模式识别蔡宣平主讲ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
例:汽车车牌识别
从摄像头获取包含车牌的彩色图象 车牌定位和获取 字符分割和识别
输入图象
特征提取
粗略定位
分割字符
确定类型
精细定位
识别、输出
24
25
26
1.1 概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
概念
特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一 个矢量 xx 表 示(x ,1 ,称x 2 之, 为特,x 征n ) 矢量,记为
模式类(Class):具有某些共同特性的模式 的集合。
模式识别的例子
计算机自动诊断疾病:
1. 获取情况(信息采集) 测量体温、血压、心率、 血液化验、X光透射、B超、心电图、CT等尽可 能多的信息,并将这些信息数字化后输入电脑。 当然在实际应用中要考虑采集的成本,这就是 说特征要进行选择的。
15
1.1 概述-模式识别系统
待识 数据采集 二次特征 对象 特征提取 提取与选择
分类 识别结果 识别
训练 数据采集 样本 特征提取 人工 改进采集 干预 提取方法
二次特征提 改进分类 取与选择 识别规则
改进特征提 制定改进分 取与选择 类识别规则
正确率 测试
16
1.1 概述-模式识别系统
模式识别系统的主要环节: 特征提取: 符号表示,如长度、波形、。。。 特征选择: 选择有代表性的特征,能够正确分类 学习和训练:利用已知样本建立分类和识别规则 分类识别: 对所获得样本按建立的分类规则进行
10
概念
模式识别(Pattern Recognition):确定一个 样本的类别属性(模式类)的过程,即把某一 样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。 如患者,某人写的一个汉字,一幅图片等。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
分类识别
17
1.1 概述-系统实例
纸币识别器对纸币按面额进行分类
5元
面额
10元 20元
50元
100元
18
1.1 概述-系统实例
5元 10元 20元 50元 100元
长度(mm) 136 141 146 151 156
宽度(mm) 63 70 70 70 77
19
1.1 概述-系统实例
5元 10元 20元 50元 100元
●李晶皎等译,模式识别(第三版),电 子工业出版社,2006年。
8
讲授课程内容及安排
第一章 第二章 第三章 第四章 第五章 第六章 第七章
引论 聚类分析 判别域代数界面方程法 统计判决 学习、训练与错误率估计 最近邻方法 特征提取和选择 上机实习
9
第一章 引论
1.1 概述 1.2 特征矢量和特征空间 1.3 随机矢量的描述 1.4 正态分布
6
★ 基本要求
●基本:完成课程学习,通过考试,获得学分。 ●提高:能够将所学知识和内容用于课题研究,
解决实际问题。 ●飞跃:通过模式识别的学习,改进思维方式,
为将来的工作打好基础,终身受益。
7
★教材/参考文献
●孙即祥,现代模式识别,国防科技大学 出版社,2003年。
●吴逸飞译,模式识别-原理、方法及应 用,清华大学出版社,2003年。
磁性 有 有 有 有 有
金属条位置(大约) 54/82 54/87 57/89 60/91 63/93
20
5元
反 射 光 波 形
10元
20元 50元 100元
1 2 3 4 5 6 7 8
1.1 概述-系统实例
数据采集、特征提取:
长度、宽度、磁性、磁性的位置,光反射亮度、光 透射亮度等等
特征选择:
长度、磁性及位置、反射亮度
分类识别:
确定纸币的面额及真伪
22
1.1 概述-系统实例
训练集:是一个已知样本集,在监督学习方法 中,用它来开发出模式分类器。
测试集:在设计识别和分类系统时没有用过的 独立样本集。
系统评价原则:为了更好地对模式识别系统性 能进行评价,必须使用一组独立于训练集的测 试集对系统进行测试。
