A A ,所以tan A =()0,πA ∈,所以π3A =.(2)因为sin sin a b A B==πsin sin 3a bB ==所以3a =,b B =,所以2223sin 2sin 4sin b a a b B B b b B B +⎫=+=++⎭,因为ABC 为锐角三角形且2π3B C +=,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以ππ62B <<,即1sin ,12B ⎛⎫∈ ⎪⎝⎭,令()34f x x x =+,1,12x ⎛⎫∈ ⎪⎝⎭,由对勾函数性质知函数()34f x x x =+在122⎛ ⎝⎭上单调递减,在,12⎫⎪⎪⎝⎭上单调递增,且122f ⎛⎫= ⎪⎝⎭,f =⎝⎭()714f =,所以())2f x ∈,即)3sin 24sin B B +∈,所以3sin 6,4sin B B ⎫⎡+∈⎪⎣⎭,即22b a b+的取值范围为⎡⎣.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【答案】(1)2;(2)(【解析】(1)由条件得:211sin tan tan A B C =+cos cos sin sin B C B C =+sin cos cos sin sin sin C B C B B C +=()sin sin sin C B B C+=sin sin sin A B C =,所以2sin 2sin sin A B C =,由正弦定理得:22a bc =,所以22a bc=.(2)b c >及22a bc =,则B C >,角C 一定为锐角,又ABC 为锐角三角形,所以cos 0cos 0A B >⎧⎨>⎩由余弦定理得:2222222222222220020222020022b c a b c bcb c bc bc bc bc c b a c b bc c b ac ac ⎧⎧+-+->>⎪⎪⎧+->⎪⎪⇒⇒⎨⎨⎨+->+-+-⎩⎪⎪>>⎪⎪⎩⎩,所以2220bc c b +->,即212b b c c ⎛⎫⎛⎫<+ ⎪ ⎝⎭⎝⎭,解得:11b c <<又1bc >,所以(1,1b c∈+.又22222122b c b c b c a bc c b ++⎛⎫==+ ⎪⎝⎭,令(1,1b x c =∈+,则()222112b c f x x a x +⎛⎫==+ ⎪⎝⎭,()()()2211111022x x f x xx +-⎛⎫'=-=> ⎪⎝⎭,所以()f x在(1,1上递增,又()11f =,(1f =所以222b c a+的取值范围是(.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【答案】(1)π3;(2)【解析】(1)方法一:()11cos ,sin cos sin sin sin 22b Cc a B C C A B C +=∴+==+ ,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以()11sin sin cos ,0,π,sin 0,cos ,22C C B C C B =∈∴>∴= ()π0,π,3B B ∈∴=.方法二:在ABC 中,由正弦定理得:()1sin cos sin sin 2B C C A B C +==+,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以1sin cos sin 2C B C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2B =,因为()π0,π,3B B ∈=.(2)方法一:222222cos 2b a c ac B a c ac ac ac ac =+-=+-≥-=,16ac ∴≤当且仅当4a c ==时取“”=,1sin 112sin ,22228ac Bac B BD b BD ac =⋅=≤max BD ∴=方法二:在ABC 中,由余弦定理得:222222cos 162(b a c ac B a c ac ac ac =+-⇒=+-≥-当且仅当a c =取“=”)所以16ac ≤,所以ABC 的面积1sin24ABC S ac B ac ==≤ 122ABC S b BD BD BD =⨯=≤⇒≤ 【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.【答案】(1)1;(21【解析】(1)由sin cos sin2C B B A +=cos sin C B A B =-,cos )sin C B B C B =+-,)cos sin cos cos sin sin C B B C B C B =+-cos sin B C B =,因为sin 0B ≠,1C =,即cos2C =,由()0,πC ∈得π4C =,故tan 1C =.(2)由22sin ab C c =结合余弦定理得2222cos 2sin a ab C ab b C c =+-=,则()22π2sin cos sin 4a b ab C C C ⎛⎫+=+=+ ⎪⎝⎭,于是221sin 4a a a C b b b π⎛⎫+=⨯+≤ ⎪⎝⎭,即2210a ab b -+≤.11ab≤≤,故当π4C =时,ab1.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>,则cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭【答案】B【解析】222213cos212AB AC BC BC A AB AC +--==⋅,因为BC >11cos 12A <.又()0,πA ∈,所以cos A 的范围是111,12⎛⎫- ⎪⎝⎭.故选:B 2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+【答案】C【解析】因为πsin sin2Bb A a -=,根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅,()0,πA ∈ ,sin 0A ∴≠,sin cos2B B ∴=,即2sin cos cos 222BB B=,()0,πB ∈ ,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B ≠解得1sin22B =,所以ππ263B B =⇒=,所以1sin 24S ac B ===,所以8,ac a c =+≥,当且仅当a c ==时等号成立,根据余弦定理得b =,即b =,设ABC 的周长为C ,所以()ABC C a c a c =++=+ ,设,a c t t +=≥,则()f t t =根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)⎡+∞⎣上为单调增函数,故()(minf t f ==,故()min ABC C = ,当且仅当a b c ===时取等.故选:C.3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.【答案】32,2⎛⎫ ⎪ ⎪⎝⎭【解析】因为2cos c b b A -=,所以sin sin 2sin cos C B B A -=,即()sin sin 2sin cos A B B B A +-=,展开整理得()sin sin A B B -=,因为锐角ABC 中,ππππ,0,,,,2222A B A B A B ⎛⎫⎛⎫∈+>-∈- ⎪ ⎪⎝⎭⎝⎭,所以A B B -=,即2A B =,由π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,得π6π4B <<,()()22πsin cos sin 2cos sin2cos21214C B A B A B B B B ⎛⎫++-=+=++=++ ⎪⎝⎭,因为π6π4B <<,所以7ππ3π21244B <+<,π<sin 224B ⎛⎫+ ⎪⎝⎭,所以()()2sin 2cos C B A B ++-的范围为32⎛⎫ ⎪ ⎪⎝⎭.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.【答案】【解析】在ABC 中,由2cos 2b A a c +=及正弦定理得:2sin cos sin 2sin B A A C +=,而π()C A B =-+,于是2sin cos sin 2sin()2sin cos 2cos sin B A A A B A B A B +=+=+,有sin 2sin cos A A B =,而0πA <<,sin 0A >,因此1cos 2B =,由余弦定理得2222cos b a c ac B =+-,即有222222112()3()3()()24a c a c ac a c ac a c a c +=+-=+-≥+-=+,当且仅当a c =时取等号,从而a c +≤,而a c b +>=,则a b c <++≤所以ABC周长的取值范围为.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a bc+的取值范围.【答案】(1)证明见解析;(2)(1,5).【解析】(1)∵22c ac b +=,∴22c b ac -=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===,即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,∴2sin cos sin()sin sin cos sin cos sin C B B C C B C C B C ⋅=+-=+-,整理得:sin cos sin cos sin 0B C C B C --=,即:sin()sin B C C -=,又∵(0,π)B C ∈、,∴B C C -=,即:2B C =.(2)∵2B C =,∴π3A C =-,又∵sin22sin cos C C C =⋅,2sin 3sin(2)sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C=+=⋅+⋅=⋅+⋅,sin 0C ≠,∴由正弦定理得:sin sin sin(π3)sin2sin3sin2sin sin sin a b A B C C C Cc C C C++-++===22sin cos22sin cos 2sin cos cos22cos 2cos sin C C C C C CC C CC⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又∵0π0π3ππ0π02π 030π0π A C B C C C C <<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩,∴1cos 12C <<,令cos t C =,则2421a bt t c+=+-,112t <<,∵2421y t t =+-对称轴为14t =-,∴2421y t t =+-在1(,1)2上单调递增,当12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,∴15a bc+<<,即:a b c +的范围为(1,5).6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.【答案】(1)π3A =;(2)()2,4-【解析】(1)由题意知,sin 2sin sin cos cos AC B B A-=⨯,所以2cos sin cos sin sin cos A C A B A B -=,则()2cos sin sin cos cos sin sin sin A C A B A B A B C =+=+=,又()0,πC ∈,所以sin 0C ≠,所以1cos 2A =,又()0,πA ∈,所以π3A =.(2)由(1)得sin 2sin sin cos cos AC B B A-=⨯,由正弦定理得cos 2cos a B c b A -=,又2a =,π3A =,所以24cos c b B -=.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以1cos ,12B ⎛⎫∈- ⎪⎝⎭,所以()4cos 2,4B ∈-,故()22,4c b -∈-,即2c b -的取值范围为()2,4-.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.【答案】(1)π3;(2)⎝【解析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 2A C C B C ⎫⋅+=+⎪⎪⎝⎭.因为πA B C ++=,所以()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3ab B C ==,所以2π3sin sin C a B b C⎛⎫- ⎪⎝⎭==132tan C⎛=+ ⎝.因为ABC 是锐角三角形,所以2ππ0,32π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan 3C >,所以sin a B的取值范围是⎝.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.【答案】(1(2)(【解析】(1)若选条件①)cos sin a b C c B -=及正弦定理,)sin sin cos sin sin A B C C B-=()sin sin cos sin sin B C B C C B +-=⎤⎦,化简得sin sin sin B C C B =,因为0πC <<,所以sin 0C ≠,所以tan B =,因为0πB <<,所以π3B =.若选条件②,由22cos a c b C -=及正弦定理,得2sin sin 2sin cos A C B C -=,即()2sin sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,因为0πC <<,所以sin 0C ≠,所以1cos 2B =,因为0πB <<,所以π3B =.若选条件③,由)()()a b a b a c c +-=-化简得,222a c b ac +-=,由余弦定理得222cos 2a c b B ac+-=,即1cos 2B =,因为0πB <<,所以π3B =,所以三个条件,都能得到π3B =.由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-=+--,即21124222ac ac =--⨯,解得43ac =,所以ABC的面积114πsin sin 22333S ac B ==⨯⨯=.(2)因为π3b B ==,由正弦定理得4sin sin sin a c b A C B ===,因为2ππ3A C B +=-=,所以()2π1π4sin sin 4sin sin cos 3226a c A C A A A A A ⎫⎡⎤⎛⎫⎛⎫+=+=+-=+=+⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎭,因为2π03A <<,所以ππ5ππ1sin 166662A A ⎛⎫⎛⎤<+<+∈ ⎪ ⎥⎝⎭⎝⎦,,,所以(a c +∈,即(a b c ++∈,所以ABC 周长l 的取值范围为(.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.【答案】(1)证明见解析;(2【解析】(1)在△ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即2222()3a b c bc b c bc =+-=+-,又因为6a b c ++=,所以22[6()]()3b c b c bc -+=+-,整理可得:124()b c bc -+=-,所以()124bc b c +=+得证.(2)由(1)可知:()124bc b c +=+,所以124bc +≥⨯,当且仅当b c =时取等号,6≥2≤,因为6b c +<2≤,则4bc ≤,所以1sin 424ABC S bc A =≤= ,故△ABC.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π4A =;(2)()1,2【解析】(1)因为sin cos b c A a C -=,由正弦定理得sin sin sin sin cos B C A A C -=,。