2. 运行在电脑中的专家系统或专用程序可以分析 这些数据并进行分类,得出正常或不正常的判 断,不正常情况还要指出是什么问题。
各类空间Hale Waihona Puke BaiduSpace)的概念
模 对象空间
式
识 模式空间 别
三 大
特征空间
任
务 类型空间
模式采集:从客观世界(对象 空间)到模式空间的过程称为 模式采集。 特征提取和特征选择:由模式 空间到特征空间的变换和选择。
模式识别
1
关于本课程的有关说明
★ 课程对象 ★ 相关学科 ★ 教学方法 ★ 教学目标 ★ 基本要求 ★ 教材/参考文献
2
★ 课程对象
●信息工程专业本科生的专业课 ●学院硕士研究生的学位课 ●学院博士研究生的必修课之一
3
★ 相关学科
●统计学 ●概率论 ●线性代数(矩阵计算)
●形式语言 ●人工智能 ●图像处理 ●计算机视觉
等等
4
★ 教学方法
●着重讲述模式识别的基本概念,基本 方法和算法原理。
●注重理论与实践紧密结合 实例教学:通过实例讲述如何将所学
知识运用到实际应用之中
●避免引用过多的、繁琐的数学推导
5
★ 教学目标
●掌握模式识别的基本概念和方法 ●有效地运用所学知识和方法解决实际问题 ●为研究新的模式识别的理论和方法打下基础
类型判别:特征空间到类型空 间所作的操作。
14
1.1 概述-模式识别系统
待识 数据采集 二次特征 对象 特征提取 提取与选择
分类 识别结果 识别
数通分预字常类处化在能识理—采描别这—集述是个比信对根环特息象据节流过的事的程元先内中素确容,很定很还多的广要,分泛去为类,除节规与所约则要获资对解取源前决信和面的息提选具 中高取体的处的问噪理特题声速征有,度进关增,行,强有分例有时类如用更(,的为即从信了识图息可别象等行)中工性。将作,汽。在车这满车种足牌使分的信类号息识码 纯别识化正别的确出处率来理要,过求就程的需叫条要做件先信下将息,车的按牌预某从处种图理准像。则中尽找量出选来用,对再 正对确车分牌类进识行别划作分用,较将大每的个特数征字。分使别得划用分较开少。的做特到 征这就一能步完以成后分,类才识能别对任每务个。数字进行识别。以上工 作都应该在预处理阶段完成。
例:汽车车牌识别
从摄像头获取包含车牌的彩色图象 车牌定位和获取 字符分割和识别
输入图象
特征提取
粗略定位
分割字符
确定类型
精细定位
识别、输出
24
25
26
1.1 概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
概念
特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一 个矢量 xx 表 示(x ,1 ,称x 2 之, 为特,x 征n ) 矢量,记为
模式类(Class):具有某些共同特性的模式 的集合。
模式识别的例子
计算机自动诊断疾病:
1. 获取情况(信息采集) 测量体温、血压、心率、 血液化验、X光透射、B超、心电图、CT等尽可 能多的信息,并将这些信息数字化后输入电脑。 当然在实际应用中要考虑采集的成本,这就是 说特征要进行选择的。
15
1.1 概述-模式识别系统
待识 数据采集 二次特征 对象 特征提取 提取与选择
分类 识别结果 识别
训练 数据采集 样本 特征提取 人工 改进采集 干预 提取方法
二次特征提 改进分类 取与选择 识别规则
改进特征提 制定改进分 取与选择 类识别规则
正确率 测试
16
1.1 概述-模式识别系统
模式识别系统的主要环节: 特征提取: 符号表示,如长度、波形、。。。 特征选择: 选择有代表性的特征,能够正确分类 学习和训练:利用已知样本建立分类和识别规则 分类识别: 对所获得样本按建立的分类规则进行
10
概念
模式识别(Pattern Recognition):确定一个 样本的类别属性(模式类)的过程,即把某一 样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。 如患者,某人写的一个汉字,一幅图片等。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
分类识别
17