解三角形中的最值(范围)问题
![解三角形中的最值(范围)问题](https://img.taocdn.com/s3/m/04e4793f773231126edb6f1aff00bed5b9f37330.png)
解三角形中的最值(范围)问题解三角形中的最值问题1.锐角三角形ABC满足$2B=A+C$,设最大边与最小边之比为$m$,求$m$的取值范围。
分析:由题意可知$\angle B=60^\circ$,且$A\leq B\leqC<90^\circ$。
不妨令$m=\dfrac{c}{a}$,则有:m=\dfrac{c}{a}=\dfrac{\sin C}{\sin A}\leq\dfrac{\sinC}{\sin B}\leq\dfrac{\sin C}{\sin(\pi/3)}=2\sin C$$又因为$\sin A\geq\dfrac{1}{2}$,$\tanA\geq\dfrac{\sqrt{3}}{3}$,所以:dfrac{1}{2}\leq\sin A\leq 1,\quad \dfrac{\sqrt{3}}{3}\leq\tan A\leq\sqrt{3}$$从而有:1\leq m=\dfrac{c}{a}\leq 2$$2.锐角三角形ABC的面积为$S$,角C既不是最大角,也不是最小角。
若$k=\dfrac{a+b}{c}$,求$k$的取值范围。
分析:由正弦定理得:dfrac{c^2-a^2-b^2+2ab\cos C}{2ab}= \dfrac{\sin C}{\sinA\sin B}=\dfrac{2S}{ab\sin C}$$又因为$\cos C<1$,所以:dfrac{2S}{ab\sin C}<\dfrac{c^2-a^2-b^2+2ab}{2ab}=\dfrac{(c-a+b)(c+a-b)}{2ab}=\dfrac{(c-a+b)}{2}\cdot\dfrac{(c+a-b)}{2ab}\leq\dfrac{1}{4}$$又因为$\sin C\geq\dfrac{1}{2}$,所以:k=\dfrac{a+b}{c}\geq\dfrac{2\sqrt{ab}}{c}\geq 2\sqrt{\sinA\sin B}\geq\sqrt{2\sin A}\geq\sqrt{2}\sin\dfrac{A}{2}$$ 又因为$A0$,所以$k>0$。
解三角形中的最值或范围问题
![解三角形中的最值或范围问题](https://img.taocdn.com/s3/m/077fefacaff8941ea76e58fafab069dc5022479f.png)
解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。
专题24 解三角形中的最值、范围问题(解析版)
![专题24 解三角形中的最值、范围问题(解析版)](https://img.taocdn.com/s3/m/3c61a64748d7c1c708a14523.png)
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小; (2)设向量,边长,当取最大值时,求边的长. 【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小; (2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 ,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()1f B <≤,综上, ()f B的取值范围为⎛ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin cos ba c B C A C --+=+(1)求A 的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(22b ca+<≤ 【解析】试题分析:(1)由()()()222sin cos b a c B C A C --+=+及余弦定理的变形可得2cos sin B A B -,因为cos 0B ≠,故得sin A =ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin cos b a c B C A C --+=+,∴()()2cos sin cos ac B B C A C -+=+ , ∴()()2cos sin ,B A B ππ--=-∴2cos sin B A B -=,∴23sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为2ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6 【解析】试题分析:(1)由//m n ,得62)0c c o s A a c o s B-+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得2sin 2a R A ===.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A.B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, AB =, 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】 【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯= 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值.试题解析:(1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos a C A =. (1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 1⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积S满足222a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(tan C =0C π<<, 23C π∴=.(2)()3cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(203A π⎛⎫+∈ ⎪⎝⎭ 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=- ⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A C πππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 24A π⎫⎛⎫∴-∈⎪ ⎪⎪⎝⎭⎝⎭(S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角A ;(2)若a =ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (3+(3.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦6B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(3+.。
高中数学同步教学课件 习题课 解三角形中的最值(范围)问题
![高中数学同步教学课件 习题课 解三角形中的最值(范围)问题](https://img.taocdn.com/s3/m/d7c5aab5846a561252d380eb6294dd88d1d23d6f.png)
因为A+B+C=π,C=2B,
所以 A=π-3B>0,所以 0<B<π3,
所以12<cos B<1,1<2cos B<2.
又bc=ssiinn
CB=ssiinn2BB=2cos
B,故
c 1<b<2.
1234
4.在△ABC 中,B=60°,AC= 3,则 AB+2BC 的最大值为__2__7___.
∵0<A<π3, ∴π3<A+π3<23π, ∴ 23<sinA+π3≤1, ∴2 3<2sinA+π3+ 3≤2+ 3, ∴△ABC 周长的取值范围是(2 3,2+ 3].
与三角形的面积相关
四
的范围或最值问题
A+C 例4 已知△ABC的内角A,B,C的对边分别为a,b,c,若 asin 2 =bsin A.
由正弦定理得sina A=sinb B=sinc C=2, ∴a=2sin A,b=2sin B,
则△ABC 的周长为 L=a+b+c=2(sin A+sin B)+ 3
=2sin
A+sinπ3-A+
3
=2sin
A+
23cos
A-12sin
A+
3
=212sin
A+
3 2 cos
A+
3
=2sinA+π3+ 3.
由正弦定理可知 sin C=2cR=4c, 所以 S=12absin C=12ab×4c= 2, 即 abc=8 2. 故 ab+ 2c≥2 ab× 2c=2 16=8,
当且仅当 ab= 2c=4 时,等号成立, 所以 ab+ 2c 的最小值为 8.
与三角形的角或角的三角函
解三角形中的最值(范围)问题
![解三角形中的最值(范围)问题](https://img.taocdn.com/s3/m/32ad6e6033687e21ae45a90f.png)
解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。
课件解三角形中的最值及取值范围
![课件解三角形中的最值及取值范围](https://img.taocdn.com/s3/m/508d43a2b9f67c1cfad6195f312b3169a451eae0.png)
边的取值范围
总结词
边的取值范围受到角度的取值范围以及三角形的性质影响。
详细描述
在任何三角形中,任意两边之和大于第三边,任意两边之差小于第三边。因此,边的取值范围受到角度的取值范 围以及三角形的形状的影响。对于直角三角形,斜边是最长边,其长度大于其他两边之和。对于钝角三角形,最 长边大于其他两边之和,但不能超过其他两边之和的两倍。
引入其他数学工具
为了更深入地研究三角形最值及取值范围问题,可以考虑引入其他数学工具,如微积分、 线性代数等,以期取得更多突破性成果。
拓展应用领域
除航海、航空、地理测量等领域外,三角形最值及取值范围还可以应用于其他领域,如建 筑设计、机械制造等。未来可以加强与其他学科的合作,拓展其应用领域。
THANKS
03
三角形中的取值范围问题
角度的取值范围
总结词
角度的取值范围是三角形中一个重要的问题,它受到三角形内角和为180度以及三角形的形状限制。
详细描述
在任何三角形中,三个内角的和总是等于180度。因此,每个角的取值范围是0度到180度。对于直角 三角形,一个角是90度,其他两个角的角度和为90度,所以每个角的角度范围是0度到90度。对于钝 角三角形,最大的角度大于90度,但不能超过180度。
高的取值范围
总结词
高的取值范围受到角度的取值范围以及 三角形的形状影响。
VS
详细描述
在任何三角形中,高是从顶点垂直到对边 的线段。因此,高的取值范围受到角度的 取值范围以及三角形的形状的影响。对于 锐角三角形,所有的高都大于零。对于直 角三角形,斜边上的高等于另一条直角边 。对于钝角三角形,有两条高在三角形内 部,另一条高在三角形外部。
感谢观看
04
拓展四:三角形周长(定值,最值,范围)问题 (精讲)(解析版)
![拓展四:三角形周长(定值,最值,范围)问题 (精讲)(解析版)](https://img.taocdn.com/s3/m/01076bc3f9c75fbfc77da26925c52cc58bd69019.png)
·四川眉山·统考一模)已知ABC的内角,且ABC的面积为,求ABC的周长.)解:由题意有cos cosB C ab ac+cos cos c B b+,且ABC 的面积为ABC S =334b =,所以由余弦定理得:924+-⨯⨯所以ABC 的周长为2.(2022春·甘肃张掖·高三高台县第一中学校考阶段练习)已知ABC 的内角C 所对的边分别为求角A ;若D 为BC 的中点,且ABC 的面积为cos a B a +sin sin A B ,得)根据题意可知,ABC 的面积为33322=在ABC 中,利用余弦定理可得:化简求解得:7,故BD 在ADB 和△在锐角ABC 中,角的面积为3(1)5π12k ⎡⎢⎣+-.1)由题意可得,ABC S =ABC S =根据余弦定理可得,22b c +2022春·重庆沙坪坝·已知ABC 中,若ABC 的面积为统考一模)已知ABC的内角3sin C-=,且ABC的面积为,求ABC的周长.注:如果选择多个条件分别解答,按第一个解答计分.π3=;)如选择①cos cosBab ac+,且ABC的面积为S=,解得33ABC=+由余弦定理可得,A24313,所以ABC的周长13.2022·青海西宁已知ABC的内角+a B bcos求角A的大小及求ABC面积的最大值,并求此时ABC的周长.【答案】(1)A=(2)ABC面积的最大值为,此时ABC的周长为6+=,【详解】(1)ac时取等号,此时ABC的周长为高三校联考阶段练习)已知ABC的内角,ABC的面积为,求ABC的周长.π3b,∴结合正弦定理有)∵sin=,即∴sin B≠sin A)因为ABC的面积为由三角形的面积公式得又根据余弦定理24=2bc-=)3162=+)163bc故ABC的周长为.(2022春高三校联考阶段练习)在ABC中,角,ABC的面积是22)依题意,由正弦定理得22sin A)(S=ABC由余弦定理得2022春高三九江一中校联考阶段练习)如图,在ABC中,内角(1)求角C;6.(2022春·湖南岳阳·高二校联考期中)一块土地形状为四边形ABCD,其中120(1)求这块土地的面积;12ABC ADC S S =⨯+)连接CE ,12ABC BCE S S==15214FCE S =-ACD θ∠FCE S=,所以CF题型2:三角形周长(边长)(最值问题)春·福建宁德·高三校考期中)ABC 的内角,求ABC 周长的最大值ABC 周长ABC 周长的最大值为例题2.(2022春·陕西咸阳·高二校考阶段练习)在ABC 中,,b c 分别是角A 对边,已知向量(3sin 22,cos ),(1,2cos )m x x n x =+=,设函数(f m n ⋅.(1)求()f x 的单调递增区间;(2)若 )4a A ==,求b c +的最大值.【答案】(1)ππ,π(Z)36k k ⎤+∈⎥⎦ 3sin m n ⋅=π226x k ≤+≤的单调增区间为(1)判断ABD △的形状并证明;sin ABD ∠故BAD ∠(2)如图,在∴BCM BDA ,BA BDBM BC=且ABM ∠ABM BCD ,由Rt BCM △中,BM 3BMCM=,BC =春·浙江·高三慈溪中学校联考期中)已知ABC 的内角C 所对的)sin C ,若2AD DB =,1CD =,)解:法一:ADC ∠+cos 0BDC ∠=2249213c b c -=⨯⨯20a c =⇒又ABC 中cos 从而(2322a +()22b a +=所以()2b a +5法二:由()2232B A D CA CB CD C B D C D A C C D -=-⇒==⇒+ 2222294444cos CD CA CB CB CA b a ab ACB =++⋅=++∠, 24a ab ++, )()2233293929222b a a ab a b +⎛⎫=+=+⋅≤+ ⎪⎝⎭,)2726102255a ab +≤⇒+≤(当且仅当已知ABC 的内角是ABC 中BC )22cos cos cos B C +-()()221sin 1sin C A ---2sin sin A -=由正弦定理得,22b c +-由余弦定理得,cos b A =(0,πA ∈(2)在ABC 中,由①当角B 为锐角时,cos BH AB B =⋅=2πcos 3⎛⋅- ⎝π,03A=∴当2C+②当角B③当角BBH AB=-ππ,32A=∴当2C+综上:当2.(2022在ABC中,内角求角B;若点D满足2BD BC=,且线段【答案】(1)π3 =.(2)6.