1.1 概述-系统实例
纸币识别器对纸币按面额进行分类
5元
面额
10元 20元
50元
100元
18
1.1 概述-系统实例
5元 10元 20元 50元 100元
长度(mm) 136 141 146 151 156
宽度(mm) 63 70 70 70 77
19
1.1 概述-系统实例
5元 10元 20元 50元 100元
●李晶皎等译,模式识别(第三版),电 子工业出版社,2006年。
8
讲授课程内容及安排
第一章 第二章 第三章 第四章 第五章 第六章 第七章
引论 聚类分析 判别域代数界面方程法 统计判决 学习、训练与错误率估计 最近邻方法 特征提取和选择 上机实习
9
第一章 引论
1.1 概述 1.2 特征矢量和特征空间 1.3 随机矢量的描述 1.4 正态分布
6
★ 基本要求
●基本:完成课程学习,通过考试,获得学分。 ●提高:能够将所学知识和内容用于课题研究,
解决实际问题。 ●飞跃:通过模式识别的学习,改进思维方式,
为将来的工作打好基础,终身受益。
7
★教材/参考文献
●孙即祥,现代模式识别,国防科技大学 出版社,2003年。
●吴逸飞译,模式识别-原理、方法及应 用,清华大学出版社,2003年。
磁性 有 有 有 有 有
金属条位置(大约) 54/82 54/87 57/89 60/91 63/93
20
5元
反 射 光 波 形
10元
20元 50元 100元
1 2 3 4 5 6 7 8
1.1 概述-系统实例
数据采集、特征提取:
长度、宽度、磁性、磁性的位置,光反射亮度、光 透射亮度等等
特征选择:
长度、磁性及位置、反射亮度
分类识别:
确定纸币的面额及真伪
22
1.1 概述-系统实例
训练集:是一个已知样本集,在监督学习方法 中,用它来开发出模式分类器。
测试集:在设计识别和分类系统时没有用过的 独立样本集。
系统评价原则:为了更好地对模式识别系统性 能进行评价,必须使用一组独立于训练集的测 试集对系统进行测试。
2. 运行在电脑中的专家系统或专用程序可以分析 这些数据并进行分类,得出正常或不正常的判 断,不正常情况还要指出是什么问题。
各类空间Hale Waihona Puke BaiduSpace)的概念
模 对象空间
式
识 模式空间 别
三 大
特征空间
任
务 类型空间
模式采集:从客观世界(对象 空间)到模式空间的过程称为 模式采集。 特征提取和特征选择:由模式 空间到特征空间的变换和选择。
模式识别
1
关于本课程的有关说明
★ 课程对象 ★ 相关学科 ★ 教学方法 ★ 教学目标 ★ 基本要求 ★ 教材/参考文献
2
★ 课程对象
●信息工程专业本科生的专业课 ●学院硕士研究生的学位课 ●学院博士研究生的必修课之一
3
★ 相关学科
●统计学 ●概率论 ●线性代数(矩阵计算)
●形式语言 ●人工智能 ●图像处理 ●计算机视觉
等等
4
★ 教学方法
●着重讲述模式识别的基本概念,基本 方法和算法原理。
●注重理论与实践紧密结合 实例教学:通过实例讲述如何将所学
知识运用到实际应用之中
●避免引用过多的、繁琐的数学推导
5
★ 教学目标
●掌握模式识别的基本概念和方法 ●有效地运用所学知识和方法解决实际问题 ●为研究新的模式识别的理论和方法打下基础
类型判别:特征空间到类型空 间所作的操作。
14
1.1 概述-模式识别系统
待识 数据采集 二次特征 对象 特征提取 提取与选择
分类 识别结果 识别
数通分预字常类处化在能识理—采描别这—集述是个比信对根环特息象据节流过的事的程元先内中素确容,很定很还多的广要,分泛去为类,除节规与所约则要获资对解取源前决信和面的息提选具 中高取体的处的问噪理特题声速征有,度进关增,行,强有分例有时类如用更(,的为即从信了识图息可别象等行)中工性。将作,汽。在车这满车种足牌使分的信类号息识码 纯别识化正别的确出处率来理要,过求就程的需叫条要做件先信下将息,车的按牌预某从处种图理准像。则中尽找量出选来用,对再 正对确车分牌类进识行别划作分用,较将大每的个特数征字。分使别得划用分较开少。的做特到 征这就一能步完以成后分,类才识能别对任每务个。数字进行识别。以上工 作都应该在预处理阶段完成。