【详解】(1)选①,由2sinb3sin cos sinC B+点D 满足2BD BC =,则BC CD =,故2BD a =,,故22AD c =+292ac -=,即( ,所以(2)c a +得最大值为6.(1,3=-m ,(sin ,cos n x =()m n n +⋅,在ABC 中,内角的对边分别为,a b ,且()f C =的大小; 若ABC 的面积为32,点D 12DA ,求的最小值.【答案】(1)π3C = 6【详解】(1)(1sin m n +=+)(1sin cos x x ++12sin x x ⎛+=- ⎝π113C ⎛⎫-+= ⎪⎝⎭,(0,πC ∈(2)1332ABCS=12CD DA =在BCD △22BD ∴≥BD ∴≥又()12CD CA CB =+,故2211222CD CA CB CA CB a =++⋅=22113322CD a b ab ab =++≥⨯=,当且仅当23a b ==时取得等号CD 的最小值为3..(2022·四川成都·统考一模)已知锐角三角形ABC 的内角A ,,c ,满足6a =,5b =求c ;将ABC 分成面积相等的两部分,求3BA CA ⋅;③三个条件中选一个,补充在下面的横线处,并解答问题.在ABC 中,内角,ABC 的面积为,且满足___________ 求A 的大小;设ABC 的面积为2BD DC =的最小值. 【答案】(1)A =433【详解】(1)选ABC 中sin (0,πA ∈所以,32因此,A =选②,332S BA CA ⋅=,(0,πA ∈ABC 中sin ∴2sin cos B ABC 中sin ,(0,πA ∈(2)由13sin 2S bc =由23AD AB BC =+,有1233AD AB AC =+,∴222221441499999AD AB AB AC AC c b =+⋅+=+41648999bc +=,等号成立时28c b bc =⎧⎨=⎩即24c b =⎧⎨=⎩,题型3:三角形周长(边长)(范围问题)锐角ABC 中,的取值范围.又ABC 为锐角三角形,故解得π6B =.2)由正弦定理()sin A C +=由正弦定理,且ABC 为锐角三角形,故秋·新疆克拉玛依·高一克拉玛依市高级中学校考期末)在锐角ABC 中,A B C 已知向量m 、n 满足:(2,m a =,(),2sin n b B =且m n ∥. (1)求角A ;(2)若2a =,求【答案】(1)A =(23,4⎤⎦)因(2,m a = (,2sin n b =,且m n ∥, 6B b =2sin a B =在ABC 中,由正弦定理得:2sin sin A B =,而sin 0B >, 于是得sin A ,又A 为锐角, 所以3A π=.2)ABC 是锐角三角形,由(于是有02B π<<2,由正弦定理得43sin B ,春·全国·高三校联考阶段练习)已知向量(1,m =-,(sin ,cos n x =()m n n +⋅.在ABC 中,内角的对边分别为a ,,且()f C 的大小;,且ABC 的面积0,S ⎛∈ ⎝,求ABC 周长的取值范围3C π=)解:因为(1,m =-,()sin ,cos n x x =,,()()(1sin ,cos sin m n n x x x +⋅=+-⋅)(sin cos 3cos x x x +-+sin 3cos x -2sin 113C π⎛⎫-+= ⎪⎝⎭,所以3C π⎛⎫-= ⎪⎝⎭k π,k ∈Z .ABCS=34,所以2a =+因为ABC 的周长62L <<,即ABC 周长4.(2022湖北孝感·高二大悟县第一中学校联考期中)已知ABC 的三个内角C 所对的边分别为,b ,c ,若,ABC 的面积sin sin C b +求A ;求ABC 周长的取值范围.综上,ABC 周长的取值范围方法二:=由正弦定理26sin ,3B c 263c +=综上,ABC 周长的取值范围2022春·山东高三校联考阶段练习)在锐角ABC 中,角sin cos b C C 的大小;的取值范围.因为ABC 为锐角三角形,π0220B A ⎧<<⎪⎪⎨⎪<=⎪⎩3tan 3<BABC 是锐角三角形,π02B <<ππ42B <<22c <<ABC 是锐角三角形,((2222c c c c ⎧-⎪⎨-⎪⎩.(2022春公路,BAC ∠(1)求M,N两地间的直线距离;统考三模)在ABC中,内角,且ABC的面积为83,求ABC的周长+A acos cos(B C C A==cos sin cos sin所以ABC的周长为.(2022·江苏南京2a;②b=ab中,已知角A,求角A;3在ABC中,有A为锐角,得②因为b=2a sin(在ABC中,有所以tan A=(2)由题意得,ABCS=b=3c,所以所以ABC是钝角三角形cos ACD∠在直角ACD中,2022·江苏泰州在锐角ABC中,BC边上的高等于求证:sin A=45BAC=︒所以在ABE中AB 由余弦定理得BE=,33⊥点作CM BE=-2BE BM(2) ABES=BCDE ∈模拟预测)已知ABC 中,,求ABC 的面积; 求ABC 周长的取值范围.【答案】(1)32; )2,826或(,)在ABC 中,由2234sin c =于是得21b +所以ABC 的面积ABCS =)所以ABC 周长的取值范围是.(2022·青海西宁统考一模)在锐角ABC 中,角3⎛⎫-= ⎪⎝⎭C π)求角B 的大小;)若2b =,求ABC 的周长的取值范围. ;(2)(3,63⎤⎦. )cos 3⎛- ⎝b C π0C ≠,∴B )b BABC 为锐角三角形,,62A ππ⎛∈ ⎝43sin A ⎛⎝即ABC 的周长的取值范围是.(2022·广西广西师范大学附属外国语学校校考模拟预测)在ABC 中,角对边分别为a . 1)证明:ABC 是直角三角形;2)若ABC 面积为8,求ABC 的周长的最小值【答案】(1)证明见解析;428+. 【详解】(1)在ABC 中,由正弦定理sin sin c C a +=2sin sin C A =,sin()sin cos sin B C B C B =+=+假设ABC 不是直角三角形,2C π+>时,2B π>>sin (sin B B 矛盾, 2B C π<+<所以ABC 是直角三角形;(1)知,ABC 是直角三角形,ABCS=ABC 的周长216)l a b b =+-仅当4b =时取“=”,所以ABC 的周长的最小值是8.(2022·湖北武汉·统考模拟预测)模拟预测)在ABC 中,满足23AD AC =,3BD =,求;(2)()3,3-. )A B C π++=,B C ∴+=()()cos221cos cos2B C A +=+-,又0A <θ=,满足23AD AC =,3BD =,所以在锐角ABC 中,求ABC 周长的取值范围.1)π,⎡-⎣1)()f x =23sin 2x 因为三角形为锐角ABC ,,A 即tan A sin sin b B =2sin B ⎡++⎢⎣因为ABC 为锐角三角形,所以0223B B ππ<<<-62B ππ<<模拟预测)在ABC 中,)若ABC 为锐角三角形,且4=,求ABC 周长【答案】(1)B =4,12+⎤⎦.【详解】解:(1)2sin 2B a , 1cos 32sin 26B A r -⋅=B ,即cos ∴1sin 1B ⎫=⎪由于ABC 为锐角三角形,223A C A ππ<=-2A π<<,ππ所以ABC 周长.(2022·河南统考模拟预测)在ABC 中,角2sin A B =+求角A 的大小;1a =,b +存在最大值,求正数λ的取值范围【答案】(1)23π统考模拟预测)在ABC 中,角,求BCD △0,3πα⎛∈ ⎝。
解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习
![解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习](https://img.taocdn.com/s3/m/858f400f4531b90d6c85ec3a87c24028915f85e5.png)
微专题:解三角形中的范围(最值)问题教学设计一、教学内容分析在高中数学知识体系中,解三角形是一个基础知识点,也是高考的一个必考点。
在解三角形的题型中,考查正弦定理和余弦定理的应用,涉及最值和范围的问题相对较难,综合性也较强。
解三角形问题是高考高频考点,在解三角形中的求最值或范围问题是高三复习中的难点,这类问题常常在知识的交汇点处命题,其涵盖及关联三角函数、平面向量、平面几何、基本不等式、导数等多领域的知识。
近几年的高考突出以能力立意,加强对知识综合性的考查,故常常在知识的交汇处设计问题。
主要考查“三基”(基本知识、基本技能、基本思想和方法)以及综合能力,对正弦定理和余弦定理的考查较为灵活,题型多变,以选择题、填空题、解答题体现。
试题难度多为容易题和中档题,主要考查灵活变式求解计算能力,推理论证能力,数学应用意识,数形结合思想等。
而在解三角形中求解某个量(式子)最值或范围是命题的热点,又是一个重点,本节课通过近几年高考试题及模拟试题进行分析,对解三角形的范围(最值)进行优化归纳,并给出针对性巩固练习,以期求得热点难点的突破。
二、学情诊断分析授课对象为高三平行班学生。
本节课之前,学生已经学习了正余弦定理、基本不等式、三角函数、导数等有关内容,但是对于知识前后间联系、理解、应用综合性强的题有一定难度,学习起来比较吃力。
题目稍作变形就不会,独立分析、解决问题的能力有限。
但对一些简单数学规律和基本数学方法的学习,具有一定的基础。
本节课是针对他们在做此类型题目中能做但不能得全对的情形下做的一个探究归纳,使学生对此类问题有一个更高更深刻的认识掌握,解题能力有一个提升。
三、教学目标分析1.巩固正弦、余弦定理的应用,学会利用均值不等式、三角函数有界性和导数在处理范围问题中的应用;2.强化转化与化归的数学思想以及数形结合的数学思想,提高学生研究问题,分析问题与解决问题的能力。
四.教学重难点分析重点:正弦定理和余弦定理及三角形面积公式的运用,能运用正弦余弦和差角公式进行简单的三角函数的恒等变换,理解基本不等式、三角函数的图像与性质和导数简单应用。
解三角形的最值和范围问题 (学生版)-高中数学
![解三角形的最值和范围问题 (学生版)-高中数学](https://img.taocdn.com/s3/m/7b13bf41974bcf84b9d528ea81c758f5f61f29e6.png)
解三角形的最值和范围问题【新高考专用】【题型1三角形、四边形面积的最值或范围问题】【题型2三角形边长的最值或范围问题】【题型3三角形周长的最值或范围问题】【题型4三角形的角(角的三角函数值)的最值或范围问题】【题型5利用基本不等式求最值(范围)】【题型6转化为三角函数求最值(范围)】【题型7转化为其他函数求最值(范围)】【题型8“坐标法”求最值(范围)】【题型9与平面向量有关的最值(范围)问题】1、解三角形的最值和范围问题解三角形中的最值或范围问题,通常涉及与边长、周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,一直是高考的热点与重点,有时也会与三角函数、平面向量等知识综合考查,主要是利用三角函数、正余弦定理、三角形面积公式、基本不等式等工具研究三角形问题,解决此类问题的关键是建立起角与边的数量关系.【知识点1三角形中的最值和范围问题】1.三角形中的最值(范围)问题的常见解题方法:(1)利用正、余弦定理结合三角形中的不等关系求最值(范围);(2)利用基本不等式求最值(范围);(3)转化为三角函数求最值(范围);(4)转化为其他函数求最值(范围);(5)坐标法求最值(范围).2.三角形中的最值(范围)问题的解题策略:(1)正、余弦定理是求解三角形的边长、周长或面积的最值(范围)问题的核心,要牢牢掌握并灵活运用.解题时要结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等研究其最值(范围).(2)转化为三角函数求最值(范围)问题的解题策略三角形中最值(范围)问题,如果三角形为锐角三角形,或其他的限制,一般采用正弦定理边化角,利用三角函数的范围求出最值或范围.(3)坐标法求最值(范围)求最值(范围)问题的解题策略“坐标法”也是解决三角形最值问题的一种重要方法.解题时,要充分利用题设条件中所提供的特殊边角关系,建立合适的直角坐标系,正确求出关键点的坐标,将所要求的目标式表示出来并合理化简,再结合三角函数、基本不等式等知识求其最值.【题型1三角形、四边形面积的最值或范围问题】1.(2024·河北石家庄·三模)在△ABC中,角A、B、C所对的边分别为a、b、c,c=4,ab=9.(1)若sin C=23,求sin A⋅sin B的值;(2)求△ABC面积的最大值.2.(2024·全国·模拟预测)记锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知b cos A=3-a cos B,2a sin C=3.(1)求A.(2)求△ABC面积的取值范围.3.(2024·辽宁·模拟预测)如图,在平面内,四边形ABCD满足B,D点在AC的两侧,AB=1,BC=2,△ACD为正三角形,设∠ABC=α.(1)当α=π3时,求AC;(2)当α变化时,求四边形ABCD面积的最大值.4.(2024·上海·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且3a=2c sin A.(1)求sin C的值;(2)若c=3,求△ABC面积S的最大值.【题型2三角形边长的最值或范围问题】1.(2024·四川·三模)在△ABC中,内角A,B,C的对边分别为a,b,c,且满足2c sin B cos A=b sin A cos B+cos A sin B.(1)求A;(2)若△ABC的面积为163,D为AC的中点,求BD的最小值.2.(2024·江西·模拟预测)在△ABC中,角A,B,C所对的边分别记为a,b,c,且tan A=cos B-sin Ccos C+sin B.(1)若B=π6,求C的大小.(2)若a=2,求b+c的取值范围.3.(2024·广东广州·三模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c=b sin A2+a cos B.(1)求A;(2)若D是边BC上一点(不包括端点),且∠ABD=∠BAD,求CDBD的取值范围.4.(2024·江西鹰潭·二模)△ABC的内角A,B,C的对边分别为a,b,c,满足1-sin Acos A =sin B cos B.(1)求证:A+2B=π2;(2)求a2+b2c2的最小值.【题型3三角形周长的最值或范围问题】1.(2024·安徽淮北·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c-b=2c sin2A2(1)试判断△ABC的形状;(2)若c=1,求△ABC周长的最大值.2.(2024·四川绵阳·模拟预测)已知在△ABC中,D为BC边的中点,且AD=5.(1)若△ABC的面积为2,cos∠ADC=55,求B;(2)若AB2+AC2=18,求△ABC的周长的最大值.3.(2024·云南曲靖·二模)在△ABC中,角A,B,C的对边分别为a,b,c,且a cos C+3c sin A=b+c.(1)求角B的取值范围;(2)已知△ABC内切圆的半径等于32,求△ABC周长的取值范围.=2b.4.(2024·湖南常德·一模)已知△ABC的内角A,B,C的对边分别是a,b,c,且acos C(1)判断△ABC的形状;(2)若△ABC的外接圆半径为2,求△ABC周长的最大值.【题型4三角形的角(角的三角函数值)的最值或范围问题】1.(2024·内蒙古呼和浩特·一模)记△ABC的内角A,B,C的对边分别为a,b,c.若a=3,b=2,则B+C的取值范围是()A.2π3,5π6B.2π3,πC.5π6,πD.π2,5π62.(2024·内蒙古呼和浩特·二模)在△ABC中,角A、B、C的对边分别为a、b、c,若1b2+54a2=c2a2b2,则tan A-1tan C的最小值为()A.13B.23C.29D.193.(2024·陕西宝鸡·二模)△ABC中,D为BC边的中点,AD=1.(1)若△ABC的面积为23,且∠ADC=2π3,求sin C的值;(2)若BC=4,求cos∠BAC的取值范围.4.(2024·北京石景山·一模)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【题型5利用基本不等式求最值(范围)】1.(2024·山西太原·三模)已知△ABC中,A=120°,D是BC的中点,且AD=1,则△ABC面积的最大值()A.3B.23C.1D.22.(2024·黑龙江哈尔滨·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且a=3,BC边上中线AD长为1,则bc最大值为()A.74B.72C.3D.233.(2024·安徽合肥·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,1tan A +1tan B+1tan A tan B=1.则△ABC面积的最大值为()A.1+2B.1+3C.22D.234.(2024·浙江台州·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a cos C=2c cos A,则bca2的最大值为()A.3B.32C.32D.3【题型6转化为三角函数求最值(范围)】1.(2024·辽宁沈阳·模拟预测)在△ABC中,内角A,B,C所对的边分别为a,b,c,且sin2C-sin C sin Bcos2B-cos2A=1.(1)求角A的大小;(2)若△ABC为锐角三角形,点F为△ABC的垂心,AF=6,求CF+BF的取值范围.2.(2024·辽宁·模拟预测)已知△ABC的内角A,B,C的对边分别为a,b,c,c-3bsin C= a-bsin A+sin B.(1)求A;(2)若△ABC为锐角三角形,且b=6,求△ABC的周长l的取值范围.3.(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.4.(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.【题型7转化为其他函数求最值(范围)】1.(2024·四川成都·模拟预测)设锐角△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且c =2,B =2C ,则a +b 的取值范围为()A.2,10B.2+22,10C.2+22,4+23D.4+23,102.(2024·全国·模拟预测)已知△ABC 是锐角三角形,内角A ,B ,C 所对应的边分别为a ,b ,c .若a 2-b 2=bc ,则b a +c的取值范围是()A.33,22B.2-3,1C.2-3,2-1D.2+1,3+23.(2023·全国·模拟预测)已知△ABC 为锐角三角形,其内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =cos2A .(1)求ba的取值范围;(2)若a =1,求△ABC 周长的取值范围.4.(2024·全国·模拟预测)已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S △ABC =b 2-c 2+164⋅tan C .(1)求a 的值;(2)若D 为线段BC 上一点且满足BD =1,DA 平分∠BAC ,求△ABC 的面积的取值范围.【题型8“坐标法”求最值(范围)】1.(23-24高一下·四川宜宾·期末)如图,在平面四边形ABCD 中,AB ⊥BC ,∠BCD =60°,∠ADC =150°,BE =3EC ,CD =233,BE =3,若点F 为边AD 上的动点,则EF ⋅BF 的最小值为()A.1B.1516C.3132D.22.(2023·安徽马鞍山·模拟预测)已知平行四边形ABCD 中,∠ADC =60°,E ,F 分别为边AB ,BC 的中点,若DE ⋅DF=13,则四边形ABCD 面积的最大值为()A.2B.23C.4D.433.(2023·全国·模拟预测)在等腰△ABC 中,角A ,B ,C 所对应的边为a ,b ,c ,B =C =π6,a =23,P 是△ABC 外接圆上一点,则P A ⋅PB +PB ⋅PC +PC ⋅P A的取值范围是()A.-3,23B.-1,33C.-2,30D.-4,204.(2024·江西南昌·三模)如图,在扇形OAB 中,半径OA =4,∠AOB =90°,C 在半径OB 上,D 在半径OA 上,E 是扇形弧上的动点(不包含端点),则平行四边形BCDE 的周长的取值范围是()A.8,12B.82,12C.8,82D.4,82【题型9与平面向量有关的最值(范围)问题】1.(2023·河南开封·三模)已知e 1 、e 2 为单位向量,e 1 -e 2 =3,非零向量a 满足a-2e 2 =1,则e 1 -a 的最小值为()A.7B.7-1C.3D.3-12.(23-24高三上·北京通州·期末)在菱形ABCD 中,AB =2,∠BAD =60°,E 是BC 的中点,F 是CD 上一点(不与C ,D 重合),DE 与AF 交于G ,则AG ⋅DG的取值范围是()A.0,23B.0,43C.0,2D.0,33.(2024·福建泉州·模拟预测)已知平行四边形ABCD 中,AB =2,BC =4,B =2π3,若以C 为圆心的圆与对角线BD 相切,P 是圆C 上的一点,则BD ⋅CP -CB的最小值是()A.8-23B.4+23C.12-43D.6+234.(2023·福建厦门·二模)在△AOB 中,已知OB =2,AB=1,∠AOB =45°,若OP =λOA +μOB,且λ+2μ=2,μ∈0,1 ,则OA 在OP 上的投影向量为me (e为与OP 同向的单位向量),则m 的取值范围是()A.-22,1B.22,1C.-22,1D.22,1一、单选题1.(2024·江苏连云港·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,b cos A =1+cos B ,则边b 的取值范围为()A.0,1B.1,2C.0,2D.2,32.(2024·安徽合肥·模拟预测)已知△ABC 角A 、B 、C 的对边分别为a 、b 、c 满足2b a -c =sin A +sin Csin B ,则角B 的最大值为()A.π6B.π4C.π3D.2π33.(2024·广东东莞·模拟预测)已知在同一平面内的三个点A ,B ,C 满足AB =2,CA CA -CBCB≥1,则AC +BC的取值范围是()A.0,1 B.0,2 C.0,3 D.0,234.(2024·河南·三模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A+b cos B =3ccos C ,则tan A +tan C 的最小值是()A.43B.83C.23D.45.(2024·河南·模拟预测)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足b 3+c 3b +c=a 2.若a =23,则b 2+c 2的取值范围为()A.12,24B.20,24C.12,24D.20,246.(2024·江西·二模)在△ABC 中,若sin A =2cos B cos C ,则cos 2B +cos 2C 的取值范围为()A.1,65B.1,2+12C.65,2D.2+12,2 7.(2024·全国·二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a cos A =b cos C +c cos B ,且a =4sin A ,则△ABC 周长的最大值为()A.42B.62C.43D.638.(2024·陕西咸阳·三模)为了进一步提升城市形象,满足群众就近健身和休闲的需求,2023年某市政府在市区多地规划建设了“口袋公园”.如图,在扇形“口袋公园”OPQ 中,准备修一条三角形健身步道OAB ,已知扇形的半径OP =3,圆心角∠POQ =π3,A 是扇形弧上的动点,B 是半径OQ 上的动点,AB ⎳OP ,则△OAB 面积的最大值为()A.334B.34C.335D.35二、多选题9.(2024·江苏南京·二模)已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,O 为△ABC 的重心,cos A =15,AO =2,则()A.AO =13AB +13ACB.AB ⋅AC ≤3C.△ABC 的面积的最大值为36D.a 的最小值为2510.(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,23311.(2024·河北邯郸·三模)已知△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,面积为34a 2+c 2-b 2,则下列说法正确的是()A.cos A cos C 的取值范围是-12,14B.若D 为边AC 的中点,且BD =1,则△ABC 的面积的最大值为33C.若△ABC 是锐角三角形,则a c 的取值范围是12,2 D.若角B 的平分线BE 与边AC 相交于点E ,且BE =3,则a +4c 的最小值为10三、填空题12.(2024·北京·三模)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a +c =2b ,则角B 的取值范围为0,π3 .13.(2024·陕西安康·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,2a cos C=2cos B +c cos C ,则2a +c 的最大值为4213.14.(2024·江苏盐城·一模)在△ABC 中,已知AB =2,BC =3,点P 在△ABC 内,且满足CP =2,∠APC +∠ABC =π,则四边形ABCP 面积的最大值为.四、解答题15.(2024·山东菏泽·模拟预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知AB ⋅AC -BA ⋅BC =λAB 2(1)若λ=1,判断△ABC 的形状;(2)若λ=12,求tan B -A 的最大值.16.(2024·江苏盐城·模拟预测)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,a sin 2B 2+b sin 2A 2=3ab2a +b +c.(1)求角C 的大小;(2)若△ABC 为锐角三角形,求a +bc的取值范围.17.(2024·重庆渝中·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3ca-sin B =tan A ⋅cos B .(1)求角A 的大小;(2)若△ABC 为锐角三角形且a =26,求△ABC 面积的取值范围.18.(2024·四川南充·模拟预测)在△ABC中,sin Csin A+sin B =sin A-sin B sin B+sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.19.(2024·陕西商洛·模拟预测)在锐角△ABC中.内角A,B,C所对的边分别是a,b,c,已知a-2c cos B=c.(1)求证:B=2C;(2)求sin B+23cos2C的取值范围.。
三角形中的最值与范围问题解析版
![三角形中的最值与范围问题解析版](https://img.taocdn.com/s3/m/5c0e0612a9114431b90d6c85ec3a87c240288a5a.png)
三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
解三角形中的最值与范围问题-高考数学复习
![解三角形中的最值与范围问题-高考数学复习](https://img.taocdn.com/s3/m/eeb7ae6e3868011ca300a6c30c2259010202f3b2.png)
∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.1、正弦定理:,其中为外接圆的半径正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)(2)(恒等式)(3)2、余弦定理:变式: 此公式在已知的情况下,配合均值不等式可得到和的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由利用的是余弦函数单调性,而仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值 【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当时,由正弦定理,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在中,角A,B,C的对边分别为a,b,c,且.(1)求A.(2)若,求的取值范围.【答案】(1);(2).,进而可得结果.试题解析:(1)根据正弦定理得,即,则,即,由于,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知,,设函数.(1)求函数的单调增区间;(2)设的内角,,所对的边分别为,,,且,,成等比数列,求的取值范围.【答案】(1) ,.(2) .【解析】试题分析:(1)由题,根据正弦函数的性质可求其单调增区间;(2)由题可知,(当且仅当时取等号),所以,,由此可求的取值范围.(当且仅当时取等号),所以,,,综上,的取值范围为.例9.【2018届吉林省吉林市高三第三次调研】锐角中,对边为,(1)求的大小;(2)求代数式的取值范围.【答案】(1)(2)【解析】试题分析:(1)由及余弦定理的变形可得,因为,故得,从而可得锐角中.(2)利用正弦定理将所求变形为,然后根据的取值范围求出代数式的取值范围即可.试题解析:(1)∵,,∴ ,∴∴,∴,∵为锐角三角形,且∴ ,即 , 解得,∴∴∴.故代数式的取值范围.点睛:(1)求的取值范围时,可根据正弦定理将问题转化为形如的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得的范围,然后结合函数的图象可得的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.【答案】(1) (2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A. B. C. D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B. C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形中,,,设、的面积分别为、,则当取最大值时, __________.【答案】【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角的内角的对边分别为,且,则的最大值为__________.【答案】即,所以的最大值为.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知分别为内角的对边,且.(1)求角;(2)若,求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)由正弦定理边化角得到,从而得解;(2)由余弦定理得,结合即可得最值.试题解析:(1)∵,∴由正弦定理可得,即面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在中,内角所对的边分别为,已知.(1)求角的大小;(2)若,且,求边的取值范围.【答案】(1) ;(2) .在中,由正弦定理,得,∴,∵,∴,∴,即的取值范围为.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知三个内角的对边分别为,的面积满足.(1)求角的值;(2)求的取值范围.【答案】(1);(2),又, .(2)11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在中,内角的对边分别为,已知,且.(1)求的值;(2)若,为的面积,求的取值范围.【答案】(1) (2)【解析】试题分析:(1)利用正余弦定理,可转化为,又,从而得到的值;(2)由正弦定理,故限制角A的范围,求出的取值范围.(2)由正弦定理得,在中,由得,.12.【衡水金卷信息卷(五)】在锐角中,内角,,的对边分别为,,,且.(1)求角;(2)若,求周长的取值范围.【答案】(1) (2).试题解析:(1)∵,∴,∴,整理,得,∴或,∵,∴,即.(2)设的外接圆半径为,则,∴.∴ ,∴周长的取值范围是.。